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Abstract: Triangular added-damping-and-stiffness (TADAS) dampers are reliable passive control
devices for earthquake-excited buildings. The arrangement of TADAS dampers in buildings is
essentially the allocation of triangular energy dissipation plates (TEDPs) among different stories,
which directly influence the passive control effect and the construction cost. This paper proposes four
iterated methods to achieve the optimum arrangement of TADAS dampers for seismic drift control of
buildings, including the regular iterative method (RIM), the accelerated iterative method (AIM), and
two modified accelerated iterative methods (MAIM-I and MAIM-II). Typical high-rise and low-rise
buildings are used as application examples to evaluate their performance. Results of the study
indicate that the two modified accelerated iterative methods are the most cost-efficient methods for
achieving the optimum arrangement of TADAS dampers. This may be attributed to their two-stage
implementation mechanism, which combines the set-by-set strategy and the one-by-one strategy
in a reasonable way. Additionally, the modified accelerated iterative methods can be especially
advantageous for high-rise buildings.

Keywords: TADAS damper; optimum arrangement; iterative methods; passive control

1. Introduction

As a natural disaster, an earthquake may pose a great threat to human beings [1,2].
Researchers around the world have investigated various ways to protect building structures
against earthquakes, such as enhancing the strength, ductility, and collapse resistance of
structures [3–5] or utilizing active and passive control technologies [6–8]. In recent years,
passive control technology, which utilizes dampers to dissipate earthquake input energy,
has been well acknowledged by the industry as a growing trend for the seismic design
of buildings. According to different mechanisms of energy dissipation, dampers can be
categorized into viscous fluid, viscoelastic solid, friction, and metallic dampers, which
dissipate energy through fluid orificing, viscoelastic solid deformation, frictional sliding,
and yielding of metal.

After decades of research and application, metallic dampers have been shown to be
advantageous due to their low cost, simple structure, long-term reliability, stable hysteretic
behavior, etc. Therefore, they are particularly preferred by structural engineers in civil
engineering applications. Triangular added-damping-and-stiffness (TADAS) dampers are
typical metallic dampers used for passive control, which dissipate energy through the yield-
ing of multiple pieces of parallel triangular steel plates. Tsai et al. [9] conducted theoretical
and experimental studies on TADAS dampers and provided suggestions for the seismic de-
sign of buildings with TADAS dampers. Mahmoudi and Abdi [10] evaluated overstrength,
ductility, and response modification factors in special moment-resisting frames with TADAS
dampers. Saeedi et al. [11] investigated the seismic behavior and the global damage pa-
rameter of moment-resisting frames equipped with TADAS dampers. Tahamouliroudsari
et al. [12] experimentally investigated the effect of using TADAS dampers in retrofitting
RC moment-resisting frames. Mohammadi et al. [13] studied the performance of TADAS
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dampers in very large deformations. Li and Shu [14] improved the detailed structure of
TADAS dampers and compared the cyclic performance of TADAS dampers manufactured
with regular steel and low-yield-point steel. Akbari Hamed et al. [15] proposed novel
multi-level TADAS dampers. Youssef et al. [16] utilized TADAS dampers at a beam–wall
interface to enhance the energy dissipation and bearing capacity of a post-tensioned hybrid
coupled shear wall system.

