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Abstract: In this paper, we present a novel memetic algorithm (MA) for the solution of the resource
leveling problem (RLP). The evolutionary framework of the MA is based on integration of a ge-
netic algorithm and simulated annealing methods along with a resource leveling heuristic. The
main objective of the proposed algorithm is to integrate complementary strengths of different op-
timization methods and incorporate the individual learning as a separate process for achieving
a successful optimization method for the RLP. The performance of the MA is compared with the
state-of-the-art leveling methods. For small instances up to 30 activities, mixed-integer linear models
are presented for two leveling metrics to provide a basis for performance evaluation. The computa-
tional results indicate that the new integrated framework of the MA outperforms the state-of-the-art
leveling heuristics and meta-heuristics and provides a successful method for the RLP. The limitations
of popular commercial project management software are also illustrated along with the improve-
ments achieved by the MA to reveal potential contributions of the proposed integrated framework
in practice.

Keywords: resource leveling; project scheduling; optimization; genetic algorithms; simulated annealing;
memetic algorithms

1. Introduction

The critical path method (CPM) is used extensively for the scheduling of construction
projects. The CPM performs scheduling by only considering precedence relationships
between the activities. However, the CPM does not optimize resources during scheduling;
hence, the resource demand diagrams obtained by the CPM usually include undesirable
fluctuations. Fluctuations in the manpower and machinery diagrams can be quite expensive
because they often cause extra labor or financial expenditure [1–3]. The irregularities in the
resource diagram can be leveled by shifting the non-critical activities through their floats.

The resource leveling problem (RLP) aims to determine the optimal schedule so that
the fluctuations in the resource diagram are minimized based on a leveling metric. Resource
leveling is crucial for optimal planning of construction resources, particularly manpower
and machinery, to minimize project costs. Despite the importance of resource leveling in
practice, commercial project management software utilizes simple priority-based heuristics
and has very limited capabilities for solving the resource leveling problem [4,5]. Hence,
development of effective optimization methods for resource leveling has both theoretical
and practical relevance.

The methods proposed for the RLP could be categorized into three areas: exact
methods, heuristics, and meta-heuristics. The RLP is non-deterministic polynomial-time

Buildings 2023, 13, 2738. https://doi.org/10.3390/buildings13112738 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings13112738
https://doi.org/10.3390/buildings13112738
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0001-6163-3264
https://orcid.org/0000-0002-1986-4891
https://doi.org/10.3390/buildings13112738
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings13112738?type=check_update&version=1


Buildings 2023, 13, 2738 2 of 18

hard (NP-hard) in the strong sense [6], and as the problem size grows, the amount of time it
takes to solve the problem increases exponentially. Hence, exact methods based on integer-
linear programming [2,7–12], dynamic programming [13], branch and bound [14,15], and
complete enumeration [16] methods can only solve problems including few activities. In a
recent study of scheduling problems subject to general temporal constraints, instances up
to 50 activities and five resources were solved to optimality [10].

Numerous heuristic procedures have been proposed in the literature for the RLP. The
majority of the heuristic methods used simple shifting heuristics and shifting heuristic
priority-rule techniques [17–20]. Case examples up to 12 activities were included to validate
the heuristic methods; however, computational experiments were not implemented for per-
formance evaluation in the majority of heuristic studies. Few studies focused on evaluating
the capabilities of the project management software for the RLP. Son and Mattila [4] used a
problem consisting of 11 activities to reveal the limitations of SureTrak Project Manager ver-
sion 3.0 and Primavera Project Planner (P3) version 3.0. Iranagh and Sonmez [5] compared
the performance of a sole GA with the performance of Microsoft Project 2010 for leveling
problems including up to 20 activities with a single resource type.

There has been an increasing interest in the adaptation of meta-heuristics to the RLP
in recent years. GAs [5,21–28], neural networks [29,30], particle swarm optimization [31],
ant colony optimization [32], artificial bee [33], estimation of distribution [34], evolutionary,
Bat [35], and symbiotic organism search algorithms [36] are among the sole meta-heuristic
algorithms utilized for the solution of the RLP. Few research studies integrated various
optimization methods with the meta-heuristic algorithms. Son and Skibniewski [37] com-
bined a local optimizer with simulated annealing (SA). Doulabi et al. [38] proposed a GA
with a local search heuristic for resource leveling with activity splitting. Alsayegh and
Hariga [39] combined particle swarm optimization and SA methods to level resources while
allowing activity splitting and considering splitting costs. Koulinas and Anagnostopoulos
presented a simulated-annealing-based hyper-heuristic, and a tabu-search-based hyper-
heuristic algorithm for leveling constrained resources [40]. Tabu-search-based methods
were also implemented by Li et al. [41]. A non-dominated sorting genetic algorithm was
implemented by Abadi [42]. A majority of the early meta-heuristic methods were validated
by one or two case examples including up to 20 activities [5,21–24,29–32,37]. A few recent
studies performed computational experiments for performance evaluation [25,38–42].

