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Abstract: The application of reclaimed asphalt pavement (RAP) can help reduce resource waste
and environmental pollution in road construction. However, so far, only a small percentage of RAP
materials can be used in road construction. The key obstacles to the application of a recycled asphalt
mixture (RAM) with high RAP content are the variability of RAP materials and the difficulty of fully
rejuvenating aged asphalt. However, there is still a lack of research on the effect of the variability of
RAP materials and recycled asphalt on the quality control of a RAM. Therefore, this study investigates
the effects of sieve pretreatment of RAP material using 4.75 mm sieve mesh and the use of composite
crumb rubber-modified asphalt (CCRMA) to reclaim aged asphalt on the road performance and
frame variability of reclaimed asphalt mixtures. Therefore, this study investigates the effects of the
fractionation process of RAP material using 4.75 mm sieve mesh and the use of CCRMA to reclaim
aged asphalt on the road performance of a RAM. The results show that the fractionation process can
effectively reduce the mitigation of RAP agglomeration and reduce the variability of gradation, which
in turn reduces the variability of road performance. The incorporation of CCRMA can effectively
improve the high-temperature stability performance and low-temperature cracking resistance. The
dynamic stability and the fracture energy of the CRAM (RAM prepared using CCRMA) were four
and one and a half times as large as that of the NAM (RAM prepared using base asphalt), respectively.
The fractionation process of RAP material and the utilization of CCRMA could help reduce the
variability of the RAM while improving the road performance of the RAM.

Keywords: recycled asphalt mixture; variability; reliability design; fractionation process; road
performance

1. Introduction

Utilizing recycled materials instead of virgin materials in the production of hot-mix
asphalt mixtures helps to reduce construction costs, lessen the reliance on natural aggre-
gates, and reduce greenhouse gas emissions [1–3]. When considering the performance
of a recycled asphalt mixture (RAM), the reclaimed asphalt pavement (RAP) content in
the actual projects is generally controlled within 30% (“RAP” is a mixture of old asphalt
pavement that has been excavated, recycled, crushed, and screened, and “RAM” is a mix-
ture made by remixing RAP with new asphalt material, new aggregate, etc. in a certain
proportion) [4,5]. However, the continuous growth of RAP materials in recent years has
caused unpredictable environmental pollution. The use of a RAM with low RAP content
cannot solve the growing RAP problem [6,7]. Therefore, the RAM with a high content of
RAP has received more and more attention in practical applications.

When the RAP content exceeds 25%, the road performance of the RAM gradually
decreases as the RAP content increases [8–10]. Barros et al. [11] found that the cleavage
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expansion rate increased when the RAP content in the mixture increased. Zhu et al. [12]
stated that mixtures with high RAP content suffered from weak cracking resistance. The
variability of RAP and the low performance of recycled asphalt are the main reasons for
limiting the maximum RAP blending. Al-Qadi et al. [13] noted that the lack of under-
standing of aggregate and binder properties and the uncertainty of RAP grades resulted
in the RAP content remaining at a low level. To keep RAP variability within acceptable
limits, some studies have pretreated RAP material by fragmentation and fractionation,
etc. Previous research has shown that fractionation treatments provide better retention
of rutting potential, improved fatigue performance (higher fracture energy), and better
control of the volumetric properties of asphalt mixtures [14]. Zaumanis et al. [15] found
that pretreating RAP by fragmentation and fractionation reduced the variability of RAP
and increased the RAP content in the RAM. Pan et al. [16] proposed an optimized gradation
design method after RAP fractionation and found that the fractionation process reduced
the effect of RAP variability on the RAM. Most of the current research focuses on the effect
of the RAP fractionation process on the road performance of the RAM [17]. However, there
is a lack of research on the effect of the RAP fractionation process on the variability of RAM
road performance.

