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Abstract: Currently, the construction sector is witnessing a growing demand for lightweight solutions,
which can be justified by the need to adopt high-performance solutions and the fact that the industry
is struggling with a shortage of skilled labour. In this sense, this study focuses on a novel and
flexible building wall system, constructed using an innovative extensible LSF profile. To enhance its
functionality, a monitoring system comprising printed sensors was integrated into the wall. These
sensors underwent a thorough verification process. To evaluate the hygrothermal performance of the
complete LSF wall solution and validate the novel monitoring system, an extensive ageing test focused
on heat/rain, freeze/thaw cycles was conducted on a large-scale wall prototype. Additionally, this
research introduces a novel approach by simulating exceptional solar radiation conditions, surpassing
the standard cycles outlined in EAD 040083-00-0404, for the first time in this kind of solution. The
results cover the measurements taken inside the building system using the incorporated monitoring
system. Additionally, supplementary external temperature and heat flow sensors were used to
determine the thermal transmittance. Visual and thermography inspections were also carried out.
The findings reveal no instances of failures or defects that could potentially impact the hygrothermal
behaviour of the system. The hybrid LSF constructive solution leads to more stable temperatures on
the inner surface. The presence of direct solar radiation can raise surface temperatures by up to 5 ◦C
compared to surfaces not exposed to such radiation, even when a light-coloured surface is used. The
monitoring system worked correctly. In conclusion, the innovative profile proved to be resistant to
hygrothermal cycles and the monitoring system developed is efficient.

Keywords: light steel frame; hygrothermal performance; innovative profile; monitoring system;
U-value determination

1. Introduction

The trend of innovation in the construction sector is to develop new materials and
constructive solutions that are more efficient, durable, safe, and that provide comfort
and hygiene conditions without increasing the cost of construction and maintenance of
the building throughout its service life [1,2]. Construction is one of the most important
economic and social development sectors. However, the main challenge that we are facing
today is to keep a high level of activity to ensure countries develop as much as possible, but
with the smallest environmental impact possible. In fact, the need to prevent the excessive
energy consumption of buildings and reduce the waste of construction works, and the
lack of labour, are the biggest challenges facing the construction industry, according to
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several studies [2–5]. One of the approaches to address these challenges is to develop more
efficient and sustainable innovative construction technologies. In this context, prefabricated
construction, which has been growing, is seen as an important strategy for the sustainability
of the construction [3,6–9].

Prefabricated construction is a process in which building components are fabricated
in a factory and transported to a construction site where the components are assembled
to create buildings. It is based on manufacturing elements, panels, or modules [10] which
may be made of common construction materials such as steel, concrete, or wood.

Prefabricated construction can imply a substantial reduction of resources compared
with conventional construction. It can lead to a decrease in embodied energy (up to
−40%), end of Life (up to −90%), and life cycle impacts (up to −10%) [8]. In the study [11],
where traditional construction is compared with modular construction through two real
modular buildings, it was found that the modular constructive technologies used allowed a
reduction of between 46% and 87% in waste generation, 66% and 70% in water consumption,
25% and 50% in noise reduction, 32% and 50% in speed of construction, and over a 100%
improvement in on-site labour productivity. The advantages of prefabricated construction
in relation to traditional construction are detailed in the scientific literature [5,12–15], which
often highlights the rapid construction, the lower needs for on-site space, the reduction
of water consumption, the lower construction and demolition waste, as well as the easier
disassembly and recyclability potential at the end of life.

One of the prefabricated building technologies that is emerging as a real option is light
steel framing (LSF) [8]. LSF is a building construction technique that uses dry materials
such as cold-formed steel (CFS) sections with some load-bearing capacity, sheeting panels,
and insulation materials. Other materials are necessary, such as screws, membranes for
waterproofing and air tightness, and finishing layers [16]. The LSF façade walls can be
classified into three types (cold, hybrid, and warm), depending on the position of the
thermal insulation [16–18], as shown in Figure 1. The cold frame construction includes
only insulation material inside the wall cavity, while in the warm frame construction, the
insulation is completely shifted to the external side of the wall. Typically, the solution
is ETICS (External Thermal Insulation Composite Systems). Finally, in the hybrid frame
construction, the insulation is applied both inside the wall cavity and externally.
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Figure 1. Types of LSF constructive solutions: (a) Cold solution; (b) Hybrid solution; (c) Warm
solution. 1—Rendering system of the cold solution or ETICS of the hybrid solution and warm
solution. 2—Exterior sheeting panel. 3—Cavity with or without thermal insulation. 4—Interior
sheeting panel.

This constructive system is being adopted more often all over the world, as stated by
several authors [1,16,19–23] as a result of the advantages mentioned above. Moreover, Lim
et al. [12] noted that the use of cold-formed steel in modular buildings can significantly
reduce the project cost (by up to 23%) while simultaneously providing better storey shear
and storey drift, with the environmental and social impact also being lower than for
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traditional construction. These advantages meet the needs of the construction sector, which
is looking for new construction methods and solutions that require less labour and are
faster, more sustainable, and help to optimize construction methods.

Despite the numerous advantages, the LSF system has some disadvantages related to
the lack of adaptability, namely in situations where it is necessary to make some adjustments
on site. This leads to the production of waste derived from the need for cuts and splices,
the lack of specialized labour and the risk of durability failure if the water-tightness is not
guaranteed. In LSF systems the risk of condensation and possible air and water infiltration
can cause corrosion of the metallic elements of the structure, as well as the appearance of
mould, thus jeopardizing the construction elements’ durability. Minor defects in this type
of modern construction can lead to severe degradation including corrosion, mould growth
and accelerated weathering regimes [20]. Continued corrosion of the metal can occur if the
relative humidity is greater than 80% while the temperature is above 0 ◦C at the surface.
With regard to mould growth, studies point to a maximum relative humidity limit of 75%
to prevent it, as reported by Zhan et al. [19] based on studies [24–26].