While the majority of the meta-heuristic research on resource leveling has focused on
GAs, a sole GA may suffer from a rapid population convergence to local optima [43,44]. In
contrast, SA has a fine-tuning capability and a good convergence property since its search
is based on the cooling schedule, which specifies how the temperature is reduced as the
search progresses [45]. However, a sole SA has a low search efficiency, as it maintains one
solution at a time. In recent years, skilled combinations of GAs with SA were proposed to
achieve an efficient search algorithm for many optimization problems [46–50].

In addition to the hybrid use of meta-heuristics, in recent years, the recognition of the
limitations of sole optimization methods has led to the development of new optimization
strategies by combining multiple methods to provide a more efficient behavior and higher
flexibility when dealing with real-world and large-scale problems [51]. Memetic algorithms
(MAs) were suggested within this context by hybridizing and combining existing algorithmic
structures. MAs are extensions of evolutionary algorithms and are composed of an evolu-
tionary framework and a local search algorithm. MAs are a pragmatic cross-disciplinary
optimization paradigm and have been successfully applied in numerous fields including
machine learning, knowledge discovery, economics, engineering, and scheduling [52].

Much of the research on the RLP has concentrated on designing heuristic and meta-
heuristic solution methods [53]. The majority of these methods are limited to a single
optimization strategy [5,21–25,29–32,37–42]. Piryonesi et al. [54] used a single metaheuris-
tic strategy to solve the problem while activity splitting was allowed, Selvam and Tade-
palli [55] used only a genetic algorithm, and Duraiswamy and Selvam [56] used ant colony
optimization as a meta-heuristic method to solve the RLP problem. Damci et al. [57]
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used the float consumption rate as an option during the leveling process, and Prayogo
and Kusuma [58] used a multi-objective during the optimization process. A few studies
included hybrid strategies [38]; however, very few published studies focused on incor-
porating the individual learning as a separate process for local refinement to design an
efficient optimization strategy for the RLP. Integrating complementary strengths of different
optimization methods and incorporating the individual learning as a separate process has
a significant potential for achieving a successful optimization method for the RLP. Hence,
the main focus of this paper is to narrow this gap in the literature by presenting a memetic
algorithm (MA) that is composed of an evolutionary framework that includes a genetic
algorithm (GA) with simulated annealing (SA) and a local search algorithm consisting of a
shifting heuristic. The proposed algorithm was designed to achieve an effective optimiza-
tion strategy for the RLP by integrating complementary strengths of different optimization
methods and incorporating the individual learning as a separate process. The remainder of
the paper is organized as follows: Section 2 is devoted to the novel memetic algorithm. In
Section 3, two mixed-integer linear models are presented for the RLP to provide a basis
for performance evaluation. An illustrative case study example is given in Section 4. The
computational experiment results are presented in Section 5, and concluding remarks are
made in Section 6.

2. Methodology of the Memetic Algorithm

A genetic algorithm is suitable for implementing multiple directional searches in a
parallel architecture and can capture critical components of the past good solutions [59].
However, sole GAs often lack a sufficient search intensification capability. MAs were
proposed to combine strengths of hierarchical population search methods with the inten-
sification capabilities of local search procedures [60]. MAs offer a new problem-oriented
algorithmic design perspective [52].

In this paper, an MA was designed specifically for the solution of the RLP. The evo-
lutionary framework of the MA was developed based on a hybrid GA with SA. The GA
enables searches in parallel architecture and captures critical components of past good
solutions. The SA was used to control the search process for avoiding premature conver-
gence [61]. The local search algorithm of the MA is composed of a shifting heuristic specific
for the leveling problem. The shifting heuristic incorporates the individual learning for
local refinement. The MA is described in the following subsections.