The optimum design and assessment of civil structures using smart algorithms and
methods has been a research hotspot in recent years [17–21]. For buildings equipped with
passive control dampers, the optimum design is essentially the optimum arrangement of
dampers within the building. Many researchers have employed smart algorithms such as
evolutionary algorithms to solve this problem. Moreschi and Singh (2003) [22] adopted
the genetic algorithm (GA) to obtain the optimum arrangement of metallic and friction
dampers in seismic-excited buildings. Wongprasert and Symans (2004) [23] employed GA
to achieve the optimum distribution of viscous dampers in a 20-story building subject to
earthquake loading. Lavan and Dargush (2009) [24] used a multi-objective GA to solve the
optimum arrangement of dampers for buildings under seismic excitation. Yousefzadeh et al.
(2011) [25] utilized GA to determine the distribution of TADAS dampers considering cost
and structural damage. Kim et al. (2017) [26] employed GA in the optimum arrangement
of steel plate slit dampers for the seismic retrofit of a reinforced concrete building. Huang
(2018) [27] evaluated the effectiveness of GA in optimizing the arrangement of viscous
dampers in steel frames under strong earthquakes. Li and Shu (2019) [28] used a modified
GA to achieve the optimum placement of metallic dampers for the seismic upgrading of
multistory buildings. Amini and Ghaderi (2013) [29] proposed a hybrid AntHS algorithm
for the optimum arrangement of structural dampers. Sonmez et al. (2013) [30] utilized the
artificial bee colony algorithm (ABCA) to determine the optimum arrangement of viscous
dampers in planar buildings.

The above evolutionary algorithms are well capable of handling the optimum arrange-
ment of dampers in seismic-excited buildings. However, the computation process of these
algorithms can be highly time-consuming, which may seriously influence the efficiency
of the structural design, and the implementation process of these algorithms can be quite
sophisticated, which may not be apprehended easily by practicing engineers. In order
to provide efficient and practical solutions for structural engineers in the seismic design
of buildings equipped with TADAS dampers, this paper proposes accelerated iterative
methods to achieve the optimum arrangement of TADAS dampers for seismic drift control
of buildings, which are easily implemented and computationally efficient.

The remainder of the paper is organized as follows. Section 2 introduces the structure
of a TADAS damper. Section 3 elaborates on the optimum arrangement problem to be
solved. Section 4 proposes accelerated iterative methods. Section 5 presents application
examples to verify the proposed methods, and the results are discussed in Section 6. Finally,
conclusions are provided in Section 7.

2. TADAS Damper

The structure of a typical TADAS damper is shown in Figure 1, which consists of the
upper part and the lower part. A TADAS damper may contain multiple pieces of triangular
energy dissipation plate (TEDP), whose upper end is welded to the end plate, and the
lower end is welded to the pin. Therefore, the TEDP is fixed at the upper end and pinned
at the lower end. When the TADAS damper deforms horizontally during earthquakes,
the bending curvature of the TEDP is uniform over the full height so that yielding is
spread almost uniformly throughout the material, which helps to avoid concentrations of
yielding and premature failure. TADAS dampers are usually installed in buildings with
stiff bracings, as shown in Figure 2.
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Figure 2. Installation of TADAS damper.

The hysteresis behavior of TEDPs can be described by the bilinear model [10,11]. For
a single piece of TEDP, the elastic stiffness kp, post-yield stiffness kp

′, yield force f py, and
yield displacement upy can be obtained by the following equations [9]:

kp =
Ebt3

6h3 , (1)

k′p = γkp, (2)

fpy =
σybt2

6h
, (3)

upy =
fyh2

Et
, (4)

where E and σy are the Young modulus and yield strength of steel; h, b, and t are the height,
width, and thickness of TEDPs, respectively; and γ is the post-yield stiffness ratio, which is
around 2~3%.

The TEDPs are connected in parallel in the TADAS damper. Therefore, if a TADAS
damper consists of N pieces of TEDPs, its elastic stiffness kd, post-yield stiffness kd

′, yield
force f dy, and yield displacement udy can be obtained by the following equations:

kd =
NEbt3

6h3 , (5)

k′d = γkd, (6)

fdy =
Nσybt2

6h
, (7)
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udy =
fyh2

Et
, (8)

3. Problem Description
3.1. Analytical Model

The analytical model of a shear-type building equipped with TADAS dampers is
shown in Figure 3, where the main structure is represented by an MDOF system with
masses lumped at each floor level, and the TADAS dampers at each story are represented
by the bilinear models. Define n as the total number of stories in the building and mi, ki, and
ci as the mass, stiffness, and inherent damping of the i-th story, respectively. kdi, kdi

′, Fdyi,
and udyi are the elastic stiffness, post-yield stiffness, yield force, and yield displacement of
the TADAS damper in the i-th story, respectively.
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f = (f 1, . . ., fi, . . ., fn) is a vector representing the restoring force provided by the TADAS
dampers in the building, where the i-th element fi represents the restoring force provided
by the TADAS dampers in the i-th story. Assuming that the TADAS damper in the i-th
story consists of Ni TEDPs, kdi, kdi

′, Fdyi, and udyi can be calculated using Equations (5)–(8)
so that the bilinear model used to describe fi can be obtained.

