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Abstract: Parametric form findings of free-form space structures and qualitative assessment of
their aesthetics are among the concerns of architects. This study aims to evaluate the aesthetic
aspect of these structures using ML algorithms based on the expert’s experiences. First, various
datasets of forms were produced using a parametric algorithm of free-form space structures written
in Grasshopper. Then, three multilayer perceptron ANN models were adjusted in their most optimal
modes using the results of the preference test based on the aesthetic criteria including simplicity,
complexity, and practicality. The results indicate that the ANN models can quantitatively evaluate
the aesthetic value of free-form space structures.

Keywords: free-form space structure; parametric modelling; artificial neural network; aesthetics

1. Introduction

Free-form space structures, a new generation of space-frame structures, are surfaces
with double curvature that have no dependence on conventional geometric forms and
therefore have a high visual appeal. These structures usually cover large-scale areas
without intermediate columns like museums, amphitheaters, mosques, and stadiums.
In the last decades, free-form space structures have been considered by architects and
structural engineers, due to their high flexibility, great variety, and beauty. Since the
function, structure, and form strongly influence each other, both structural engineers and
architects must have some degree of communication with each other. Architects can take
advantage of the form of these structures for both structural and architectural purposes,
especially aesthetic criteria. Aesthetic is a qualitative criterion, and various methods
have been used to evaluate such qualitative criteria in architecture. Nowadays, artificial
intelligence and machine learning techniques are used in the field of qualitative design. The
core capability of machine learning is to discover and reconstruct complex relationships
between input and output data from a relatively large data set [1]. Therefore, it can be very
useful in both the form-finding of spatial structures and evaluating their aesthetic criteria.

Mirra and Pugnale [2] investigated design spaces created using artificial intelligence
and compared their outputs with human-designed spaces. A dataset of 800 maps ob-
tained from 3D models of shell structures was used to train the system. The comparison
shows that optimization based on design spaces created by artificial intelligence leads
to a greater variety of design outputs than solutions provided by optimization based on
human-designed spaces. Furthermore, AI solutions include structural configurations that
would not be possible to find in a human-designed space. This indicates one of the main
advantages of using artificial intelligence in structural design: the possibility of providing
design options beyond those created by human intelligence [3]. Zheng et al. [4] produced a
shell structure using graphic statics and then by dividing the force graph and its polyhedral
cells using different rules achieved various new structures with different load-bearing
capacities and the same boundary conditions. By training an artificial neural network, the
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model can predict the relationship between input data (subdivision rules) and structural
performance and construction constraints. This alternative use of machine learning models
to enable rapid exploration of design spaces is one of the important efforts to improve
human-machine collaboration. Fuhrimann et al. [5] combined form-finding with machine
learning techniques using combinatorial equilibrium modeling (CEM) and self-organizing
maps (SOMs). The objective of these studies is to locate a diverse and intricate range of
solutions that can be handled more easily by designers. These investigations have empha-
sized the essential ability of machine learning to detect intricate connections between input
and output data and identify correlations between the structure’s form and its performance.
Once these correlations are established, structural optimization becomes simpler. [1]. In
recent years, machine learning techniques in structural optimization have also increased
due to overcoming long-term and complex computations. Aksöz and Preisinger [6] describe
a method to optimize free-form spatial structures using machine learning. They designed
arbitrary space frame structures and trained the artificial neural network to implement
the optimal geometry for each structural node parallel to a given load. Koronaki et al. [7]
used machine learning algorithms to determine the requirements of the fabrication process
of space-frame structures and then optimize the structure geometrically. Es-Haghi et al.
proposed a machine-learning algorithm for the optimization of large-scale space frames in
real size with high speed and accuracy.