Another major factor affecting the performance of a RAM with high RAP content is the
method of reclaiming asphalt in the RAM. Various methods have been used to effectively
rejuvenate aged asphalt, including the incorporation of rejuvenators and soft binders into
RAP mixtures [18–20]. Many studies have been conducted on the utilization of recycling
agents to regenerate asphalt mixtures [21–23]. Wang et al. [18] investigated the impact
of the HRA-2 rejuvenator on a RAM containing high RAP content and found that the
addition of the HRA-2 rejuvenator reduced the high-temperature performance of the RAM
and improved its water stability and low-temperature crack resistance. Yousefi et al. [24]
investigated the effect of two types of rejuvenators (one was aromatic extracts and one was
triglycerides/fatty acids) on the cracking properties of asphalt mixtures containing 25%
RAP and found that recycling agents improved the low-temperature cracking resistance
of asphalt mixtures. In addition, the other method is to use a softer asphaltene blend
and rejuvenate aged asphalt by adding virgin asphalt [25]. Recent research showed that
composite crumb rubber-modified asphalt (CCRMA) was significantly more effective than
virgin asphalt in blending aged asphalt containing high RAP content [26,27]. Therefore,
CCRMA has great potential for enhancing the road performance of the RAM with high RAP
content. In recent years, many studies have been conducted on the effect of CCRMA on
the properties of aged asphalt. Liu et al. [27] found that the high-temperature and fatigue
resistance performances of aged asphalt were improved by adding CCRMA. Chen et al. [28]
concluded that CCRMA had a significant effect on the chemical, microscopic, and rhe-
ological properties of aged asphalt binders. However, compared to aged asphalt, the
effect of CCRMA on the performance of the RAM has been less studied, especially on the
performance of the RAM with high RAP content.

Therefore, the objectives of this study were (1) to evaluate the effect of the fractionation
process on controlling the variability of the road properties for the RAM and (2) to evaluate
the effect of the combined use of CCRMA as a blending asphalt and fractionation process
on the road properties for the RAM and their variability.

2. Materials and Methods
2.1. Materials
2.1.1. RAP Characterization

RAP was obtained from Wuxi Road and Bridge Municipal Co., Ltd. (Xihu Middle
Road, Xishan District, Wuxi City), as shown in Figure 1. The RAP material was fractionated
using a 4.75 mm sieve and divided into two portions based on the aggregate size. The
aggregate gradation for the two portions of the fractionated RAP material is displayed in
Figure 2. The old asphalt content (by mass of mixture) in the RAP was 5.57%.
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Figure 2. The aggregate gradation of RAP material.

2.1.2. Properties of Virgin Binders

The base asphalt was chosen as the virgin binder to prepare the RAM in this study.
According to our previous tests [27], CCRMA can effectively improve the high-temperature
performance and fatigue resistance of aged asphalt, so CCRMA was also chosen to prepare
recycled asphalt mixtures. Table 1 lists the technical indicators of the asphalt, where G* is
the complex modulus and δ is the phase angle.

Table 1. Technical indicators of base asphalt and CCRMA.

Technical Indicators Base Asphalt CCRMA Test Method

Penetration (25 ◦C, 5 s, 100 g) (0.1 mm) 70 83 T0604-2011
Ductility (5 ◦C, 5 cm/min) (cm) - 59 T0605-2011
Ductility (10 ◦C, 5 cm/min) (cm) 25 - T0605-2011

Softening point (◦C) 48.5 87 T0606-2011
G*/sinδ@64 ◦C Virgin asphalt 1.24 - T0628-2011

RTFOT aged asphalt 3.01 - T0628-2011
G*/sinδ@70 ◦C Virgin asphalt 0.63 - T0628-2011

RTFOT aged asphalt 2.94 - T0628-2011
G*/sinδ@94 ◦C Virgin asphalt - 1.35 T0628-2011

RTFOT aged asphalt - 2.26 T0628-2011
G*/sinδ@100 ◦C Virgin asphalt - 0.83 T0628-2011

RTFOT aged asphalt - 1.54 T0628-2011

2.1.3. Design and Preparation of RAP Mixtures

For the preparation of RAM, basalt was selected as coarse and fine aggregates, and
limestone mineral powder with a particle size of less than 0.075 mm was selected as filler.
Table 2 shows the technical specifications of the aggregate.
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Table 2. Technical specifications of the aggregates.

Technical Specifications Unit Coarse Aggregate Fine Aggregate Fillers Test Method

Apparent relative density g/cm3 2.78 2.66 2.61 T0328-2005
Crushing value % 11.4 - - T0316-2005

Los Angeles abrasion loss % 18.2 - - T0317-2005
Needle flake particle content % 11.7 - - T0312-2005

Water absorption rate % 1.3 - - T0307-2005
Firmness % 10.4 - - T0314-2000

Sand equivalent % - 86 - T0334-2005
Angularity % - 51 - T0345-2005

Hydrophilic coefficient - - - 0.4 T0353-2000
Plasticity coefficient - - - 3.1 T0354-2000