3.2. Optimization Problem

As the TADAS damper consists of multiple pieces of TEDPs, the optimum arrangement
of TADAS dampers in a building is essentially the optimum distribution of TEDPs among
different stories. Assuming that the TADAS damper in the i-th story consists of Ni pieces
of TEDPs, the arrangement of TEDPs in the building can be represented by the vector
d = [N1, . . ., Nn].

The interstory drift ratio indicates potential damage to the structure and thus is a key
factor for structural safety. Seismic design codes in many countries have stipulated the
allowable limit for the interstory drift ratio. For example, the Chinese Code for Seismic
Design of Buildings (GB50011-2010) [31] has proposed the allowable interstory drift ratio
limits in the performance-based design guidelines. Another key factor we need to consider
in practical design is the cost of construction projects. In this study, TADAS dampers are
used to enhance the seismic performance of building structures so that the cost can be
represented by the total number of TEDPs used in the building. Therefore, combining the
above two key factors, the design is preferable if we can use fewer TEDPs to achieve the
allowable interstory drift ratio limit.

By defining the optimal arrangement of TEDPs as dopt = [N1, . . ., Nn]opt, the total
number of TEDPs as Nsum, the maximum interstory drift ratio of the building as θmax and
the allowable interstory drift ratio limit as θlim, the optimization problem to be solved
in this paper can be simply expressed as find dopt which utilizes the minimum Nsum to
achieve θmax ≤ θlim.

4. Solution Methods

For a building equipped with TADAS dampers, there may be hundreds or even more
TEDPs distributed in different stories of the building, whose optimum arrangement can be
a large-scale discrete optimization problem. The computational cost to solve such problems
can be quite high for evolutionary algorithms such as GA, which may seriously undermine
their feasibility in practical engineering.

In order to solve the above optimization problem efficiently, four iterative methods
are proposed in this section, namely the regular iterative method (RIM), the accelerated
iterative method (AIM), the modified accelerated iterative method I (MAIM-I), and the
modified accelerated iterative method II (MAIM-II).

Define θlim as the allowable interstory drift ratio limit and θi as the peak interstory
drift ratio of the i-th story so that the peak interstory drift ratios of the building can be
represented by θ = [θ1, . . ., θn]. In this study, θ is obtained by nonlinear time-history
analysis (NTHA) of the building. θmax is the maximum interstory drift ratio among all
stories of the building, and imax is the corresponding story number, which can be obtained
by the function [θmax, imax] = max(θ). Similarly, θmin is the minimum interstory drift ratio
among all stories of the building, and imin is the corresponding story number, which can be
obtained by the function [θmin, imin] = min(θ). It should be noted that the stories with no
TEDPs should be excluded when searching for θmin. j denotes the number of iterations. The
arrangement of TEDPs in the building varies with iterations, which can be represented by
the distribution vector dj = [N1-j, . . ., Nn-j], where Ni-j denotes the number of TEDPs in the
i-th story at the j-th iteration. For the original building without a damper, the distribution
vector is initialized as d0 = [0, . . ., 0]. For the optimum solution, the optimized distribution
vector is denoted by dopt. The proposed methods and flowcharts are presented as follows.
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4.1. Regular Iterative Method (RIM)