Machine learning algorithms can assist with the structural design process in more ways
than just complex calculations. They can also be used to quantify subjective criteria, such
as aesthetics, that are difficult to measure using traditional methods. Belém et al. [8] After
discussing the important techniques and areas of machine learning that have been used
successfully, finally concluded that aesthetic evaluation is based on culture and changes
over time, so it is difficult to achieve with current machine learning techniques. Zheng [9]
proposed a method to evaluate polyhedral structures using machine learning and find the
highest-scoring forms based on the results of architects’ preference tests. He produced
polyhedral structures using the 3DGS method and then asked the architects to select their
favorite form from the set of forms several times. After training the machine through the
test result, the neural network evaluates the new input form and estimates how much
the designers are interested in that form. Petrov et al. [10] employed machine learning
methods to investigate how the geometric dimensions of free-form surfaces relate to their
aesthetic properties. In addition to structures, research has also been conducted in the field
of using machine learning to evaluate the qualitative characteristics of various architectural
designs. McCormack and Lomas [11] used Convolutional Neural Networks trained on an
individual artist’s previous aesthetic evaluations to assist them in finding more appropriate
phenotypes. Li and Chen [12] propose a feature extraction framework for evaluating the
visual aesthetic quality of digital images of paintings. They trained the computer to make
an identical decision on the visual aesthetic quality of a painting to that created by the
bulk of people. Ciesielski et al. [13] found images with high aesthetic value using feature
extraction methods from machine learning based on two image databases rated by humans.
A number of research studies, referenced as [14–19], have been carried out concerning
machine learning in relation to free-form surface structures. Some of these articles have
emphasized aesthetics as their main area of interest. Although these studies that are related
to using machine learning for aesthetic evaluation and structural engineering exist due
to the potential to integrate machine learning techniques in different fields of research
and the importance of this, there has been no research on the commonality of these three
issues. Therefore, the motivation for conducting this research is to develop a methodology
for evaluating free-form space frame structures based on the subjective preferences of
architectural experts. Free-form space frames are complex structures that require a balance
between form and function, making it challenging to find an optimal design. The subjective
nature of aesthetic preferences further complicates this process, as architects and designers
must balance their personal preferences with functional requirements. The rationale for this
research is to provide a data-driven approach to design free-form space frame structures
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that meet both functional requirements and aesthetic preferences. By collecting data on the
subjective preferences of architectural experts, the study aims to develop a methodology for
evaluating these structures and streamlining the form selection process. The use of machine
learning techniques can further improve the efficiency of this process by predicting the
scores that an expert would assign to a given form. Artificial neural networks (ANNs) are
one of the most well-known techniques of machine learning for different evaluations and it
has been successfully employed in several pieces of research related to aesthetic evaluation
based on human experiences [9,11]. But none of them provide sufficient information
about the configuration and parameters of the ANN. Therefore, this study will present
the procedure to set up an artificial neural network model and its parameters. This study,
to the best of the authors’ knowledge, is the first to offer a comprehensive analysis of
selecting ANN parameters for the purposes of form finding and evaluating free-form space
structures. The study provides guidance on how to set these parameters.

This paper is structured as follows: Section 2 presents the form-finding process of
free-form space structures and also the design of the questionnaire related to the preference
test based on aesthetic criteria; this section also details the sample and data collection.
Section 3 introduces the ANN. In the Section 4, the detailed process of designing and
configuring an ANN model is presented. Section 5 includes the discussion about testing
the ANN. Section 6 contains the conclusion, the limitations of the study, and an exploration
of possible subjects for future research.

2. Research Methodology

The research will utilize a survey methodology to investigate the aesthetic assessment
of free-form space structures using machine learning based on experts’ experiences. The
study will employ an exploratory approach to identify the parameters required for the
machine learning algorithm to evaluate the aesthetic appeal of free-form space structures.
Data will be collected through an online survey. The study will use a purposive sampling
technique to recruit participants. The participants will be selected based on their expertise
in architecture, structural engineering, and aesthetic evaluation. The information obtained
from the questionnaire will be used as input data to train the artificial neural network. The
artificial neural network will be trained in a step-by-step manner and, finally, it will be
tested with the test data. Scheme 1 demonstrates the steps of the proposed method.
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2.1. Form Finding of Free-Form Space Structures

Space structures are a very important category of structural system that have been
technically developed in recent decades. One of the important features of spatial structures
is their geometry. Typically, structures are designed with regular geometry, which offers
advantages such as modularity, lower costs, and shorter construction periods. However,
regular forms are not always intended. In the modern era, curved forms are more desirable.
Therefore, as the order decreases, the cost and construction time increase. In such cases, the
geometry of the structure usually becomes more complex, with the overall form containing
smaller or free-form components [20]. These innovative forms are called “free form” and
are created from the interaction of the structures’ functional requirements and the designers’
art and creativity [21]. In the definition of free forms, if there is no simple mathematical
definition to draw the desired form, it is called free form. The new group of space structures
possesses the following three characteristics:
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• Great variety of ideals in terms of architecture.
• The novel behavioral concepts incorporated into these structures capture how uncer-

tain forms affect the structure.
• The intricate and diverse connection geometry of these structures can create difficulties

during their construction [22].