2.1. Chromosome Representation

In the evolutionary framework of the MA, candidate solutions to an optimization
problem are represented by individuals. The solutions are encoded to an MA by chromo-
somes, which are a string of parameters called genes. The genes, composed of randomly
generated real numbers between 0 and 1, represent the delay in non-critical activities, as
shown in Equation (1).

delay timei = rounddown (GVi ∗ [TFi + 1]) (1)

In Equation (1), GVi is gene value between 0 and 1, and TFi is the total float of the
ith noncritical activity. The MA schedules the activities in the precedence-free activities
list in ascending activity ID. The predecessor-free activity list consists of activities without
any predecessors and the activities for which all of the predecessors have been scheduled.
Higher priority for scheduling is assigned for the activity with a smaller ID. After deter-
mining the start and finish times of the activity with the highest priority, the next activity
with the closest priority is examined. The procedure continues until all of the noncritical
activities are scheduled.

2.2. Heuristic Improvement

The local search algorithm of the MA is composed of a shifting heuristic. The shifting
heuristic attempts to improve the resource profile of a given schedule by searching the
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delay time alternatives of non-critical activities one by one in ascending activity ID order
without changing the start times of the remaining activities.

The heuristic search algorithm attempts to delay alternatives from 0 to TFi. If the
objective function is improved, the heuristic algorithm replaces the current solution with
the obtained best solution. The gene representation of the improved solution is updated by
Equation (2), in which the shift of the ith activity improves the objective function.

GVi =
delaytimei + 0.5

TFi + 1
(2)

The heuristic search finishes when all of the non-critical activities are investigated.

2.3. Crossover, Mutation, and Simulated Annealing

New individuals are introduced by crossover and mutation operators. The MA
performs a two-point crossover. The mutation operator of the MA changes a gene value of
a selected chromosome with a random real number between 0 and 1. SA is integrated with
the evolutionary framework of the MA to perform mutations based on a cooling schedule.
The MA executes a mutation that leads to an individual with a worse fitness evaluation
function value if the condition in Equation (3) is true [61].

r ≤ e
( f − f ′)

f x B
t (3)

where r is a randomly generated real number between 0 and 1, f is the fitness value before
mutation, f ′′ is the fitness value after the mutation, B is the Boltzmann constant, and t is the
temperature. The main purpose of the simulated annealing integrated mutation strategy is
to prevent premature convergence by controlling the search process more efficiently. In the
initial search stages, mutations leading to a worse fitness value are allowed to avoid being
trapped in certain solutions. In later stages, fewer mutations leading to a worse fitness
value are allowed to achieve fine tuning and a good convergence property by decreasing
the temperature based on a cooling schedule that specifies how the temperature is reduced
as the search progresses. The MA is evolved toward better solutions via the elitist roulette
wheel selection method. The flowchart of the MA is given in Figure 1.

2.4. Excel Interface

The MA was implemented using C# and compiled within Visual Studio 2010. The
Microsoft Excel interface was integrated into the MA to simplify the problem input and to
enable data exchange with the commercial project management software. The interface
enabled integration of the MA with Primavera and Microsoft Project, which are commonly
used for the planning and management of construction projects. The duration, precedence,
and resource information of the project in Primavera or Microsoft Project can be exported
as a Excel file and used as an input by the interface. Once leveling is performed by
the interface, the optimal start times of the activities can be imported by Primavera or
Microsoft Project.
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3. Mixed-Integer Linear Models

In this study, two mixed-integer linear models are presented to obtain the optimum
solutions for small instances. The models minimize the difference between fluctuating
resource profiles and a predetermined desirable shape of a rectangular resource profile [24].

The optimum solutions are used in the performance evaluation of the MA. The first
model considers the absolute deviation between the resource requirement and a targeted
uniform resource level (ADIF) metric to minimize the fluctuations in the resource utiliza-
tion curve, whereas the second model minimizes the SSRR. The ADIF and SSRR metrics
are considered for the performance evaluation of MA since these metrics are the most
commonly used leveling metrics in previous research. The models are an extension of
the previous model presented for the combined resource idle days (RIDs) and maximum
resource demand metric (MRD) [62]. However, the models presented for ADIF and SSRR
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are significantly different than the RID-MRD model [62] since there are major differences
between parameters, variables, and constraints.

3.1. Sets

Mixed-integer model is developed considering the below sets:

I = {i1, i2, . . ., ii) is the set of activities I (4)

T = {t1, t2, . . ., tt) is the set of time periods in which the activities can be scheduled (5)

t1 is the beginning time and tt is the completion time of the project.