The increased use of LSF motivates the industry and researchers to develop more
efficient and sustainable systems [27]. These developments include the introduction of
innovative profiles as mentioned in [28] where several examples are presented. These in-
clude prestressed CFS beams [29,30], optimized folded-flange section [31] and super-sigma
section [32], hollow flange sections [33–37], rivet fastened hollow flange sections [38,39],
and gapped built-up sections [40,41].

Based on a research project led by the industry and supported by R&D centres, an
innovative LSF system incorporating a monitoring system was developed. Unlike commer-
cial static profiles, the steel profile developed is intended to be extensible, which minimizes
the disadvantages of current profiles regarding flexibility and adaptability through the
introduction of extensibility capacity. This new LSF profile allows for faster construction,
reducing the waste of construction and labour required due to the flexibility introduced,
which leads to an easy adjustment to the particularities and design requirements without
the need for multiple cuts, connections between profiles, or splices. Also, the transport and
assembly are optimized with this innovative profile. The monitoring system consists of
temperature and water detection sensors developed through screen-printing techniques.

The experimental validation of innovative materials and large-scale constructive solu-
tions is fundamental, as noted by Abdelmageed and Zayed [42]. Regarding the characteri-
zation of the hygrothermal performance, several researchers have conducted experimental
work on LSF systems to present scientific works carried out in this context. In the following
paragraphs, some of these studies are presented.

Zhan et al. [19] assessed the hygrothermal performance of typical lightweight steel-
framed wall assemblies in hot–humid climate regions through 10 months of monitoring
under real-world environmental conditions and verified that the studied wall assembly
can become wet when the weather is humid, or the indoor environment is air-conditioned.
In another study, Zhan et al. [20] conducted fundamental research on the hygrothermal
performance of LSF wall assemblies by characterizing the hygrothermal responses under
hot–humid climatic conditions, validating simulation models. This validation focused on
humidity and temperature measurements. Four typical and full-scale LSF wall assemblies
were tested and compared using two room-like test cubes in Guangzhou, a hot–humid city
in China. The authors concluded that, generally, wall assemblies with ventilated rainscreen
and external insulation exhibited the best hygrothermal response in a hot–humid climate
Still driven by Zhan et al. [43], the hygrothermal performance of an LSF wall in hot–humid
regions was optimized using orthogonal experimental design and a validated simulation
model. In this study, a solution comprising six construction layers was explored in order
to reduce the moisture risk. In this study, the authors concluded that, to reduce moisture
risks, LSF wall assemblies should generally minimize the infiltration of outdoor moisture
as much as possible while enhancing internal drying capacity. Santos and Mateus [21]
carried out an experimental assessment of thermal break strips performance in load bearing
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and non-load bearing LSF walls by measuring the thermal performance of twenty LSF
wall configurations, using the flow meter method under controlled laboratory conditions.
The authors found that the use of heat flux sensors (one on each side of the wall sample)
significantly reduced the expected uncertainty range. For the determination of the thermal
transmittance of LSF walls, Atsonio et al. [1] presented two new methods for the in situ
measurement of the overall thermal transmittance of cold frame LSF walls. These new
methods combine the analysis of the examined wall using thermal images with the record-
ing and processing of indoor/outdoor air temperature and heat flux. The results of the in
situ measurements were in a good agreement with the theoretical values. Roque et al. [13]
assessed the opportunities and limitations of LSF and hollow brick masonry constructive
systems in terms of minimizing energy consumption and providing a comfortable indoor
environment during the hot season based on a long-term programme of experiments moni-
toring the indoor temperature associated with the operation of the heating equipment. The
results revealed that the LSF test cell is more responsive to the external weather stimulus
and, therefore, more susceptible to the nocturnal temperature drop and overheating during
warmer conditions. Martins et al. [44] assessed the thermal performance of two types of
boards applied to LSF building systems. Comparative analyses and measurements of ther-
mal performance were carried out by spectrophotometer tests to calculate solar absorptance,
by infrared thermography to obtain surface temperatures, and by evaluation of external
and internal dry bulb temperatures with data loggers and prototype instrumentation. Friis
et al. [45] conducted a study to assess the hygrothermal performance of exterior walls in
an arctic climate. This study included detailed measurements and simulations of a test
facility. The authors analysed five wall construction solutions, including a steel solution
with mineral wool in the cavity. This solution proved to be suitable for the Arctic climate.
Temperature and relative humidity measurements were taken using sensors placed within
the test facility. Santos et al. [46] evaluated the thermal transmittance of three different
LSF walls experimentally, numerically, and analytically. The experimental measurements
were performed using a hot and a cold climatic chamber and the Heat Flow Meter (HFM)
method. The authors concluded that given the thermal insulation continuity of the ETICS,
the steel studs thermal bridging effect was significantly reduced.

Most of these types of experimental programmes use cell tests that are subjected to a
specific real climate during a certain period. Replicability tests are not feasible with this
type of setup due to the variability of conditions. This study introduces the utilization
of a climatic chamber that not only simulates temperature, humidity, and rain, but also
incorporates the simulation of solar radiation.