To overcome the complex and interesting geometry of free-form spatial structures,
using a mathematical framework with graphic capabilities can be of great help. “Formex
Algebra” [23] is a suitable mathematical framework for generating forms according to their
geometric properties, and was created by Professor Nooshin and Peter Disney in 1975 [24].
“Formian 2.2” software is used to design two-dimensional and three-dimensional forms
based on Formex Algebra and Formian programming language [19].

The three articles published in the International Journal of Space Structures on “Formex
Configuration Processing” [23,25,26] are the basic documents on Formex algebra and
Formian software. These articles also provide useful information regarding methods of
creating space structure configurations. Also, in his article Space Structures and Con-
figuration Processing [27], Professor Nooshin provides useful information about space
structures, their types, and their configuration in Formex algebra. The main sources for the
design of freeform structures are two papers on Formex Formulation of Freeform Structural
Surfaces and Novational Transformations [21,28]. These studies introduce two Formex
concepts of “novation” and “pellevation” that are important to produce free forms, and
then illustrate the design process of free forms using examples. Learning the Formian
programming language is required to use Formex algebra, which can make it challenging
to utilize. Nevertheless, the implementation of computer technologies in designing spatial
structures enables architects and designers to use more accessible and user-friendly meth-
ods. Grasshopper is a parametric design tool and graphical algorithm editor that operates
in conjunction with the Rhino 3D modeling program [29]. Due to its graphical interface, it
does not need to learn more programming languages. Also, Grasshopper can interface with
many other design software and plugins that have already been created [30]. For this rea-
son, Grasshopper for Rhino 6.0 is a suitable environment for converting known coordinate
systems from Formex algebra. The combination of Formex algebra and Grasshopper’s para-
metric workflow makes it possible to easily and quickly design free-form spatial structures
in the most optimal state. The paper on Formex Algebra Adaptation into Parametric Design
Tools and Rotational Grids describes the adaptation focusing on the applied mathematical
solutions [31].

In this research, the parametric design of free-form space structures was carried out
using Grasshopper. Since most of the space structures can be obtained from a square-
on-square grid space structure, first, a two-layer square-on-square space structure with
dimensions of 10 × 10 and 220 nodes was produced as the basic form. A parametric code
was written that can assign a curve to each side of the upper and lower square perimeter to
generate a new desired form (Figure 1).

The next forms produced based on the basic form are created in two different general
states: in the first state, only the square sides of the upper layer can be changed and the
lower layer is fixed (Figure 2). In the second case, both layers change simultaneously and
parallel to each other (Figure 3). These two categories are also divided into four categories:
forms with one curved side, two curved sides, three curved sides, and, finally, four curved
sides. In addition to changing forms by curves, it is possible to create various forms by
removing nodes in different states or the deformation of nodes. The coding of these changes
was also carried out in the Launch Box plugin and applied to previously created forms
(Figures 4 and 5).
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2.2. Visual Aesthetics and Preference Test

The term “aesthetics” has its roots in the Greek word “aesthesis”, which means
sensory perception [32]. As a branch of philosophy, aesthetics is concerned with the
nature of beauty and its manifestation in art and the natural world. However, providing
a precise and comprehensive definition of aesthetics is challenging. Aesthetic awareness
encompasses various interests, feelings, ideals, tastes, perspectives, concepts, and theories.
Generally speaking, aesthetics has two components: the “emotional component” and
the “intellectual component”. The emotional component is highly subjective, while the
intellectual component is less so. The emotional component is the indefinable aspect of
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our personality that enables us to perceive an object emotionally, while the intellectual
component, as a rational aspect, allows us to understand things through reasoning by
considering their conditions, limitations, functions, characteristics, and so on [33].