The RAM was designed as a dense-graded mixture with a nominal maximum ag-
gregate size of 13 mm and 50% RAP content. Referring to the grading control range of
AC-13, three gradation curves were determined and named AC-13a, AC-13b, and AC-13c,
as shown in Figure 3. The asphalt content was selected as 5.57%, which is the same as the
old asphalt content in RAP. To investigate the effect of the fractionation process on the per-
formance of the RAM, RAM with fractionated RAP materials (RAM-FR) and unfractionated
RAP materials (RAM-UR) was prepared.
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For the preparation of RAM, asphalt, new aggregates, and RAP material were first
placed in ovens at different temperatures for insulation. Among them, the asphalt was kept
at 150 ◦C for 2 h, the new aggregates were insulated at 180 ◦C for 4 h, and the RAP material
was insulated at 120 ◦C for 2 h [29]. After insulation, the RAP material was mixed in a
mixing pot at a temperature of 180 ◦C for 90 s. After adding the new aggregates to the RAP
material, the mixture was mixed for 90 s to ensure a uniform mixture. Subsequently, the
new asphalt (base asphalt) was added and mixed for 90 s to obtain a loose asphalt mixture.
The asphalt mixture specimens of target heights were obtained using a Superpave gyratory
compactor (SGC) by controlling the number of gyrations to 100 times and adjusting the
quality of the asphalt mixture [30]. Finally, the specimens were placed at room temperature
for 48 h for further testing.

2.2. Experimental Design
2.2.1. Rutting Test

The rutting test was used to evaluate the rutting resistance of RAM [31]. Accord-
ing to the JTG E20-2011 [12], the RAM was formed into plate specimens measuring
300 mm × 300 mm × 50 mm in size and repeatedly rolled on the same track with a solid
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rubber wheel with a wheel pressure of 0.7 MPa at a temperature of 60 ◦C to form rut-
ting grooves. The rutting resistance of RAM was evaluated in terms of the rutting depth
(RD) and the dynamic stability (DS) of the asphalt mixture specimens, as calculated by
Equation (1):

DS =
(t2 − t1)× N

d2 − d1
× C1 × C2 (1)

where d1 and d2 correspond to the rut depths at t1 and t2, respectively; N is the crushing
speed of the round-trip process of the test wheel; and C1 and C2 are the correction factors
of the testing machine and specimen factor, respectively.

2.2.2. Indirect Tensile Test

The cylindrical specimens with a diameter of 100 mm and a height of 63.5 mm were
prepared for the indirect tensile (IDT) test. Considering that the actual load acting on the
pavement is constant and the deformation of the pavement grows with the growth of the
constant load, the stress-controlled mode was used to perform the IDT test at 25 ◦C. To
obtain the fatigue life of RAM, the average indirect tensile strengths of the different types
of mixtures under dry conditions were first obtained from the IDT test, and then the stress
ratio (0.25) for the fatigue test was determined [32,33]. Finally, the fatigue life was obtained
based on the vertical permanent strain curve of the asphalt mixture, which was used to
evaluate the medium-temperature fatigue performance of RAM.

2.2.3. Semi-Circular Bending Test

To investigate the low-temperature performance of RAM, a single-load semi-circular
bending (SCB) test was performed at −12 ◦C using a 50 mm/min displacement loading
rate [34,35]. Based on the obtained vertical load–displacement curves, the fracture energy
(Gf) was calculated according to Equation (2):

G f =
W f

Alig
(2)

where Wf represents the fracture work, corresponding to the area below the vertical load–
displacement curve, and Alig represents the area of the fracture surface.

The flow chart of the performance-related tests for RAM is illustrated in Figure 4. The
blue line portion represents the experimental information for the RAM prepared using
RAM-FR and CCRMA.
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3. Results
3.1. Analysis of the Variability in Road Properties for Recycled Asphalt Mixtures with High
RAP Content

Figure 5 shows the results of the rutting test, IDT test, and SCB test. The data dispersion
of the RAM-UR was significantly greater than that of the RAM-FR. The experimental results
of the RAM were subjected to a normal distribution test to intuitively display the results, as
listed in Tables 3–5. The results show that the performance indicators of the RAM obeyed a
normal distribution at the 0.05 level, i.e., all data obeyed a normal distribution at the 95%
confidence level. The normal distribution curves were fitted with different performance