In the regular iterative method (RIM), the distribution vector is first initialized as
d0 = [0, . . ., 0] for the original building, and nonlinear time-history analysis (NTHA) is
conducted for the building. Then, a piece of TEDP is added to the imax-th story, and the
distribution vector dj is updated by increasing 1 in the imax-th element. NTHA is conducted
for the updated building. As long as θmax ≤ θlim is not satisfied, one more piece of TEDP is
added to the imax-th story of the current building, with dj updated and NTHA performed
accordingly. The iteration terminates once θmax ≤ θlim is satisfied, and the final dj is taken
as the optimum solution dopt. The flowchart of RIM is presented in Figure 4.
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4.2. Accelerated Iterative Method (AIM)

The buildings (especially high-rise buildings) may need a large amount of TEDPs to
achieve the allowable interstory drift ratio limit. Therefore, the one-by-one strategy used
by RIM can be quite slow. In order to improve the computational efficiency, the accelerated
iterative method (AIM) is proposed based on a set-by-set strategy. The difference between
AIM and RIM is that AIM adds multiple pieces of TEDPs as a set to the building in
each iteration, while RIM adds only one piece of TEDP to the building in each iteration.
Theoretically, if AIM adds Q pieces of TEDPs as a set in each iteration, its computational
efficiency is Q times faster than RIM. However, the set-by-set strategy is likely to bring
redundant TEDPs to the structural system, especially when Q is relatively large. The
flowchart of AIM is presented in Figure 5.
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4.3. Modified Accelerated Iterative Method I (MAIM-I)

Although AIM may converge significantly faster, it may bring redundant TEDPs to
the structural system. If proper measures can be taken to remove the redundant TEDPs,
the results obtained by AIM can be effectively refined. Based on this idea, the modified
accelerated iterative method I (MAIM-I) is proposed.

As shown in Figure 6, MAIM-I is implemented using a two-stage procedure. In the
first stage, AIM is implemented which adds multiple pieces of TEDPs as a set to the imax-th
story at each iteration until θmax ≤ θlim is satisfied. At the end of the first stage, d′ as a
near-optimum solution with redundant TEDPs is obtained. In the second stage, one piece of
TEDP is reduced in the imin-th story at each iteration until θmax ≤ θlim is no longer satisfied,
and the previous solution dj-1 which still satisfies θmax ≤ θlim is defined as d-. Then, in order
to prevent premature convergence, one piece of TEDP is added in the imax-th story, and the
current solution is defined as d+. If d+ 6= d-, the solution goes back for further adjustment.
If d+ = d-, the iteration should be terminated so as to avoid getting into infinite cycles.
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Therefore, in MAIM-I, the first stage is a fast increase procedure using set-by-set
strategy which reaches an intermediate solution with redundant TEDPs efficiently, while
the second stage is a slow adjustment procedure using one-by-one strategy which refines
the solution by removing redundant TEDPs.

4.4. Modified Accelerated Iterative Method II (MAIM-II)

Another way to improve AIM is to combine AIM and RIM in a reasonable way. In
the beginning when θmax is far from θlim, AIM can be employed to efficiently achieve a
near-optimum solution with insufficient TEDPs. Then, RIM can be used when θmax gets
near θlim so that the number of TEDPs increases slowly afterwards and less redundant
TEDPs are brought to the structural system in the end. Based on this idea, the modified
accelerated iterative method II (MAIM-II) is proposed.

As shown in Figure 7, MAIM-II is implemented using a two-stage procedure. In the
first stage, multiple pieces of TEDPs as a set are added to the imax-th story of the building
in each iteration until θmax ≤ θlim+ is satisfied, where θlim+ is slightly larger than θlim. At
the end of the first stage, d′′ as an intermediate solution with insufficient TEDPs is obtained.
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In the second stage, only one piece of TEDP is added to the imax-th story of the building
in each iteration until θmax ≤ θlim is finally satisfied, and the last solution is taken as the
optimum solution dopt.
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Therefore, in MAIM-II, the first stage is a fast increase procedure using the set-by-
set strategy, which reaches an intermediate solution with insufficient TEDPs efficiently,
while the second stage is a slow increase procedure using the one-by-one strategy which
approaches the final optimum solution with better precision.