Every day we judge and make decisions about aspects of the world around us based on
our internal aesthetic responses [34]. However, beauty is a relative concept. A phenomenon
may be beautiful to some people and others may not see it as beautiful. But since the human
tendency is always toward beauty, architects and designers have always been trying to
present an expression of beauty by using aesthetic criteria in their designs. Order, symmetry,
balance, diversity and contrast, repetition, simplicity, complexity, etc., are considered to
be aesthetic criteria. Also, because the matching of form and function is always of special
importance in architecture, practicality is considered one of the criteria of aesthetics. Since
space frame structures are discussed in this research, the criteria of simplicity, complexity,
and practicality, which are most related to structures and are easier to evaluate with
common sense, were selected. These criteria are defined as below in Scheme 2:
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Scheme 2. Definitions of selected aesthetic criteria [35,36].

Once a range of free-form space frame structures have been produced, it is necessary
to assess them based on expert opinions. Architects take into account visual effects and
subjective aesthetic qualities, which are challenging to quantify using a formula. However,
machine learning techniques can be utilized to teach the computer to identify connections
between various data sets, including the correlation between the forms and scores that
reflect the architect’s personal preferences. To train the system and evaluate a form, a
survey was created, and architectural experts were asked to complete it to gather training
data sets for the artificial neural network.

To prepare the questionnaire, first, a set of 130 free-form space frame structures
produced in the previous section were selected for evaluation. However, it can be a
challenging and time-consuming task to ask an expert to rate every single one of them.
Therefore, instead of asking the respondent to rate 130 forms, the forms were divided into
sixty-five categories, each category containing 6 forms (Figure 6). This method allowed
participants to focus on a smaller set of forms, reducing the cognitive load of rating a
large number of designs. Since three components of aesthetics were considered, this
questionnaire had also three categories of questions for each component. There were sixty-
five groups consisting of six forms in each category. For each category, the person was asked
to choose the desired form among six forms, and for each answer, a score of 0.33 was added
to that form. Since each form was shown equally three times (65 × 6 = 390; 390 ÷ 130 = 3),
after completing the test, each form had a score of 0, 0.33, 0.66, or 1, which indicated the
person’s preference. Each form was shown an equal number of times, ensuring that the
rating process was fair and balanced.
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Figure 6. Example of a category containing six forms in the questionnaire: (a) the basic form; (b) and
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To demonstrate the feasibility of machine learning in predicting scores at the following
stage, a questionnaire in the form of three sets of questions was given to each respondent.
In the first part, candidates were asked to choose the simplest form from their point of view,
while in the second part, they were requested to select the most intricate form instead. Then,
in the third part, the choice of the most practical form was questioned. The purpose of
conducting these three comparative tests was to simplify personal preferences to a degree
that made them easier to evaluate using common sense. If the machine learning algorithm
accurately assigns a higher score to simple forms in the first part, complex forms in the
second part, and practical forms in the third part, it proves the feasibility of the approach.

2.3. Sample and Data Collection

One hundred and forty-one architects and structural engineers answered the question-
naire, and this sample size is sufficient for this research. An examination of the participants’
profiles reveals that the proportion of women in the sample (80.86%) was significantly
greater than that of men (19.14%). The participants had a range of educational backgrounds
in architectural and structural engineering, with varying levels of familiarity with space
structures. The field of study of all participants was architectural and structural engineering
in different subfields. For the level of education, respondents with a master’s degree made
up 68.10% of the total sample, followed by 21.27% of the total sample with a bachelor’s
degree, and the remaining 10.63% had a doctorate. About 29.78% of the participants stated
that they were entirely familiar with space structures, 51.08% of the total sample had a
large amount of knowledge about space structures, and 19.14% of them had moderate
information in this field.

To collect data, the participants were asked to select their preferred form in each
category using the method mentioned in the previous section. The participants had a
time limit of 30 min to complete the questionnaire. After completing the questionnaire,
each participant’s scores for each form regarding the criteria of simplicity, complexity, and
practicality were calculated and recorded. Finally, the scores of all participants for the
130 designed structures were collected in an Excel file. These scores were the input data for
training the artificial neural network in the next stage.
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3. Artificial Neural Networks (ANNs)