In this work, the research object is a building wall system made of an innovative ex-
tensible LSF profile incorporating a monitoring system composed of printed sensors. These
sensors were subjected to verification. Concerning the evaluation of the hygrothermal
behavior of the full wall solution and the validation of the monitoring system, a large-scale
wall was subjected to ageing tests. The prototype was composed of both a cold and a
hybrid solution and included a real window so that the test specimen had specific fea-
tures. In addition to standard heat/rain and freeze/thaw cycles prepared according to
EAD 040083-00-0404 [47], exceptional solar radiation simulations were also introduced.
In Figure 2 is presented the methodology followed. The introduction of solar radiation
during hygrothermal cycles aimed to make the hygrothermal assessment of constructive
solutions more comprehensive and closer to reality. In this way, an innovation was intro-
duced to laboratory hygrothermal evaluations, as the current practice involves conducting
hygrothermal cycles without solar radiation.
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The results include the measurements taken inside the building system, using the
incorporated monitoring system (printed sensors), and those obtained using additional
external temperature and heat flow sensors, which allowed for the determination of the
thermal transmittance. Visual and thermography inspections were also carried out.

The work was part of a research project called SMARTLSF, which was led by the
industry and supported by R&D centers. This research was performed by CeNTI (Centre for
Nanotechnology and Smart Materials) and Itecons (Institute for Research and Technological
Development in Construction, Energy, Environment, and Sustainability).

2. Materials and Methods
2.1. Description of the LSF Innovative Profile

The development of the LSF profile focused on introducing an innovative extensibility
feature. This novel LSF solution consists of two steel profiles with a groove geometry that
enables sliding movements when they are connected, as illustrated in Figure 3. This design
feature facilitates the extension of the structural element by a maximum of 500 mm. The
connection between the two profiles is achieved on-site by nailing them together along
the overlapping zone. The design depicted in Figure 3 resulted from a conceptual study
developed within the scope of the SMARTLSF project, and it was experimentally and
numerically validated. This design has proven to be easily extensible and applicable in
construction. The final system, composed of these profiles, offers the advantage of being
dynamic in three dimensions, simplifying its transportation and installation. The flexibility
introduced by the extensible profiles allows the LSF elements to easily adapt to the specific
requirements and demands of the project without the need for multiple cuts or connections
between profiles or joints.
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2.2. Development of the Hygrothermal Sensors

The sensors developed under the SMARTLSF project were based on screen-printing
techniques. In this printing method, a porous screen mesh with the desired printing
pattern is used as a stencil. When printing, a squeegee moves along the screen and applies
enough pressure to force the ink paste to penetrate through the open mesh areas, therefore
depositing it on the final substrate. The main advantage of this method is that it can
significantly increase the production yield by upscaling to a roll-to-roll process. Figure 4
depicts the screen-printing equipment available at CeNTI that was used for the production
of the sensors described below.
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To proceed with the development of the printed temperature sensor, a thermoresistive
principle was selected as the basis of operation. This principle is related to metallic materials
whose electrical resistivity is dependent on the surrounding temperature and is commonly
associated with linear behavior within a wide range of temperatures. Sensors were therefore
screen-printed onto polyimide substrates using a commercial silver ink. The geometry of
the sensor was designed to meet the desired characteristics (for example, sensitivity and
overall area) by referring to the properties of the ink. Figure 5a presents an example of a
printed sensor developed for temperature monitoring.
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ments; (b) For water detection.

Regarding the water detection sensor, its transduction principle was based on a
capacitive operation. In this case, the presence of water in the monitoring area of the
sensor leads to a change in the dielectric constant of the medium, which is manifested
through a change in the capacitance signal. The main advantage of this operation is that



Buildings 2023, 13, 2509 7 of 24

it does not require direct contact between the water and the conductive electrodes of the
sensor, therefore improving the devices’ lifetime. To develop it, a commercial silver ink
was selected to print the sensors’ interdigitated structure onto PET substrates, as shown in
the example in Figure 5b.

These sensors were previously checked using a climatic chamber and small-scale tests
specimens. The results are presented in Section 3.1.

2.3. Description of the Test Specimen

The test specimen consists of a 2.77 m × 2.77 m LSF wall constructed using the
innovative LSF profiles. The test specimen combined a cold frame construction and a
hybrid construction, as depicted in Figure 6a. To study the details of its installation and
assess the hygrothermal behavior in the vicinity of singularities (such as wall-window
junctions), a wood-frame window was installed. Before starting the tests, the test specimen
was cured for 28 days according to the instructions of EAD 040083-00-0404 [47].
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test specimen; (d) Test specimen in the climatic chamber.

Figure 6 presents the test specimen configuration.
The components of the test specimen and its characteristics are presented in Table 1.

The selection of the components presented is in line with the constructive solutions of other
similar studies, such as the studies [13,16–20], proving to be common components of light
steel frame (LSF) constructive solutions. Regarding mineral wool, the choice for insulating
the cavity is due to its advantages related to fire behavior.
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Table 1. Components and its characteristics of the test specimen.

Cold Frame Construction Hybrid Construction
Component Thickness [mm] Component Thickness [mm]

Gypsum board 12.5 Gypsum board 12.5

Mineral wool 150 Mineral wool 150

OSB 12 OSB 12

Rendering system 2 ETICS system with
40 mm of EPS 45

Concerning the monitoring system, in the first stage, a strategic distribution of the
monitoring modules and respective sensors was defined to gather valuable insights from
the hygrothermal cycles. Two possible configurations were established for the modules:
(i) printed temperature sensors, integrated in the external and internal surfaces of the
metallic profile, and (ii) identical to (i), with the addition of printed water detection sensors,
placed either on the external surface or on the interior of the structure, depending on the
respective monitoring zone. A schematic of the modules’ distribution in the test specimen
is shown in Figure 7, with the identification of the hybrid construction with ETICS.
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Figure 7. Schematic of the sensing modules’ distribution in the test specimen structure (external view).

Given this distribution proposal, a total of 10 modules were produced to incorporate
in the smart structure for the hygrothermal tests. To accomplish that, 20 temperature
sensors and 8 water detection sensors were prepared as described in Section 2.2, as well as
the required control electronics. It should be noted that each module was composed of a
dedicated printed circuit board (PCB) responsible for gathering the data from the relevant
sensors. The final sensing structure is presented in Figure 8.