Buildings 2023, 13, 2729 6 of 17

indicators and their frequency of occurrence as horizontal and vertical coordinates, as
shown in Figure 6 [36,37]. The combination of Tables 3–5 and Figure 6 shows that for
the RAM containing 50% RAP, the curve of the RAM-FR was significantly narrower than
that of the RAM-UR, implying that the dispersion of road performance test results for the
RAM-FR became lower. This indicates that the road performance variability of the RAM
can be effectively controlled by the fractionation process of RAP material [38]. Compared
with the curves of the RAM-UR, the curves of the RAM-FR showed a significant forward
shift, indicating that the road performance of the RAM can be improved by controlling
the variability. This is because the fractionation process can reduce the agglomeration
phenomenon produced by the bonding action of the aged asphalt in the RAP, reduce the
degree of RAM grade separation, and realize the fine fractionation of the RAP [39]. That
is, the variability of RAM road performance is reduced by reducing the variability of RAP
materials, which is consistent with the studies of Wang et al. [18]. and Feng et al. [17].
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Table 3. Parameters of the normal distribution curve on dynamic stability of RAM with various
gradations.

Gradation Material Statistics p-Value µ σ

AC-13a RAM-UR 0.903 0.267 1539 410.61
AC-13a RAM-FR 0.874 0.136 1606 265.69
AC-13b RAM-UR 0.886 0.181 2400 431.19
AC-13b RAM-FR 0.952 0.709 2512 298.37
AC-13c RAM-UR 0.897 0.232 2626 452.15
AC-13c RAM-FR 0.966 0.859 3003 339.27
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Table 4. Parameters of the normal distribution curve on fatigue life of RAM with various gradations.

Gradation Material Statistics p-Value µ σ

AC-13a RAM-UR 0.947 0.679 7017 2646.00
AC-13a RAM-FR 0.912 0.368 7471 1657.91
AC-13b RAM-UR 0.919 0.425 9591 2839.83
AC-13b RAM-FR 0.868 0.145 10,250 1858.70
AC-13c RAM-UR 0.939 0.602 9715 3166.34
AC-13c RAM-FR 0.930 0.512 12,402 2057.89

Table 5. Parameters of the normal distribution curve on fracture energy of RAM with various
gradations.

Gradation Material Statistics p-Value µ σ

AC-13a RAM-UR 0.868 0.117 871 164.77
AC-13a RAM-FR 0.948 0.667 903 115.46
AC-13b RAM-UR 0.979 0.961 1121 156.97
AC-13b RAM-FR 0.935 0.527 1230 112.88
AC-13c RAM-UR 0.950 0.688 1316 147.76
AC-13c RAM-FR 0.921 0.400 1570 125.40
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To further evaluate the effect of the fractionation process on the variation of road
performance for the RAM, the coefficient of variation was calculated [40], as displayed
in Figure 7. A smaller coefficient of variation indicates less variability; conversely, more
variability indicates less homogeneity. The coefficient of variation for fatigue life fluctuated
between 16 and 37 with high variability, while the coefficient of variation for fracture
energy fluctuated between 8 and 19 with low variability. The greater variability in fatigue
life among asphalt mixture specimens is a consequence of the reduced constraints on the
specimens and the longer loading times during the IDT test in comparison to the SCB
test. As a result, various factors affect the fatigue life of asphalt mixture specimens [41,42].
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Although the coefficients of variation were not identical, the coefficients of variation for
the six different RAMs with different road performances reflected a common trend. The
coefficients of variation of the road performance indicators of the RAM-FR were all less
than those of the RAM-UR, indicating that the fractionation process of RAP material can
reduce the variability of the road performance for the RAM with high RAP content.
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3.2. Reliability Calculation Based on Variability Control for Recycled Asphalt Mixtures with High
RAP Content

Figure 7 shows that the coefficient of variation is not only related to whether or not the
RAP material is fractionated but also to the gradation of the RAM. The fineness modulus is
often used to evaluate the gradation of asphalt mixtures [43,44]. The larger the fineness
modulus, the coarser the corresponding gradation. The calculation results are shown in
Table 6.

Table 6. The fineness modulus of RAM with different gradations.