R = {r1, r2, . . ., rr) is the set of resources (6)

N = {n1, n2, . . ., nn) is the set of total daily resource demands (7)

3.2. Parameters

ESTi = Earliest start time of activity i (8)

LSTi = Latest start time of activity i (9)

di = Duration of activity i (10)

ri,r = Resource demand of activity i for resource r (11)

at,r = Targeted demand of resource r for day t (12)

wr = Weight of resource r (13)

D = Project duration (14)

pi, j :
{

1, if activity j should be finished before activity i
0, otherwise

(15)

3.3. Variables

z1 = The weighted sum of absolute deviations from the targeted resource demands (16)

z2 = The weighted sum of resource demands for all time periods (17)

fi = The start time of activity i (18)

ut,r = Resource demand at time period t for resource r (19)

vt,r = Square of resource demand at time period t for resource r (20)

xt,r = Amount of resource demand that is more than targeted demand at,r at time period t for resource r (21)

yt,r = Amount of resource demand that is less than targeted demand at,r at time period t for resource r (22)

λn,t,r :
{

1, if demand for resource r at time period t is equal to n
0, otherwise

(23)
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ϕt,i :
{

1, if activity i is under progress at time period t
0, otherwise

(24)

σt,i :
{

1, if activity i has started at time period t
0, otherwise

(25)

3.4. Models

The first model, as shown in Equation (26), minimizes the absolute deviation between
the resource requirement and a targeted uniform resource level (ADIF) [2]. The objective of
the second model is to minimize the sum of squares of resource requirements (SSRR) for all
time periods, as shown in Equation (27).

minz1 = ∑t ∑r wr|ut,r − at,r| (26)

minz2 = ∑t ∑r wrut,r
2 (27)

Since both of the metrics are not linear, the metrics are expressed in terms of the linear
models. The common constraints of the models are presented at the end of this section.

3.4.1. Model for ADIF

minz1 = ∑t ∑r wr(xt,r + yt,r

)
(28)

ut,r − at,r = xt,r − yt,r ∀t ∈ T, ∀r ∈ R (29)

xt,r, yt,r ∈ Z0 ∀t ∈ T, ∀r ∈ R (30)

The ADIF leveling metric is expressed as a linear objective function in Equation
(28). The constraint given in Equation (29) expresses the ut,r − at,r term as difference of
two non-negative integer variables, as the absolute value function is not linear.

3.4.2. Model for SSRR

minz2 = ∑t ∑r wrvt,r (31)

ut,r = ∑n nλn,t,r ∀t ∈ T, ∀r ∈ R (32)

vt,r = ∑n n2λn,t,r ∀t ∈ T, ∀r ∈ R (33)

∑n λn,t,r = 1 ∀t ∈ T, ∀r ∈ R (34)

vt,r ∈ Z0 ∀t ∈ T, ∀r ∈ R (35)

λn,t,r ∈ {0, 1} ∀n ∈ N, ∀t ∈ T, ∀r ∈ R (36)

The objective function given in Equation (31) minimizes the weighted SSRR for all
time periods. Equation (32) determines the sum of resource requirements, and Equation (33)
determines the SSRR for all time periods. Equation (34) ensures that the sum of resource
requirements for resource r can take a unique value.

3.5. Common Scheduling Constraints

∑i ri,r ϕt,i = ut,r ∀t ∈ T, ∀r ∈ R (37)
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pi,j fi ≥ pi,j
(

f j + dj
)
∀i, j ∈ I, i 6= j (38)

∑ESTi≤t≤LSTi
tσt,i = fi ∀i ∈ I (39)

∑ESTi≤t≤LSTi
σt,i = 1 ∀i ∈ I (40)

ϕt,i = ∑min(LSTi ,t)
t=max(ESTi ,t−di+1) σt,i ∀t ∈ T, ∀i ∈ I, ESTi ≤ t ≤ LSTi + di − 1 (41)

ϕt,i = 0 ∀t ∈ T, ∀i ∈ I, t < ESTi (42)

ϕt,i = 0 ∀t ∈ T, ∀i ∈ I, t > LSTi + di − 1 (43)

f1 = 0 (44)

f I ≤ D (45)

σ0,1 = 1 (46)

ut,r ∈ Z0 ∀t ∈ T, ∀r ∈ R (47)

fi ∈ Z0 ∀i ∈ I (48)