To install the printed sensors on the test specimen, they were first incorporated in
strips of a functional composite component also developed under the SMARTLSF project,
with improved acoustic and flame retardancy properties. A detailed view of three modules
integrated into the test structure is shown in Figure 9. As can be seen, the sensing composite
strips were installed directly on the metallic structure and each module was fitted with
a casing that housed the respective PCB, in addition to an SHT commercial sensor for
temperature reference.
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Figure 8. Test specimen structure from SMARTLSF project with integrated sensors (external view).
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Figure 9. Detailed images of the integration of three modules (identified as M1, M6, and M8 in
Figure 8) in distinct positions.

For the correct operation of the smart system, the 10 modules were connected in series
and with a gateway that was responsible for supplying energy to the entire system, as well
as for gathering the acquired data from each module during the hygrothermal cycles. These
data were subsequently analyzed to assess the performance of the innovative profiles, and
the results are described in Section 3.

To monitor the temperature during the ageing tests under solar radiation and to
estimate the U-value of the solutions, the specimen was also instrumented with commercial
thermocouples and heat flux sensors. To assess the impact of solar radiation on the surface
temperature, a set of standard thermocouples were installed as illustrated in Figure 10.

The thermal transmittance (U-value) was determined by installing thermocouples and
heat flux sensors higher up the internal and external surface of the test specimen, as shown
in Figure 11.
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Figure 10. Placement of the thermocouples used to evaluate the ageing cycles under solar radiation:
(a) Illustrative scheme with the position; (b) Placement of the sensors on the internal surface of the
specimen; (c) Placement of the sensor on the external surface of the specimen.
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Figure 11. Placement of the thermocouples and heat flux sensors for the determination of the U-value:
(a) Schematic; (b) Placement of the sensors on the external surface of the specimen and (c) Placement
of the sensor on the internal surface of the specimen.

2.4. Description of the Test Apparatus

The hygrothermal cycles were carried out at Itecons facilities in a climatic chamber
(FitoClima 1000 EC 50), with 14.5 m3 of conditioned volume, temperature range from
−20 to 150 ◦C (±5 ◦C) and humidity from 10 to 98% (±10%), a water spraying system
providing 1 L/min·m2. Figure 12 shows the test apparatus used for the experimental
assessment of the hygrothermal behavior of the solution.
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The apparatus for the radiation test consisted of two BF SUN 2500 W lighting systems,
each with a metal halide lamp, Osram HMI 2500 W, and an electronic power supply unit
with intensity control 40–100% was installed inside the hygrothermal chamber, 0.9 m from
the test specimen surface. This artificial global radiation system meets the requirements
for automobile industry ageing tests [48], simulating the wavelength spectral range of
230–3000 nm, which includes UV-C, UV-B, UV-A, visible and infrared radiation. The test
area with homogenous solar radiation incidence can be seen in Figure 13.
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Figure 13. Solar radiation simulation system: (a) Solar lamps installed inside the chamber; (b) Test
area with homogenous solar radiation incidence.

Complementary to the experimental campaign based on the hygrothermal cycles and
solar radiation, a visual inspection was carried out to assess the state of the LSF profiles in
terms of warping, cracks, and other defects. Furthermore, an infrared thermography study
using an infrared camera was carried out to evaluate the appearance of anomalies such as
moisture, detachments, and others.

The specifications of the equipment and sensors used in the hygrothermal cycles tests
are given in Table 2.

Table 2. Description of the equipment in the hygrothermal cycles resistance test.

Item (Model) Description Output Illustration

Climatic chamber
(FitoClima 1000 EC 50)

Climatic chamber with 14.5 m3 of
conditioned volume. Temperature range
capacity of −20 to 150 ◦C (±5 ◦C) and
humidity of 10–98% (±10%); Includes a
water spraying system with
1 ± 0.1 L/(min·m2). This chamber is
annually calibrated to accomplish the test
procedure requirements.

Temperature control,
relative
humidity control and water
spraying.
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Table 2. Cont.

Item (Model) Description Output Illustration

Heat flux sensor
(FHF02SC-02)

Heat flux sensor with a measurement
range (−10 to +10) × 103 W/m2, a
sensitivity of 5.5 × 10−6 V/(W/m2) and
an uncertainty of calibration of 5%

Heat flux (W/m2) and
temperature (◦C)
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34970A) Data acquisition unit Data files

Buildings 2023, 13, x FOR PEER REVIEW 12 of 26 
 

  
(a) (b) 

Figure 13. Solar radiation simulation system: (a) Solar lamps installed inside the chamber; (b) Test 

area with homogenous solar radiation incidence. 

Complementary to the experimental campaign based on the hygrothermal cycles and 

solar radiation, a visual inspection was carried out to assess the state of the LSF profiles in 

terms of warping, cracks, and other defects. Furthermore, an infrared thermography study 

using an infrared camera was carried out to evaluate the appearance of anomalies such as 

moisture, detachments, and others. 

The specifications of the equipment and sensors used in the hygrothermal cycles tests 

are given in Table 2. 

Table 2. Description of the equipment in the hygrothermal cycles resistance test. 

Item (Model) Description Output Illustration 

Climatic chamber 

(FitoClima 1000 EC 

50) 

Climatic chamber with 14.5 m3 of con-

ditioned volume. Temperature range 

capacity of −20 to 150 °C (±5 °C) and 

humidity of 10–98% (±10%); Includes 

a water spraying system with 1 ± 0.1 

L/(min.m2). This chamber is annually 

calibrated to accomplish the test pro-

cedure requirements. 