5. Application Example

In order to evaluate the proposed methods, two buildings are presented in this
section as the original buildings. Building 1 is a typical high-rise building with 20 sto-
ries. The structural model of Building 1 is transformed into a simplified 20-degrees-
of-freedom (20-DOF) system, whose story height, story stiffness k, and story mass m
are [h1, . . ., h20] = [3.9, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6,
3.6, 3.6] m, [k1, . . ., k20] = [1.04, 1.02, 1.00, 0.99, 0.98, 0.85, 0.83, 0.82, 0.81, 0.80, 0.6.6, 0.65,
0.64, 0.63, 0.62, 0.49, 0.48, 0.47, 0.46, 0.43] × 105 kN/m, and [m1, . . ., m20] = [178, 178, 178,
178, 176, 174, 174, 174, 174, 174, 173, 173, 173, 173, 172, 171, 171, 171, 171, 169] t, respectively.
Building 2 is a typical low-rise building with six stories. The structural model of Building
2 is transformed into a simplified six-degrees-of-freedom (6-DOF) system, whose story
height, story stiffness k, and story mass m are [h1, . . ., h6] = [3.9, 3.6, 3.6, 3.6, 3.6, 3.6] m, [k1,
. . ., k6] = [0.58, 0.55, 0.53, 0.42, 0.41, 0.40] × 105 kN/m, and [m1, . . ., m6] = [172, 172, 171, 170,
170, 169] t, respectively. Rayleigh damping is adopted for the structural models.

In this study, three earthquake ground motions are selected to perform the NTHAs
according to the Chinese Code for Seismic Design of Buildings (GB50011-2010), includ-
ing two recorded ground motions and one artificial ground motion, and the maximum
response value is computed. PGA of the ground motions is scaled to 0.4g according to the
Chinese Code. As shown in Figure 8, the mean spectrum of the selected ground motions
is compatible with the design spectrum. The key parameters of the TEDPs are set as
kp = 4000 kN/m, kp

′ = 0.02kp, upy = 0.002hi, f py = kp·upy, and the geometry of the TEDPs
can be obtained through Equations (1)–(4). The allowable interstory drift ratio limit is set
as θlim = 0.008.
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Figure 8. Spectra of earthquake ground motions. The hyphen lines represent the individual spectra
of the three selected earthquake ground motions.

5.1. Building 1

Optimum story-wise arrangements of TEDPs in Building 1 obtained by different
methods are shown in Table 1, where Nsum is the total number of TEDPs in the building,
which indicates the quality of the solution, and jmax is the total number of iterations, which
indicates the computation efficiency of the method. As shown, RIM achieved the best
solution with 456 TEDPs, which was the least among the four methods. However, it took
456 iterations to converge. Considering that three NTHAs were required in each iteration,
RIM needed 1368 NTHAs to yield the solution, whose computational cost was quite high.
On the other hand, AIM only took 97 iterations to yield the solution, which was far more
efficient. However, AIM yielded a less satisfactory solution using 485 TEDPs to achieve
the allowable interstory drift ratio limit, which was the most among the four methods.
MAIM-I and MAIM-II have yielded solutions similar to the solution yielded by RIM, while
they only took 126 and 116 iterations to converge, which was about 1/4 the computational
cost of RIM. Obviously, MAIM-I and MAIM-II are able to yield good solutions efficiently,
achieving the balance between efficiency and quality.

Table 1. Optimum arrangements of TEDPs in Building 1 obtained by proposed methods.