ϕt,i ∈ {0, 1} ∀t ∈ T, ∀i ∈ I (49)

σt,i ∈ {0, 1} ∀t ∈ T, ∀i ∈ I (50)

The scheduling constraints are common in both models. Equation (37) determines
the resource usage for time periods. Equation (38) satisfies the precedence constraints.
Equation (39) determines the start times of the activities. Equation (40) ensures that an
activity starts at a time between its early start and late start times. Equation (41) determines
the time periods the activities are in progress. Equations (42) and (43) ensure that an activity
cannot be executed outside the early start and late finish times. The first and the last
activities are dummy activities that determine the project start time and project completion
time. Equation (44) defines the start time of project as day 0. Equation (45) ensures that the
project is not completed later than the finish time of all activities. Equation (46) starts the
first activity at time 0.

4. Illustrative Case Study

The leveling example of Son and Skibniewski [37] is used to illustrate the chromosome
representation along with the encoding and decoding scheme designed for the MA. In
the case example, the sum of squares of resource requirements (SSRR) resource leveling
metric is used to measure the fluctuations in the resource utilization curve. The case
example includes six non-critical activities, as shown in Figure 2. An arbitrary chromosome
representation for the example is given in Figure 3.

The initial precedence-free activity list includes activities 1 and 4. Activity-1 had a
smaller activity ID, hence this activity was scheduled first. The duration (D) and resource
requirement (RR) of Activity-1 were 8 days and two resources, respectively. In the initial
schedule, the early start time (ES) of Activity-1 was day 0, and the late start time (LS) of this
activity was day 7. The number of start time alternatives of Activity-1 was eight, as this
activity had a total float (TF) of seven days. Eight intervals were formed between zero and
one to determine the start time of Activity-1. Thus, the interval length was 0.125 (1/8), the
randomly generated value of 0.240 corresponded to the second interval, and Activity-1 was
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scheduled to start at the second start time alternative. Hence, the scheduled start time (SS)
of Activity-1 was determined as day 1, and the scheduled finish time (SF) of Activity-1 was
determined as day 9. Once Activity-1 was scheduled, the early start times, late start times,
and total floats of all non-critical activities were updated. Then, Activity-1 was removed
from the precedence-free activities list, and Activity-2 was added to the list. The procedure
was continued with the next activity in the list until all of the activities were scheduled.
The resulting schedule had an SSRR value of 985, as shown in Figure 4.
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In order to illustrate the heuristic improvement, the shifting heuristic was applied to
the schedule shown in Figure 4. Heuristic improvement for the first gene was explored
first by evaluating the SSRR values of all possible start time alternatives for Activity-1
without changing the start times of the remaining activities. Starting Activity-1 at days 0,
2, 3, 4, and 5 were tried, and an improvement in the SSRR value could not be achieved.
Hence, Activity-1 was not shifted. However, starting Activity-2 at day 15 instead of day 13
improved the SSRR value to 961. Therefore, the start time of Activity-2 was shifted to day
15, and the early start times, late start times, and total floats of all non-critical activities were
updated. The procedure was applied to all remaining non-critical activities, and the SSRR
value was improved to 957, as shown in Figure 5. The start times of the improved schedule
were encoded by implementing Equation (2). To illustrate, Equation (2) provided 0.929
when Activity-2, which had 7 days of total float, was delayed 7 days. The chromosome
representation of the improved schedule is given in Figure 6. The input screen of the
interface for the case example is shown in Figure 7.
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5. Computational Experiments

In this section, the performance of the proposed MA is compared with the performance
of the state-of-the-art heuristic and meta-heuristic methods. All of the tests were carried
out on a computer with a 3.00 GHz Core 2 Duo Processor E8400 Intel CPU. A total of
1443 test instances including up to 120 activities and four resources were tested with
two leveling metrics in the computational experiments. The parameters of the MA were
configured based on a pilot study. In the computational experiments, a population size of
30, a crossover rate of 0.3, and a mutation rate of 0.2 are used. The percentage of mutations
leading to a worse fitness value was decreased according to the simulated annealing
procedure. The temperature was decreased based on a linear cooling scheme. The number
of schedule evaluations was used as the stopping criterion. The pilot study revealed that
the MA in general converged within 500,000 schedules. The convergence behavior of the
MA for a 120-activity problem is illustrated in Figure 8. In the initial search stages, the
MA improved the solutions rapidly, and at later stages, the MA executed fine tuning. In
all computational experiments, the same parameters and 500,000 schedules were used to
evaluate the performance of the MA.
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5.1. Single Resource Case Examples