Temperature control, 

relative 

humidity control and 

water 

spraying. 

 

Thermocouples 

(Type T thermocou-

ples) 

Thermocouple with temperature 

range between −270 to 370 °C and 

accuracy ± 1.0 °C or 0.75% 

Temperature 

 

Heat flux sensor 

(FHF02SC-02) 

Heat flux sensor with a measurement 

range (−10 to +10) × 103 W/m2, a sensi-

tivity of 5.5 × 10−6 V/(W/m2) and an un-

certainty of calibration of 5% 

Heat flux (W/m2) and 

temperature (°C) 

 

Data logger 

(Keysight 34970A) 
Data acquisition unit Data files 

 

Infrared camera (FLIR
T630sc)

Infrared camera with accuracy: ±1 ◦C or
±1% at 25 ◦C; object temperature range:
−40 ◦C to 150 ◦C; and resolution:
640 × 480 pixels

Infrared thermograms

Buildings 2023, 13, x FOR PEER REVIEW 13 of 26 
 

Infrared camera 

(FLIR T630sc) 

Infrared camera with accuracy: ±1 °C 

or ± 1% at 25 °C; object temperature 

range: −40 °C to 150 °C; and resolu-

tion: 640 × 480 pixels 

Infrared thermograms 

 

Solar radiation sim-

ulation system (BF 

SUN 2500 W) 

BF SUN 2500 W with a Osram HMI 

2500 W lamp, and an Electronic 

Power Supply Unit 

Solar radiation: UV-C, 

UV-B, UV-A, visible and 

infrared radiation 

 

2.5. Description of the Test Procedures 

The test procedure included three stages: stage 1 with steady state conditions in order 

to experimentally determine the U-value of the wall; stage 2 consists of the ageing hygro-

thermal cycles; and stage 3 consists of an innovative ageing test that includes solar radia-

tion. 

The U-value was calculated according to ISO 9869-1—Thermal insulation—Building 

elements. In situ measurements of thermal resistance and thermal transmittance [49]. Ac-

cording to this standard, the U-value is determined as follows: 

𝑈 =
∑ 𝑞𝑗
𝑛
𝑗=1

∑ (𝑇𝑖𝑗 − 𝑇𝑒𝑗)
𝑛
𝑗=1

 (1) 

where: 

• qi, density of heat flow [W/m2]; 

• Ti, interior environmental temperature [°C or K]; 

• Te, exterior environmental temperature [°C or K]; 

• j, enumerates the individual measurements. 
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Power Supply Unit

Solar radiation: UV-C,
UV-B, UV-A, visible and
infrared radiation
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2.5. Description of the Test Procedures

The test procedure included three stages: stage 1 with steady state conditions in
order to experimentally determine the U-value of the wall; stage 2 consists of the ageing
hygrothermal cycles; and stage 3 consists of an innovative ageing test that includes solar
radiation.

The U-value was calculated according to ISO 9869-1—Thermal insulation—Building
elements. In situ measurements of thermal resistance and thermal transmittance [49].
According to this standard, the U-value is determined as follows:

U =
∑n

j=1 qj

∑n
j=1

(
Tij − Tej

) (1)

where:

• qi, density of heat flow [W/m2];
• Ti, interior environmental temperature [◦C or K];
• Te, exterior environmental temperature [◦C or K];
• j, enumerates the individual measurements.

According to ISO 9869-1 [49] a period of constant temperature is required. Therefore, a
period of four days with a constant temperature of 35 ◦C was established before performing
the hygrothermal cycles (stage 1).

The hygrothermal cycles carried out in this work were based on EAD 040083-00-
0404—External Thermal Insulation Composite Systems (ETICS) with Renderings [47]. The
rig was subjected to a series of 80 heat/rain cycles, comprising the following stages:
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1. Heating to 70 ◦C (for 1 h) and maintaining at (70 ± 5) ◦C and 10 to 30% RH for 2 h
(total of 3 h);

2. Spraying for 1 h (water temperature (+15 ± 5) ◦C, amount of water 1 L/m2 min);
3. Leave for 2 h (drainage).

Next, after at least 48 h of conditioning at temperatures between 10 and 25 ◦C and
a minimum relative humidity of 50%, the same test rig was exposed to five freeze/thaw
cycles of 24 h consisting of the following stages:

1. Exposure to (50 ± 5) ◦C (increasing for 1 h) and maximum 30% RH for 7 h (total of
8 h);

2. Exposure to (−20 ± 5) ◦C (decreasing for 2 h) for 14 h (total of 16 h).

After the standard hygrothermal cycles, new ageing cycles that included solar radi-
ation simulation were carried out. The test procedure consisted of inducing accelerated
ageing by exposing the test specimen to a controlled temperature, relative humidity, and
solar radiation intensity. The rig is subjected to five cycles, comprising these steps:

1. Heating to 35 ◦C (for 1 h) and maintaining the temperature at (35 ± 5) ◦C and RH at
20–30% for 1 h (total of 2 h);

2. Maintaining the temperature at (35 ± 5) ◦C and turning the solar radiation lamps on
at a setpoint of (1100 ± 100) W/m2 for 5 h;

3. After turning off the solar radiation lamps, cooling the air chamber within 2 h to a
temperature of (−20 ± 5) ◦C and maintaining it for 15 h (total 17 h).

3. Results
3.1. Initial Verification of the Developed Sensors

To evaluate the performance of the printed temperature sensors, they were first
characterized in a laboratory climatic chamber under temperatures ranging from −10 ◦C
to 85 ◦C (prior to their integration in the innovative LSF structure). This interval was
chosen due to the temperatures that can be expected to be reached in the LSF structure in a
real-case scenario for different climatic zones. The responses obtained with three replicas
(from a group of several printed samples) of the temperature sensor are given in Figure 14.
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Figure 14. Comparison of the characterization curves of three printed temperature sensors (as
example), obtained with the laboratory climatic chamber.