Gradation Fineness Modulus

AC-13a 5.61
AC-13b 5.83
AC-13c 6.05

Combined with Table 6 and Figure 7, for both the RAM-UR and RAM-FR, the co-
efficient of variation on the RAM road performance decreased as the fineness modulus
increased. This suggests that higher fineness modulus values in asphalt mixtures can
improve the variability of RAM road performance. This is because a larger fineness mod-
ulus represents less fine aggregate content, making it easier to mix asphalt and coarse
aggregate, thus reducing the difference between the road performance of the RAM [44].
This is consistent with Pan et al. [16]. That is, the high proportion of fine aggregate is not
conducive to forming a stable skeleton structure, resulting in greater variability of RAM
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road performance. Therefore, to control the variability of road performance for the RAM
with high RAP content, a reliability calculation scheme was established in this study by
taking the fineness modulus as the design indicator and the coefficient of variation on the
RAM road performance containing 50% RAP as the performance indicator. Considering
that there is no clear regulation on the variability of road performance, the threshold value
of the coefficient of variation for the fracture energy was set to 10%, and the threshold
values of the coefficient of variation for the dynamic stability and the fatigue life were both
set to 20%.

Figure 8 shows the fitted curves of the coefficient of variation on road performance
for the RAM with the variation of the fineness modulus (the dotted lines are the threshold
values for the coefficient of variation). After establishing the relationship curve, considering
that the probability distribution function of the fineness modulus is unknown, the reliability
was obtained in this study by calculating the probability that the fineness modulus Mx
falls in the reliability interval [45]. Here, the “reliability interval” is the range of fineness
modulus for which the performance of the RAM satisfies all three indicators simultaneously.
The “reliability” is the probability that the performance of the asphalt mixture meets the
target. In addition, due to the small sample size in this study, only the RAM with a range
of fineness modulus values from 5.61 to 6.05 were considered. Based on the fitted curves in
Figure 8, the fineness modulus of the RAM was calculated once the threshold of variability
for road performance was reached. After obtaining the reliability intervals of the fineness
modulus meeting the requirements of different road performance variability, the reliability
intervals of the RAM meeting the requirements of road performance variability were
obtained by taking the intersection of multiple reliability intervals. Finally, the reliability
was obtained by calculating the probability of the fineness modulus falling in the reliability
interval, as shown in Table 7. It can be seen that the reliability interval for the RAM meeting
the requirements for performance variability increased after the fractionation process, with
a significant increase in reliability to 50%. This further illustrates that the fractionation
treatment can significantly enhance the road performance of a RAM with high RAP content.
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Table 7. The calculated reliability intervals and reliability of RAM-UR and RAM-FR.

Material Reliability Intervals Reliability (%)

RAM-UR - 0
RAM-FR 5.81–6.05 50

The milling process causes a decrease in the aggregate size of the RAP material [46].
Therefore, for a RAM with different RAP contents, the increase in RAP content led to a
decrease in the fineness modulus of the asphalt mixture, increasing the variability of road
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performance for the RAM [47]. To analyze the relationship between RAP content and
the coefficient of variation on road properties of the RAM, the fineness modulus of the
RAM corresponding to different RAP contents was calculated based on the fitted curves in
Figure 8. Table 8 shows the reliability intervals determined with the same proportion of
new aggregate. The RAP content and its corresponding reliability were further fitted in a
quadratic form, as shown in Figure 9. Combining Table 8 and Figure 9, the maximum and
minimum values of the fineness modulus intervals for the RAM decreased with increasing
RAP content, and the reliability intervals to meet the requirements of road performance
variability of the RAM gradually became smaller, and the reliability decreased. This
suggests that a higher RAP content increases the variability of RAM road performance.
This is in agreement with the study of Yang et al. [48]. An increase in RAP content causes
a decrease and instability in the moisture susceptibility, cracking resistance, and fatigue
properties of the RAM. The reliability of the RAM-FR containing 70% RAP was 37.7%,
which is greater than the reliability of the RAM-UR containing 50% RAP and meets the
variability requirement. This further illustrates that the fractionation process of RAP
material can effectively reduce the variability of road performance for a RAM.

Table 8. The calculated reliability intervals and reliability of RAM with various RAP contents.