The majority of the leveling case examples in the literature included a single re-
source and a few activities. The performance of the MA was evaluated initially for the
two case examples presented in Son and Skibniewski [37] and one case example presented
in El-Rayes and Jun [24]. The stopping criterion for the MA was set as 500,000 schedule
evaluations [63] for the single-resource case examples. Optimal solutions of the case ex-
amples were obtained by using the models presented in Equations (4)–(50). The targeted
demand in Equation (12) was determined by rounding the average resource demand using
the floor function. The results of the MA for the single-resource case examples are shown
in Table 1. The MA was able to find the optimal result for all of the single case examples.

Table 1. Results of the MA for single-resource case examples.

Source No. of
Activities Metric Optimal MA Time

(s)

Son and Skibniewski (1999) [37] 11 SSRR 915 915 3.4
Son and Skibniewski (1999) [37] 13 SSRR 6225 6225 1.9

El-Rayes and Jun (2009) [24] 20 SSRR 3059 3059 2.5
El-Rayes and Jun (2009) [24] 20 ADIF 90 90 2.5

5.2. Comparison of MA with Microsoft Project and Primavera

Primavera (Primavera Inc., Bala Cynwyd, PA,USA) and Microsoft Project (Microsoft
Corp., Redmond, Washington, DC, USA) are the most commonly used software for the
planning and management of construction projects [64]. Resource leveling can be performed
in Primavera and Microsoft Project by setting targets for the resource demands. Despite
the importance of leveling in practice, very few studies in the literature evaluated the
performance of project management software for the RLP. In this section, the performance
of the MA is compared first with the performance of nine priority-based leveling heuristics
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available in Microsoft Project Professional 2013 and Primavera 6.7. The heuristics included
the Standard (STD) heuristics of Microsoft Project (MSP) 2013 and the ID-Ascending (IDA),
ID-Descending (IDD), Total Float-Ascending (TFA), Total Float-Descending (TFD), Early
Start-Ascending (ESA), Early Start-Descending (ESD) Late Finish-Ascending (LFA), and
Late Finish-Descending (LFD) heuristics of Primavera 6.7.

A total of 15 standard instances with 30 activities (J30), 15 standard instances with
60 activities (J60), and 15 standard instances with 120 activities (J120) were selected ran-
domly from the project scheduling problem library (PSPLIB). The PSLIB instances were
generated by utilizing a full factorial design of parameters of network complexity, resource
factor, and resource strength, with 10 replications per cell. All problem instances included
four resource types. Details of the test instances are described in Kolisch and Sprecher [65].
The ADIF leveling metric was used for comparison. The targeted demands for resources
were determined by rounding the average resource demand for each resource using the
floor function. The weights of all four resources were taken as equal in the computational
experiments; however, the MA and the models presented in Section 3 could also solve
leveling problems with different resource weights. All of the selected J30 test instances were
solved to optimality within a computation time limit of five hours by using the standard
solver CPLEX and the model presented for ADIF. However, optimal solutions were not
obtained for the J60 and J120 instances within five hours. Hence, the average percentage
deviation (APD) from the upper bounds (current best solutions) was used in compar-
isons for performance evaluation [65,66]. The stopping criterion for the MA was set as
500,000 schedule evaluations.

The performance comparison results are presented in Table 2. The APD of the MA
from the optimal solutions was 0.5% for the J30 instances. The MA determined the best
solution for 44 test instances among the 10 methods evaluated. The Total Float-Ascending
heuristic obtained the best solution for the remaining instance. The average percentage
deviations of the MA from the upper bounds were 0.0% and 0.1% for the J60 and J120
instances, respectively. The average CPU time for all the instances was 9.6 s. The MA
produced very good results within a reasonable computing time.

Table 2. Comparison of the MA with Microsoft Project 2013 and Primavera 6.7.