The analysis of the characterization data shows that the variation of resistance as a
function of temperature follows a linear trend for all samples. The sensitivity is given by
the slope of the curve, with values ranging from 0.228 Ω/◦C to 0.288 Ω/◦C (± 0.1%). The
discrepancy observed in this sensitivity is justified by differences in the reference resistance
of each sample as a result of the printing process itself. Consequently, at this stage, the
sensors were calibrated individually to guarantee a low error percentage when measuring
the temperature in the LSF structure.
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To characterize the capacitive response of the printed water detection sensors, a test
apparatus was produced from a miniaturized version of one of the innovative LSF profiles
developed in the SMARTLSF project. The sensors were installed on the base of the test
structure since water could be expected to be deposited in this area (by gravity). In addition,
the materials of the wall were placed in the apparatus to simulate the conditions of the final
application (inset from Figure 15), particularly due to the impact that the surroundings
have on capacitive sensors. During the characterization, 50 mL amounts of water were
deposited on the top surface of the mineral wool slab at different times in the test. Figure 15
shows the capacitance behavior of two samples during the respective characterization tests,
with each step representing the detection of water.
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Figure 15. Comparison of the characterization curves from two examples of printed water detection
sensors (inset: characterization setup).

The results were found to validate the capability of the printed sensors to detect the
presence of water. The change in the capacitive signal at each step can be directly related
to the amount of water that reached the sensor, a parameter that could not be controlled
during the test since it depended on the absorption rate of the mineral wool. It is therefore
important to note that this type of sensor must be strategically positioned, particularly
in areas associated with a higher risk of water leakage in order to guarantee correct and
prompt detection.

3.2. Hygrothermal Cycles of the Innovative LSF Profile
3.2.1. Temperature and Water Detection Measurements during Hygrothermal Cycles

The temperature measurements presented in Figure 16 were performed using the new
monitoring system and gathered using the gateway. They exhibit the expected variations.
This figure shows the results for the sensor positioned at M2 (positions according to
Figure 6), belonging to the cold LSF type. The maximum temperature was recorded at
the sensor close to the exterior side and reached approximately 60 ◦C when the climatic
chamber was set to 70 ◦C. This was the behavior for 80 cycles, and both the climatic chamber
and printed sensors exhibited a good replicability during this stage of the test. The high
rate of temperature variation was well-registered, with the temperature drop during the
one-hour rain simulation being particularly interesting. Later, the temperature sensors also
correctly recorded the temperature change during the freeze/thaw cycles (a zoom of these
results is shown in Figure 17). Inside the wall, the temperature varies between around
45 ◦C and −8 ◦C, which was expected when the climatic chamber was set to be between
50 ◦C and −20 ◦C. The measurements are also consistent with the pattern of the reference
sensors (SHT).
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Figure 17. Detailed view of the values registered by the temperature sensors from M2 during the
freeze/thaw cycles.

A comparison between the hybrid and the cold LSF construction types can also be
assessed from the measurements collected during the test. Figures 18 and 19 summarize the
maximum and minimum temperatures registered during the heat/rain and freeze/thaw
cycles, respectively.
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Figure 19. Overview of the minimum temperatures registered by the printed sensors (on external
and internal sides) during freeze/thaw cycles.

Evaluation of the above charts allows us to conclude that hybrid construction im-
proves the thermal effects in the structure. Specifically, when considering the maximum
temperatures achieved during the heat/rain cycles, the values recorded by the sensors (both
interior and exterior) were considerably lower for modules M6 and M8 (hybrid construc-
tion) when compared to the ones from modules M2 and M11 (cold frame construction). In
particular, the temperature differences were as high as 30 ◦C. In contrast, for the minimum
temperatures of the freeze/thaw cycles, a higher temperature was noted in the ETICS area.
For example, the exterior temperature registered for module M6 was 15 ◦C warmer than
the equivalent for M11. Therefore, these results demonstrate the positive influence of the
ETICS system in the attenuation of thermal bridges in LSF profiles.

In addition to the thermal analysis, the operation of the printed water detection sensors
was also assessed. The occurrence of infiltrations in the test specimen during the heat/rain
cycles meant that the presence of water on the inside of the LSF structure was detected
by the sensors of the modules M1 and M7 (installed on the lower part of the profile and
consequently more exposed to water penetration in the interface between the wall and the
supported frame, which is rising by capillarity). The respective capacitive responses of
these sensors are presented in Figures 20 and 21.
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Figure 20. Capacitive response of the water detection sensor from M1 (detection after 26.3 h
of testing).
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Figure 21. Capacitive response of the water detection sensor from M7 (detection after 190.6 h
of testing).

As mentioned previously, the presence of water is identified because of the increase
of the capacitive signal when referred to its base signal. From a further visual inspection
of the test specimen, the infiltration of water in the wall was confirmed in the area of the
abovementioned modules. No occurrence was identified for the M3 and M5 modules, with
the integrity of the wall being subsequently confirmed.

3.2.2. Temperature Measurements during Solar Radiation Cycles

Figure 22 presents the results for the accelerated cycles under solar radiation. A
comparison between surface temperatures with and without radiation is made on the
hybrid LSF side. The maximum temperature is approximately 5 ◦C higher on the external
surface affected by radiation, even for the same temperature inside the climatic chamber.
This demonstrates that solar radiation will increase the temperature stress put on the
rendering system layers and may also affect the LSF profiles during the ageing cycles.
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Figure 22. Temperature of the radiation cycles.