ANNs are a commonly used artificial intelligence tool for modeling complex interac-
tions between inputs and outputs. ANNs are widely used in the field of machine learning
and have proven to be effective in solving complex problems such as pattern recognition,
classification, regression, and optimization [37,38]. At a high level, an ANN consists of in-
terconnected artificial neurons, also known as nodes or units. As depicted in Figure 7, these
neurons are organized into layers: an input layer, one or more hidden layers, and an output
layer. The input layer receives the raw input data, such as images, text, or numerical values.
The output layer produces the final results, which could be predictions, classifications, or
any desired output [39,40]. An artificial neuron’s learning ability is obtained by altering
the weights in line with the specified learning algorithm [41].
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ANNs can be classified into different types based on their architectural characteris-
tics and applications. Some common classifications of artificial neural networks include:
feed-forward neural networks (FNNs), Recurrent Neural Networks (RNNs), Convolutional
Neural Networks (CNNs), Radial Basis Function Networks (RBFNs), self-organizing maps
(SOMs), deep neural networks (DNNs), Modular Neural Networks, Spiking Neural Net-
works (SNNs), and Autoencoders [41,43–45]. In line with the objectives of this study, as
in [9], a feed-forward backpropagation multilayer perceptron was used as a model for the
basal artificial neural network. Pixel-based CNN and voxel-based three-dimensional CNN,
among other neural networks, are not well-suited for learning free-form space structures.
A two-dimensional representation is inadequate for these structures, and only a three-
dimensional representation can effectively describe them. Each network layer is made up
of nodes (neurons) that communicate with neurons in the following layers via synaptic
weights that can be adjusted. The signal flow in feed-forward networks is strictly in a feed-
forward manner, from input to output nodes. The data processing can span many units,
but there are no feedback relationships [39]. In supervised learning networks, like MLP,
knowledge is acquired by training the system with specified input and output data [46].
The estimation error, which refers to the disparity between the actual and predicted output,
is fed back into the network and employed to modify synaptic weights, thereby reducing
and eliminating estimation errors [39].

To use a neural network, the first step is to convert the data into a digitally understand-
able format for the network. In this study, the coordinates of the points of the structure can
be used to build an understandable free-form space structure for the network. Considering
that the dimensions of the structures are chosen as 10 × 10, each structure consists of
220 nodes, and this means that for each structure, 660 coordinate numbers (3 × 220) will
be entered into each network. The target output data related to each structure in each
network only contain a real number that shows the score related to the desired component
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(simplicity, complexity, and practicality) for a form. Therefore, the input and target output
of the network for each form will be according to Relation (1), as below:

Input (I)→ Output (O)
I = (x1, y1, z1, x2, y2, z2, . . ., x220, y220, z220)

O = (o1, o2, o3)
(1)

In relationship (1), x1 to z220 contains the coordinates of 220 points of each form, and
o1 to o3 contains 3 aesthetic criteria. In network training, instead of one 220 × 3 network,
three 220 × 1 networks have been used for ease of work. In fact, there is a network for each
aesthetic component.

4. ANN Parameters Selection

The ANN model is complicated, and various parameters must be established for
the model to be accurate. In general, there are no specific rules for determining and
adjusting the parameters of the artificial neural network model. The crucial parameters in
determining the effectiveness of an artificial neural network model include determining the
number of hidden layers, the number of neurons within each hidden layer, and selecting
the appropriate activation functions for the hidden and output layers. One of the paper’s
key goals is to outline the process of choosing neural network parameters for these types
of investigations and to make suggestions based on these criteria. The selected options of
these parameters, as well as how to select them for all three artificial neural networks, will
be analyzed in detail.

4.1. The Number of Hidden Layers

The number of hidden layers required in an artificial neural network is determined
by the complexity of the problem being tackled. More complicated neural networks allow
for more intricate problem modeling, but they come with a higher computing cost and
require more data to train and test. Artificial neural networks can be classified as either
shallow, with a single hidden layer, or deep, with two or more hidden layers, based on the
number of hidden layers they contain [47]. Deep neural networks are particularly effective
in addressing complex challenges that involve vast amounts of unstructured and intricate
data. However, according to Negnevitsky’s 2011 research, each continuous function may
be modeled just by one hidden layer, and discontinuous functions can be modeled by using
two hidden layers [48]. Therefore, multilayer perceptron-based neural networks with more
than two hidden layers are rarely utilized for typical structured datasets. This is because
more complex models necessitate more data for the purpose of training and testing, and
they do not necessarily produce superior outcomes [38]. Using the TensorFlow library,
three artificial neural networks were created for each component, one with one hidden
layer, the other with two hidden layers, and the last network with three hidden layers,
following the study’s objectives and analysis of the number of hidden layers selected. For
all three models, the other parameters were adjusted to the same level. To enhance the
effectiveness of the training, all input and output data were normalized within the [1, 0]
range. To prevent the issue of overfitting, a training set consisting of 70% of the sampled
data, a validating set consisting of 10% of the sampled data, and a testing set made up
of the remaining 20% of the sampled data were employed. The mean square error (MSE)
was determined as the error function to assess the performance of network models, and
it is provided in Tables 1–3 along with the mean training time for all models. The target
networks were optimized using the Adam algorithm. The value of learning rate was set to
0.001 and the value of epochs was also considered to be 50.
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Table 1. Mean square error values for the simplicity neural network for different values of hidden layers.