Instance MSP Primavera 6.7 This Study

Set STD IDA IDD TFA TFD ESA ESD LFA LFD MA T. (s)

J30 (15) 47.5 42.9 48.9 48.0 43.6 45.0 41.8 45.9 44.4 0.5 4.7
J60 (15) 54.6 59.1 62.0 49.4 54.0 61.3 52.4 46.3 57.5 0.0 8.3
J120
(15) 51.9 54.4 50.4 38.1 57.9 66.2 53.0 45.0 59.7 0.1 15.8

Average 51.3 52.1 53.8 45.2 51.8 57.5 49.1 45.7 53.9 0.2 9.6

The nine priority based leveling heuristics performed very poorly in comparison
to the MA. Among the tested nine heuristics, the Total Float-Ascending and Late Finish-
Ascending methods performed relatively better. The average percentage deviations of these
methods for all instances were 45.2% and 45.7% respectively, whereas the APD of MA for
all instances was 0.2%. The performance gap between the MA and the nine priority-based
leveling heuristics revealed the limitations of the commercial project management software
for resource leveling.

5.3. Comparison of the MA with State-of-the-Art Heuristic and Meta-Heuristic Methods

In a recent study, Ponz-Tienda et al. [25] presented an adaptive GA (AGA) for RLP.
Ponz-Tienda et al. [25] evaluated the performance of the AGA for the SSRR metric by using
480 J30 instances, 480 J60 instances, and 480 J120 instances. In Table 3, the performance of
the MA is compared with the performance of the AGA. The modified version of the well-
known Burgess shifting heuristic [17] is also included in the comparisons. The modified
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Burgess algorithm (Burgess2) executes the standard Burgess method for several randomly
selected activity ID lists and reports the best SSRR value achieved when the stopping
criterion is met. The APD values given in Table 3 are the average percentage deviations
from the current best solutions (upper bounds) for the SSRR metric. In the computational
experiments, the equal weights of all four resources were taken. The J30 test instances were
solved within the five-hour computation time limit by using the standard solver CPLEX
and the model presented for the SSRR. Within the specified computation time limit, 475 J30
instances were solved to optimality. In the computational analysis, the result obtained by
the MA were reported at the end of 500,000 schedule evaluations. The CPU time of the MA
for each problem was used as the stopping criterion for the Burgess2 heuristic.

Table 3. Comparison of the MA with state-of-the-art heuristic and meta-heuristic methods.

AGA [23] Burgess2 MA (This Study)

Instance APD No. of Time APD No. of Time APD No. of Time

Set (%) Optimal (s) (%) Optimal (s) (%) Optimal (s)

J30 (480) 0.7 76 15 3.6 14 12.6 0.2 232 12.6
J60 (480) 2.3 NA NA 3.1 NA 18.3 0.0 NA 18.3
J120 (480) 3.7 NA NA 2.1 NA 27.6 0.1 NA 27.6

Average: 2.2 2.9 19.5 0.1 19.5

Tables 3 and 4 present the summary of the computational results. The complete results
for all instances and optimal solutions for J30 instances can be downloaded from https://docs.
google.com/spreadsheet/ccc?key=0AvRxO1H9dRL6dFFrWHlJcTNhdl91TlNaNnBOS3RpckE&
usp=sharing (accessed on 19 October 2023). The computational results of Table 3 indicate that
the MA obtained better solutions that were either optimal or very close to optimal, as an APD
of 0.2% was obtained for the J30 instances. Out of 475 J30 instances with optimal solutions, the
MA was able to obtain the optimal for 232 instances. The AGA, with an APD of 0.7%, was the
second-best method for the J30 instances and was able to determine the optimal for 76 instances.
The computational experiments for the AGA were performed on a desktop computer with a
3.6 GHz Intel Core i7 processor. The average computing time of the AGA for the J30 instances
was reported as 15 s [25]. For the J30 instances, the average CPU time of the MA on a desktop
computer with a 3.00 GHz Intel E8400 Core 2 Duo Processor was 12.6 s. The MA was able
to obtain better solutions compared to the AGA within a shorter computing time. Among
the three methods evaluated, Burgess2 ranked last for the J30 instances and achieved an APD
of 3.6%.

Table 4. Percentage improvement from the early start resource profile.