RAP Content (%) Total Interval Reliability Intervals Reliability (%)

30 5.64–6.09 5.81–6.09 62.2
40 5.62–6.07 5.81–6.07 57.8
50 5.61–6.05 5.81–6.05 54.5
60 5.55–6.03 5.81–6.03 45.8
70 5.48–6.01 5.81–6.01 37.7
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3.3. Proportional Design of Recycled Asphalt Mixtures with High RAP Content
3.3.1. Determination of Gradation and Volumetric Parameters for RAM with High
RAP Content

The Superpave design method was used in the mix design of the RAM containing
50% RAP. The asphalt content for the RAM was established through the utilization of the
SGC method, aiming to achieve 4% air voids at Ndesign = 100. According to the study of
Zhou et al. [49], the addition of 0.3% asphalt to the determined optimal amount of asphalt
promoted the blending between the new and old asphalt. Therefore, the CCRMA asphalt
content in this study was an addition of 0.3% CCRMA asphalt to the determined optimal
amount of asphalt. As a blank control sample, asphalt mixture specimens were prepared
using base asphalt and new aggregate with the same gradation and 5% asphalt content. For
the convenience of presentation, the RAM prepared using CCRMA was referred to as the
CRAM, and the asphalt mixture prepared using base asphalt was referred to as the NAM.
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The gradation and volumetric parameters for the RAM containing 50% RAP are shown in
Tables 9 and 10.

Table 9. The gradation of CRAM containing 50% RAP.

Indicators CRAM Containing 50% RAP

Sieve size (mm) 16 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075
Passing (%) 100 95.7 77.6 47.8 38.9 30.3 19 13 10.5 7.3

RAP content (%) (>4.75 mm) 35.0%
RAP content (%) (<4.75 mm) 15.0%

Table 10. The volumetric parameters of CRAM containing 50% RAP.

Indicators NAM

Asphalt content (%) 5.0
Addition of new asphalt (%) 2.39

Gross volume relative density (g/cm3) 2.494
Maximum theoretical relative density (g/cm3) 2.598

Air void (%) 4.0

3.3.2. Evaluation of High-Temperature Stability Performance for Recycled Asphalt
Mixtures with High RAP Content

The rutting test results of asphalt mixtures are shown in Table 11. A normal distribution
curve was fitted with relative frequency as the vertical coordinate and dynamic stability
as the horizontal coordinate, as shown in Figure 10. Table 12 displays the parameters
of the normality test. The dynamic stability of the CRAM was four times higher than
that of the NAM, suggesting that CCRMA can significantly enhance the high-temperature
performance of the RAM. This is consistent with our previous studies. That is, CCRMA
can effectively enhance the elastic recovery and stiffness of aged asphalt compared to base
asphalt, thereby improving the high-temperature performance [27,50]. To further verify
the effect of the fractionation process on the high-temperature performance of the CRAM,
the coefficients of variation on dynamic stability for the CRAM and NAM were calculated,
as shown in Table 13. The coefficient of variation on dynamic stability of the CRAM was
40% higher compared to the NAM but still met the threshold requirement. In addition,
combined with Figure 7, the coefficient of variation on dynamic stability for the CRAM
decreased by 26–45% compared to that for RAM-UR. Therefore, the CRAM has excellent
resistance to deformation at high temperatures while controlling variability.

Table 11. The rutting test results of CRAM and NAM.

Specimen Number
Dynamic Stability (times/mm)

NAM CRAM

1 1845.77 10,597.34
2 1960.68 7146.88
3 2124.66 8576.70
4 2021.06 7011.87
5 1737.42 9455.69
6 2207.10 10,171.49
7 1948.30 8642.65
8 1615.13 8785.95
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Table 12. The parameters of the normality test.

Gradation Material Statistics p-Value µ σ

NAM 0.980 0.963 1932 182.87 NAM
CRAM 0.936 0.576 8978 1201.37 CRAM

Table 13. The coefficients of variation on dynamic stability for CRAM and NAM.

Gradation Dynamic Stability (times/mm) Total Deformation (mm) Coefficient of Variation

NAM 1933 1.158 9.46
CRAM 8798 0.286 13.65

3.3.3. Evaluation of Low-Temperature Crack Resistance for RAM with High RAP Content

The SCB test results of asphalt mixtures are shown in Table 14. A normal distribution
curve was fitted with frequency as the vertical coordinate and fracture energy as the
horizontal coordinate, as shown in Figure 11. The parameters of the normality test are
shown in Table 15. The fracture energy of the CRAM was greater than that of the NAM,
indicating that its low-temperature cracking resistance is better than that of the NAM. This
is because the addition of 0.3% asphalt increases the asphalt content in the asphalt mixture
and also promotes the integration of the new asphalt with the old asphalt, which ultimately
increases the bonding between the asphalt mixtures [49,51,52]. On the other hand, the high
elasticity of CCRMA leads to its ability to withstand greater damage loads [53]. At the
same time, CCRMA can delay the extension of cracks, resulting in a significant increase
in both peak force load and fracture energy of CRMA, which ultimately improves the
low-temperature crack resistance of the RAM [54,55]. According to Figure 11 and Table 15,
the dispersion degree in the fracture energy of the CRAM was larger than that of the NAM.
Therefore, the coefficient of variation was further computed to assess the variability of the
CRAM and NAM in terms of low-temperature fracture resistance, as shown in Table 16.
Although the coefficient of variation in fracture energy for the CRAM was greater than that
for the NAM, it still met the requirements of the SCB test for the coefficient of variation for
the fracture energy.