ANN Model MSE-Testing MSE-Validating MSE-Training Training Time (s)

One hidden layer 0.0740 0.0559 0.0665 12.5
Two hidden layers 0.0331 0.0380 0.0297 17.5
Three hidden layers 0.0740 0.0501 0.0665 30.8

Table 2. Mean square error values for the complexity neural network for different values of hidden layers.

ANN Model MSE-Testing MSE-Validating MSE-Training Training Time (s)

One hidden layer 0.0193 0.0193 0.0142 9.3
Two hidden layers 0.0191 0.0182 0.0189 11.2
Three hidden layers 0.0197 0.0171 0.0177 12.3

Table 3. Mean square error values for the practicality neural network for different values of hidden layers.

ANN Model MSE-Testing MSE-Validating MSE-Training Training Time (s)

One hidden layer 0.0158 0.0168 0.0060 9.8
Two hidden layers 0.0115 0.0140 0.0108 9.9
Three hidden layers 0.0117 0.0123 0.0106 8.5

As can be easily seen in Table 1, for the neural network related to the simplicity
component, the model with two hidden layers has lower MSE values for training, validation,
and testing. Based on the sample size and complexity of the research model, it can be
inferred that for a trained network based on data related to the simplicity component, the
inclusion of two hidden layers leads to better network performance and is thus suggested.
According to Table 2, it can be concluded that the neural network related to the complexity
component has a lower error rate and better performance in the case where it has two
hidden layers.

According to Table 3, it can be seen that this network, like the previous two networks,
in a state with two hidden layers, despite the high training time, provides the lowest error
and the best performance. The weakest performance of the network is related to the case
where the network has a hidden layer. When the error rate of the testing and validation
sets is higher than that of the training set, it is indicative of overfitting in this scenario.

4.2. The Number of Hidden Neurons

Selecting the number of neurons in the input and output layers is a straightforward
task since these values correspond to the count of the independent and dependent variables
(predictors and outputs). On the other hand, determining the appropriate number of
neurons in the hidden layer can be difficult as there may be multiple factors to consider,
such as the neural network architecture (including the number of hidden layers), sample
size, neural network training algorithms, or the selected activation function [49]. As there
is no universally accepted method for determining this parameter, the typical approach
to assess the network’s performance is to modify the number of hidden neurons through
trial and error. The number of neurons in the hidden layer typically has a significant
impact on the predictive accuracy of the neural network model, but it may also influence
the training speed of the artificial neural network model: in theory, a greater number of
hidden neurons should result in more accurate models, but this is only true up to a certain
point, beyond which the computational load may increase dramatically [48]. Overfitting is
another significant concern. If there are too many hidden neurons, the ANN model may
recall all of the training examples and lose its ability to generalize and generate accurate
predictions when dealing with data that were not included in the training set. In 2021,
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Kalinić et al. [38] introduced a formula (Relation (2)) to estimate the optimal number of
hidden neurons in their study, which is as follows:

The appropriate number of hidden neurons = [Half of the input data] + 1 (2)

In this study, we have 660 input data for each structure in each network. Therefore,
according to the aforementioned formula, 331 hidden neurons may be an appropriate
number for the current neural network. But since this relationship is only for approximate
prediction, in addition to using the number obtained from this relationship, the trial-and-
error method has also been used with other values so that we can compare the execution
related to the predicted number with the rest of the executions. The number of hidden
neurons ranged from 5 to 1000, while the other parameters of the neural network remained
constant. Subsequently, ten runs were conducted for each neural network, employing
a training set that comprised 90% of the sampled data and a test set consisting of the
remaining 10% of the sampled data. Tables 4–6 and Figures 8–10 illustrate the average MSE
values for training, validation and testing, as well as the average training time, for each
network. As shown in Figure 8, the average MSE values for all three training, validation,
and testing sets have a minimum value for 331 hidden neurons. Also, all three sets are
very close to each other, which prevents overfitting. As a result, this value was established
as the ultimate parameter. Additionally, as depicted in Figure 8, it is apparent that the
training time increases with the rise in the number of hidden neurons and, consequently,
the model’s complexity.