3.2.3. Determination of the Thermal Transmission Coefficient, U-Value

The determination of the U-value was carried out according to ISO 9869-1—Thermal
insulation—Building elements—In situ measurements of thermal resistance and thermal
transmittance [49]. The temperature and heat flux measurements, recorded for approxi-
mately 90 h of steady state conditions, are presented in Figure 23.
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Figure 23. Heat flux and temperature measured for the experimental determination of the U-value.

Applying Equation (1) (Section 2.5) to the values depicted in the graph in Figure 23, a
U-value of 0.38 W/m2 K is obtained for the hybrid solution (result of the division between
the sum of the heat flux values (solid black line) and the sum of the difference between the
internal surface temperature (dashed red line) and the external surface temperature (solid
red line)), with a standard deviation of 0.02 W/m2·K. For the cold solution, the obtained
U-value was 1.38 W/(m2·K) (result of the division between the sum of the heat flux values
(dashed green line) and the sum of the difference between the internal surface temperature
(dashed blue line) and the external surface temperature (solid blue line)), with a standard
deviation of 0.03 W/(m2·K).

These results also highlight the relevance of the ETICS solution for the thermal perfor-
mance of the LSF wall, minimizing the impact of LSF thermal bridges and avoiding the
heat flux variations due to the internal surface temperature fluctuations (non-controlled
environment).

3.2.4. Visual Inspection

Visual inspection of the test specimen after the hygrothermal cycles showed that the
innovative LSF profile did not present dimensional variations and that no cracks were found
in the rendering system. Figure 24 presents images of the visual inspection performed on
the test specimen after the hygrothermal cycles.
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Figure 24. Images of the visual inspection performed after the hygrothermal cycles.

After dismantling the test specimen, the proper condition of the LSF profiles and the
presence of water (wet mineral wool) in the lower part of the wall were confirmed. The
water had already been detected by the sensors during the ageing test. The infiltration
occurred because the point where the base of the wall and the support metal frame met
was not watertight.
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3.2.5. Thermographic Analysis

A thermographic study was also carried out during the heating period of the heat/rain
cycles and during the freezing period of the freeze/thaw cycles. Figure 25 presents the
thermograms during the heating period of the heat/rain cycles and Figure 26 presents the
thermograms during the freezing period of the freeze/thaw cycles. The side on which the
images were taken is the inner side (non-controlled conditions).
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Figure 26. Thermograms during the freezing period of the freeze/thaw cycles.

The thermograms presented in Figures 25 and 26 highlight the lower thermal perfor-
mance in the zone of the LSF profiles (thermal bridge zone). In the thermograms obtained
during the heating cycles the profile zone has a higher temperature than the zone without
the profile. This is observed in the two constructive solutions assessed. However, the
profile zones of the cold frame solution reveal higher heat transfer rates. On the other hand,
the thermograms obtained during the freezing cycles show that the profiles exhibited lower
temperatures than the current zone. The thermograms also show that the zone around the
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window is an area that allows greater heat exchange, as expected. An important linear
thermal bridge in the window-wall junction explains this behavior.

From the thermograms, it should also be noted that water is present in the bottom of
the test specimen. The bottom lower temperatures disclose the presence of water. When
the moisture increases, the thermal transmittance rises. Moreover, the drop in the surface
temperature may also be due to surface evaporation. The presence of water in the bottom
of the test specimen, as mentioned in Section 3.2.1, was also identified by the sensors
placed in that particular area (sensor M1 and M7). Consequently, the findings from the
thermographic study serve to confirm the results obtained from sensor readings.

4. Discussion
4.1. Main Findings

The results showed that the innovative profile proved to be resistant to hygrothermal
cycles with and without solar radiation. The profile is perfectly adjustable to current
LSF constructive solutions. The faster installation of the new LSF profile was established
during the construction of the real-scale test specimen. The monitoring system developed
is efficient and works correctly. It was also demonstrated that a cold frame solution leads
to greater heat loss and greater temperature variations, which means that this constructive
solution has a lower hygrothermal performance and is therefore more vulnerable to internal
mold growth and to superficial and interstitial condensation. This conclusion is in line
with other studies. Zhan et al. [43] stated that the exterior cladding was crucial not only
for aesthetic design purposes but also for controlling the level and duration of heat and
humidity exposure. Santos et al. [46] verified, through infrared thermography images, that
in a LSF wall with ETICS, the location of the vertical steel studs is not clearly visible, unlike
walls without ETICS. These authors also concluded that the application of an ETICS system
leads to an approximation of the U-value between the profiles zone and the U-value of
the zone with metallic profiles. In another study, based on the temperature measurements
they conducted, Atsonios et al. [1] observed that in the cold solution, the profiles led to a
greater surface temperature disturbance (more than 3 ◦C) compared to the hybrid solution
they studied (1.2 ◦C). These conclusions demonstrate that ETICS has a high efficacy in
mitigating steel frame thermal bridging.

An additional concern identified by the authors of this study relies on the fact that
the geometry of the innovative profile’s cross-section is larger than that of a conventional
LSF profile. This leads to a higher impact of thermal bridges. Consequently, an additional
study was conducted to determine the resulting impact of the increased cross-sectional
area. To achieve this, using the “Guarded Hot Plate Single-specimen Apparatus λ-Meter EP
500” and considering the steady-state heat conduction phenomenon, the thermal resistance
of the innovative profile embedded in EPS (Expanded Polystyrene) and a conventional
profile, also embedded in EPS, was determined, as documented by the images in Figure 27.
The tests for determining thermal conductivity were carried out at an average temperature
of 23 ◦C with a 20 ◦C temperature difference between the plates of the equipment.
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Figure 27. (a) Testing of the specimen with the innovative LSF profile; (b) Testing of the specimen
with the current LSF profile.
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The results obtained are presented in Table 3.