Story RIM AIM MAIM-I MAIM-II

20 0 0 0 0
19 0 0 0 0
18 0 0 0 0
17 3 5 3 3
16 9 10 9 10
15 7 10 7 6
14 16 15 16 16
13 24 25 24 25
12 29 30 29 30
11 35 35 35 35
10 30 30 30 30
9 34 35 34 34
8 36 35 35 36
7 36 40 36 36
6 35 40 36 36
5 28 30 28 28
4 31 35 32 31
3 35 35 35 35
2 38 40 39 38
1 30 35 31 31

Nsum 456 485 459 460
jmax 456 97 126 116

The interstory drift ratios of Building 1 with different arrangements of TEDPs obtained
by the proposed methods are presented in Figure 9. As shown, the allowable interstory
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drift ratio limit can be achieved by adopting any of the TEDP arrangements obtained
by the four proposed methods. Moreover, the interstory drift ratios obtained by RIM,
MAIM-I, and MAIM-II are almost identical and are uniformly distributed over the height
of the building, while the interstory drift ratios obtained by AIM are smaller than those
obtained by the other methods in some of the stories. The iteration curves are plotted
in Figure 10. Evidently, AIM, MAIM-I, and MAIM-II were a lot more efficient than RIM.
Among them, MAIM-I and MAIM-II took only a few more iterations than AIM, but in
exchange, they yielded solutions similar to the best solution produced by RIM, which were
quite cost-efficient.
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5.2. Building 2

Optimum story-wise arrangements of TEDPs in Building 2 obtained by different
methods are shown in Table 2. As shown, RIM, MAIM-I, and MAIM-II achieved the best or
comparable solutions, and AIM required a few more TEDPs in the solution. However, it
is observed that there is no significant difference among the solutions obtained by these
methods. In terms of computational efficiency, the proposed methods can be ranked as
RIM, MAIM-II, MAIM-I and AIM, which took 13, 20, 22, and 59 iterations to converge,
respectively. Although the computational cost varies, the overall computational cost for
Building 2 is considerably lower than Building 1.

The interstory drift ratios of Building 2 with different arrangements of TEDPs obtained
by the proposed methods are presented in Figure 11. As shown, the allowable interstory
drift ratio limit can be achieved by adopting any of the TEDP arrangements obtained by
the four proposed methods. Moreover, the interstory drift ratios obtained by RIM, MAIM-I,
and MAIM-II are almost identical and are uniformly distributed over the height, while
the interstory drift ratios obtained by AIM are smaller than those obtained by the other
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methods in some of the stories. The iteration curves are plotted in Figure 12. It is shown
that AIM was the most efficient while RIM was the least efficient. MAIM-I and MAIM-II
required a few more iterations than AIM to achieve refined solutions.

Table 2. Optimum arrangements of TEDPs in Building 2 obtained by proposed methods.

Story RIM AIM MAIM-I MAIM-II

6 0 0 0 0
5 3 5 3 4
4 9 10 9 10
3 5 5 5 4
2 18 20 18 17
1 24 25 24 25

Nsum 59 65 59 60
jmax 59 13 22 20
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6. Discussion
6.1. Comparison of Applicability

Building 1 and Building 2 represent typical high-rise and low-rise buildings with story
stiffness increasing from top to bottom. A summary of the optimum TEDP arrangement
results for both building models obtained by the proposed methods is listed in Table 3. As
shown, for both building models, RIM obtains the best solutions but is the least efficient,
while AIM is on the contrary. MAIM-I and MAIM-II can obtain the best or close to best
solutions with only a little extra computational cost than AIM, which are the most cost-
efficient methods.
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Table 3. Results summary.

RIM AIM MAIM-I MAIM-II

Building 1 Nsum 456 485 459 460
jmax 456 97 126 116

Building 2 Nsum 59 65 59 60
jmax 59 13 22 20

Furthermore, the high-rise building needs a lot more TEDPs to achieve the allowable
interstory drift ratio limit than the low-rise building so that the computational cost is higher
than low-rise buildings. In Building 1, the computational cost of MAIM-I and MAIM-II
is about 1/4 computational cost of RIM, which can save 330~340 iterations than RIM. On
the other hand, In Building 2, although the computational cost of MAIM-I and MAIM-
II is about 1/3 computational cost of RIM, they only saved about 37~39 iterations than
RIM, which is significantly smaller than that of Building 1. Therefore, the difference in
computational cost among different methods is relatively smaller for low-rise buildings,
while it can be considerably larger for high-rise buildings. It is highly recommended to use
MAIM-I and MAIM-II for high-rise buildings because they can be especially advantageous
in such cases.