Notably, the change in damage displacement was less for the CRAM compared to that
of the NAM. Considering that the base asphalt used in the preparation of the NAM has weak
low-temperature cracking resistance, the CRAM, which has the same damage displacement
as the NAM, may be susceptible to low-temperature cracking. This susceptibility could be
attributed to the higher modulus of the CCRMA, rendering it more prone to cracking under
load [35,56]. Therefore, it is necessary to soften the asphalt by adding recycling agents
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during the mixing process of the asphalt mixture to enhance the low-temperature cracking
resistance of the CRAM, thus improving the durability of the CRAM in road engineering.

Table 14. The SCB test results of CRAM and NAM.

Test Number
Fracture Energy (J/m2)

NAM CRAM

1 1345.67 1816.20
2 1238.02 2154.22
3 1233.29 2088.92
4 1387.16 1924.66
5 1435.83 2056.35
6 1235.98 1742.26
7 1132.89 1553.70
8 1201.34 1844.34
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Table 15. The parameters of the normality test.

Gradation Statistics p-Value µ σ

NAM 0.931 0.523 1276.33 95.97
CRAM 0.963 0.841 1892.50 187.17

Table 16. The coefficients of variation on low-temperature performance for CRAM and NAM.

Gradation

Peak Force Load (kN) Disruption Displacement (mm) Fracture Energy (J/m2)

Average Coefficient of
Variation Average Coefficient of

Variation Average Coefficient of
Variation

NAM 10.85 7.64 1.37 4.23 1276.53 7.52
CRAM 13.37 9.43 1.39 6.91 1892.50 9.86

4. Conclusions

This study evaluates the effect of the fractionation process on controlling the variability
of the road properties for a RAM and the effect of the combined use of CCRMA as a blending
asphalt and fractionation process on the road properties for the RAM and their variability.
This study proposes a method to control and enhance the road performance of RAM with
high RAP content. The major findings and significant conclusions are as follows.

(1) All the performance indicators of the RAM exhibited significant adherence to the nor-
mal distribution at the 0.05 level, i.e., all the data obeyed the normal distribution with
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95% confidence. The coefficients of variation in the road performance indicators for
the RAM-UR were larger than those of the RAM-FR, indicating that the fractionation
process reduces the variability of the road performance for the RAM containing high
RAP content.

(2) The variability in the road performance for the RAM gradually increased with the
increase in RAP content, but the reliability of the RAM-FR containing 70% RAP was
37.7%, which is greater than the reliability of the RAM-UR containing 50% RAP and
meets the variability requirement.

(3) The high-temperature and low-temperature cracking resistance of the CRAM con-
taining 50% RAP were both better than those of the NAM. Although the dispersion
of its performance indicators was higher than that of the NAM, the CRAM met the
requirements of the corresponding variability in both the fracture energy index and
the dynamic stability index.

5. Limitations and Recommendations

In this study, only continuous dense gradation of RAP material from a single source
was investigated, and only the road performance of a RAM containing 50% RAP was stud-
ied. It is recommended to further investigate the effect of RAP material source, pretreatment
method, grading, and RAP content on the road performance of the RAM.
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Nomenclature

CCRMA composite crumb rubber-modified asphalt
CRAM recycled asphalt mixture prepared using composite crumb rubber-modified asphalt
DS dynamic stability
Gf fracture energy
IDT indirect tensile test
NAM asphalt mixture prepared using base asphalt
RAM recycled asphalt mixture
RAM-FR recycled asphalt mixture with fractionated reclaimed asphalt pavement materials
RAM-UR recycled asphalt mixture with unfractionated reclaimed asphalt pavement materials
RAP reclaimed asphalt pavement
RD rutting depth
SCB semi-circular bending
SGC Superpave gyratory compactor
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