Table 3. Thermal resistance of the LSF/EPS profile sets tested.

Test Specimen λ23 ◦C [W/(m·◦C)] R23 ◦C [m2·◦C/W]
Innovative LSF profile + EPS 0.16684 1.271

Current LSF profile + EPS 0.11487 1.511

The results show that due to the larger cross-section of the innovative profile, the
thermal resistance of this assembly is lower (a difference of 0.24 m2·◦C/W).

4.2. Limitations and Advantages

Despite the significant findings, some limitations should be considered in interpreting
the results. The main limitations of the present study include the need for conducting a
similar study with a large test specimen constructed using current LSF profiles to compare
the results. Furthermore, conducting a comparative study of economic feasibility would
enhance the comprehensiveness and robustness of this work. For that, manufacturers need
to define the real cost of the profiles. From the perspective of hygrothermal assessment, the
test specimen is an isolated 2D element, it is essential to evaluate connections with roofing,
flooring, and other specificities of a building, such as corners, balconies, or connection to
the ground slab layer. Moreover, as the procedure used for hygrothermal cycles under solar
radiation is innovative, further studies are needed to increase confidence in the obtained
results. Therefore, these limitations present opportunities for future work to enhance the
quality and confidence of this study.

Regarding the advantages, the current study has developed and implemented a novel
laboratory ageing method that enables a more comprehensive and realistic assessment
of hygrothermal performance. An innovative monitoring system was implemented and
validated, allowing for the evaluation of the hygrothermal performance of an LSF structure
throughout its service life. This monitoring system will help prevent building pathologies
related to water ingress and interstitial condensation. It is also worth mentioning that the
adopted methodology follows the ideas mentioned in other studies, such as [22,42], where
it is stated that: the light steel frame walls require more complex and detailed analysis than
ones necessary for reinforced concrete and masonry constructions; the heterogeneity of
materials and the high frequency of metal studs may lead to an overestimation of thermal
resistance using available technical data from manufacturers; and there is a need for large
scale case studies for proper assessment. Additionally, the results of temperature and
heat flow measurements can be used for the validation of numerical models. Overall, this
study, in addition to validating an innovative LSF profile incorporating printed sensors,
could establish a foundation for more comprehensive assessments and enhancements of
the hygrothermal performance, durability, and sustainability of LSF buildings.

5. Conclusions

The main goal of this study was to evaluate the hygrothermal behavior of an innovative
LSF profile incorporating a monitoring system developed under an innovation action with
industry (SMARTLSF project). For this purpose, an experimental procedure was carried out
on a large-scale specimen placed in a climatic chamber. The test specimen was subjected to
standard ageing cycles according to EAD 040083-00-0404 [47] and to innovative accelerated
ageing cycles under solar radiation simulation. The temperature and water detection
printed sensors were verified first using small-scale specimens. In addition to this new
monitoring system incorporated in the structure, the test specimen was instrumented with
thermocouples and heat flux sensors in the LSF profile areas to assess the influence of the
solar radiation and to determine the thermal transmittance (U-value) of the LSF wall.

First, the experimental procedure considered a steady-state boundary condition to
allow the determination of the thermal transmittance. Next, the experimental procedure
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followed standard hygrothermal cycles (the above-mentioned ageing cycles), including
80 heat/rain and five freeze/thaw cycles. Finally, innovative ageing cycles with solar
radiation simulation were performed.

The main conclusions of this work are as follows:

• The sensors used in the integrated monitoring system proved to be efficient. The
results show that the measurements with the printed sensors followed the expected
variation of each test cycle; they were also consistent with the pattern of the reference
sensors (SHT). Furthermore, the monitoring system was capable of evaluating the
thermal gradients and the presence of water infiltration that occurred during the tests.

• The innovative profile developed proved to be stable during the hygrothermal cycles.
No failures or defects such as deformations, warping, or distortions that could com-
promise the hygrothermal behavior of the system occurred. Thus, the stability of the
innovative profiles is considered validated from the point of view of hygrothermal
behavior. Wind resistance tests were performed for a maximum pressure of 3000 Pa,
as well as impact tests of 10 J (not presented in this paper), and the wall kept its
structural integrity.

• The hybrid LSF constructive solution using an external thermal insulation composite
system applied to the OSB layer leads to more stable temperatures on the inner surface.
On the other hand, this constructive solution resulted in a higher external surface
temperature than the solution without ETICS, leading to higher levels of stress for the
rendering system.

• The results during the accelerated ageing cycles under solar radiation simulation show
that the incidence of solar radiation may lead to surface temperatures 5 ◦C higher
compared to the surface without the incidence of direct solar radiation, even using a
light color.

• The thermographic study and the in situ determination of the U-value reveal that the
use of an ETICS system is essential to minimize the effect of thermal bridges caused
by LSF profiles. The U-value of the hybrid constructive solution is, as expected, lower
than the cold constructive solution. Moreover, the thermograms showed higher heat
transfer rates in the profile zone of the cold constructive solution than the profile zone
of the hybrid constructive solution.

• Additionally, the thermographic study confirmed the presence of water in the bottom
of the test specimen. This indicates that the wall became wet due to capillary action,
as indicated by the readings from the printed sensors installed in this area of the
test specimen. Consequently, the evidence obtained from the thermographic study
supports and validates the results obtained from the sensors developed.

• One of the weaknesses of the wall is the singularities associated with the window
installation. The thermograms clearly show the thermal bridges created in the wall-
window junctions. The window in the LSF was installed normally, with no difficulties
arising in its execution. No water penetration was registered. However, it is highly
recommended to cover the window frame with insulation or to fit the window with
the plane of the wall insulation in order to minimize the installation thermal bridges.
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