6.2. Comparison of Mechanism

A comparison of implementation mechanisms among the proposed methods is pre-
sented in Table 4. As shown, RIM and AIM are one-stage methods, while MAIM-I and
MAIM-II are two-stage methods. The advantages of MAIM-I and MAIM-II may be at-
tributed to their two-stage implementation mechanism.

Table 4. Comparison of implementation mechanisms among proposed methods.

RIM AIM MAIM-I MAIM-II

1st Stage One-by-one
increase

Set-by-set
increase

Set-by-set
increase

Set-by-set
increase

2nd Stage N/A N/A One-by-one
adjustment

One-by-one
increase

The variation of Nsum during iteration of MAIM-I and MAIM-II is illustrated in
Figure 13. In their first stage, the set-by-set strategy is employed to efficiently produce an
intermediate solution near the optimum one. The only difference is that in MAIM-I, the
first stage is identical to AIM, while in MAIM-II, the first stage terminates earlier than AIM.
Therefore, at the end of the first stage of MAIM-I, an intermediate solution with excessive
TEDPs is obtained, while at the end of the first stage of MAIM-II, an intermediate solution
with insufficient TEDPs is obtained. Then, they switch to using the one-by-one strategy so
as to reduce the excessive and replenish the insufficient TEDPs in a more accurate manner.
Consequently, the solution obtained by the first stage can be further refined in the second
stage. The balance between efficiency and quality is thus achieved in MAIM-I and MAIM-II.
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6.3. Influence of Q

In the first stage of MAIM-I and MAIM-II, Q pieces of TEDPs are added to the building
in each iteration. Therefore, Q decides the efficiency of the first stage. For Building 1,
the performance of MAIM-I and MAIM-II with different values of Q is compared in
Table 5, where j1st and j2nd denote the number of iterations in the first and second stages,
respectively. When Q = 1, MAIM-I and MAIM-II are equivalent to RIM.

Table 5. Performance of MAIM-I and MAIM-II with different values of Q.

MAIM-I MAIM-II
Q = 1 Q = 5 Q = 10 Q = 1 Q = 5 Q = 10

Nsum 456 459 459 456 460 461
j1st 456 97 53 456 86 39
j2nd 0 29 72 0 30 71
jmax 456 126 125 456 116 110

As shown, Nsum remains stable when Q is chosen at different values. Therefore,
MAIM-I and MAIM-II are capable of adapting to different values of Q. Furthermore, it is
observed that for both MAIM-I and MAIM-II, when Q is larger, fewer iterations are needed
in the first stage, while more iterations are needed in the second stage. Larger Q means
better efficiency but less accuracy in the first stage. Therefore, although a larger value
of Q can increase the efficiency of the first stage, it may yield a solution further from the
optimum one at the end of the first stage so that more iterations are needed in the second
stage to refine the solution.

7. Conclusions

In this paper, four iterative methods, i.e., the regular iterative method (RIM), the accel-
erated iterative method (AIM), and two modified accelerated iterative methods (MAIM-I
and MAIM-II), are proposed to achieve the optimum arrangement of TADAS dampers in
earthquake-excited buildings for drift control. Typical high-rise and low-rise buildings are
used as application examples to evaluate their performance. Based on the results of the
study, the following conclusions can be drawn:

(1) RIM obtains the best solutions but is the least efficient, while AIM is on the contrary;
MAIM-I and MAIM-II can well achieve the balance between efficiency and quality,
which are the most cost-efficient methods;

(2) MAIM-I and MAIM-II can be especially advantageous for high-rise buildings;
(3) The advantages of MAIM-I and MAIM-II can be attributed to their two-stage imple-

mentation mechanism, which combines the set-by-set strategy and the one-by-one
strategy in a reasonable way;

(4) By adopting the optimum arrangement of TADAS dampers, the building can achieve
the allowable interstory drift ratio limit with minimum cost.
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