AGA [23] Burgess2 MA (This Study)

Instance IES Time IES Time IES Time
Set (%) (s) (%) (s) (%) (s)

J30 (480) 18.2 15 15.9 12.6 18.6 12.6
J60 (480) 23.1 NA 22.5 18.3 24.7 18.3
J120 (480) 27.9 NA 29.0 27.6 30.3 27.6

Average: 23.1 22.5 19.5 24.5 19.5

The MA obtained the best result for 467 J60 and 438 J120 instances, and it achieved an
APD of 0.0% for the J60 and 0.1% for the J120 instances. The AGA had an APD of 2.3% for
the J60 and 3.7% for the J120 instances. The APDs of Burgess2 for the J60 and J120 instances
were 3.1% and 2.1%, respectively. The MA performed significantly better than the AGA
and Burgess2 for all instance sets. Ponz-Tienda et al. [25] used percentage improvement
from the early start resource profile (IES) to evaluate the performance of the AGA. The IES

https://docs.google.com/spreadsheet/ccc?key=0AvRxO1H9dRL6dFFrWHlJcTNhdl91TlNaNnBOS3RpckE&usp=sharing
https://docs.google.com/spreadsheet/ccc?key=0AvRxO1H9dRL6dFFrWHlJcTNhdl91TlNaNnBOS3RpckE&usp=sharing
https://docs.google.com/spreadsheet/ccc?key=0AvRxO1H9dRL6dFFrWHlJcTNhdl91TlNaNnBOS3RpckE&usp=sharing
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values of the AGA, Burgess2, and the MA for the SSRR metric are presented in Table 4.
The MA achieved the most average percentage improvement from the early start resource
profile for the J30, J60, and J120 instances.

Performance measures of heuristics tend to cluster in three areas: solution quality,
computational effort, and robustness [67]. The MA achieved high-quality solutions for
most of the test instances, as the solutions of the MA were optimal or very close to the
optimal for the J30 instances, and the solutions were the best solutions for majority of the
J60 and J120 instances. The speed of computation is a key performance factor along with
the quality of the solutions. The average CPU time of the MA for all instances was 19.5 s.
The MA obtained high-quality solutions within a reasonable computation time. Robustness
in general is based on the ability of a heuristic or meta-heuristic to perform well over a
range of test problems [67].

6. Discussion

The computational experiment results indicate that the MA is a robust algorithm since
it performed very well for the majority of the test instances with a different number of
activities, network complexity, resource factor, and resource strength [65]. The MA is also a
flexible algorithm since it can solve leveling problems with different leveling metrics such
as ADIF or SSRR and with different resource weights. Since the MA’s success was consistent
for different problem sets with the same parameters, the parameter values presented can be
generalizable to other problem instances. The computational experiment results confirmed
the effectiveness of the MA.

Comparisons with Primavera and Microsoft Project revealed that the MA achieved sig-
nificant improvements for the resource leveling capabilities of the existing project planning
and management software. The Excel interface of the MA enabled data exchange with the
commercial project management software. Hence, the MA enables a practical alternative for
improving the resource leveling capabilities of project planning and management software.

7. Conclusions

This paper has multiple contributions. First, it presents a novel optimization strategy
that combines complementary strengths of genetic algorithms, a shifting heuristic, and
simulated annealing for the resource leveling problem (RLP) under an MA framework.
Comparisons with popular commercial project management software and state-of-the-art
methods validated the effectiveness of the proposed approach. Second, the paper reveals the
limitations of the popular commercial project management software for resource leveling.
Third, it presents mixed-integer linear models for two leveling metrics for solving the
RLP to optimality. The optimal solutions obtained by the models provide a basis for
performance evaluation.

The results reveal that the new optimization strategy of the MA achieved signifi-
cant improvements for the RLP problem; hence, the objective of presenting a successful
optimization method for RLP has been achieved. The pilot study and computational ex-
periment results also indicate that the integration of an SA with a GA helps in improving
the fine tuning and convergence property of GAs. The performance gap between the MA
and the leveling heuristics of popular project management software revealed the poten-
tial for improving the heuristics of popular project management software for resource
leveling. The MA provides an efficient leveling alternative that can be used along with
the popular project management software for achieving optimal resource planning and
management decisions.

The limitations of popular commercial project management software are also illus-
trated along with the improvements achieved by the MA to reveal potential contributions
of the proposed integrated framework. Hence, the MA contributes to practice by enabling
improvements for the resource leveling problem. The MA achieved good results for in-
stances with up to 120 activities and four resources within a reasonable computing time.
However, for larger problems, the computation time requirement of the MA may increase
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significantly to achieve an adequate solution. To improve the effectiveness of the MA for
projects including more activities and resources, integration of alternative optimization
methods such as constraint programming or novel problem-specific heuristics appear to be
promising areas for future research.
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