Table 4. Mean square error values for the simplicity neural network for different values of hid-
den neurons.

The Number of
Hidden Neurons 5 10 15 25 50 100 200 331 500 1000

MSE-testing 0.0413 0.0367 0.0417 0.0449 0.0357 0.0426 0.0383 0.0322 0.0336 0.0387
MSE- validating 0.0398 0.0378 0.0477 0.0458 0.0417 0.0438 0.0369 0.0295 0.0388 0.0400

MSE-training 0.0412 0.0407 0.0425 0.0394 0.0288 0.0492 0.0315 0.0299 0.0224 0.0400
Training time 8.4 9.8 10.5 10.9 10.6 12.2 12.9 12.3 13.4 18.5

Table 5. Mean square error values for the complexity neural network for different values of hid-
den neurons.

The Number of
Hidden Neurons 5 10 15 25 50 100 200 331 500 1000

MSE-testing 0.0453 0.0185 0.0169 0.0189 0.0185 0.0185 0.0194 0.0187 0.0242 0.0369
MSE-validating 0.0530 0.0180 0.0179 0.0198 0.0212 0.0112 0.0133 0.0185 0.0246 0.0261
MSE-training 0.0375 0.0198 0.0158 0.0192 0.0260 0.0234 0.0139 0.0177 0.0246 0.0401
Training time 12.1 11.3 7.1 9.2 9.4 9.7 9.5 10.5 13.6 16.1

Table 6. Mean square error values for the practicality neural network for different values of hid-
den neurons.

The Number of
Hidden Neurons 5 10 15 25 50 100 200 331 500 1000

MSE-testing 0.0124 0.0140 0.0115 0.0160 0.0168 0.0197 0.0249 0.0251 0.0353 0.0474
MSE- validating 0.0137 0.0181 0.0140 0.0193 0.0183 0.0126 0.0154 0.0122 0.0303 0.0309

MSE-training 0.0105 0.0167 0.0108 0.0135 0.0186 0.0188 0.0266 0.0195 0.0369 0.0383
Training time 7.9 8.2 9.9 10.5 10.5 10.5 11.3 11.2 16.8 16.9
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According to Table 5, unlike the simplicity network, Relation (2) does not apply. This
network has the lowest error in the case where the number of hidden neurons is 15. As
shown in Figure 9, with the increase in the number of hidden neurons up to 15, the training
time of the network is high, then at the number of 15, the learning time is at a minimum
and after that, it increases again. Therefore, based on the low values of the average MSE
for all three sets (training, validation, and testing), as well as the training time, it can be
inferred that the network performs optimally when it has 15 hidden neurons.

Figure 10 shows that the average MSE values for each training and testing set reach
their minimum value when the network has 15 hidden neurons. Furthermore, all three
sets are in close proximity to one another, which helps prevent overfitting. As a result, this
value was established as the final parameter. Additionally, as demonstrated in Figure 10,
the training time increases with the number of hidden neurons and, consequently, the
model’s complexity. Additionally, a sudden increase is evident in both graphs when the
number of neurons increases from 331 to 500. This leap indicates that a number of neurons
above 500 are disproportionate for this network.

4.3. Activation Functions

In a neural network, every neuron computes the weighted sum of input signals, which
is then transformed into an output signal via the activation function. While there are
numerous types of activation functions in theory, only a limited number of them have
practical applications [48]. The unit-step transfer activation function is the most basic and is
frequently utilized in classification and pattern recognition problems, but it is not applicable
to the issues investigated in this study. The sigmoid function is one of the most prevalent
activation functions in feedforward networks, but this research also tested and compared
two other activation functions: the ReLu function and the hyperbolic tangent function
(Table 7). Since there are three computational layers for neurons (two hidden layers and
one output layer), it is necessary to define a distinct activation function for all neurons
within each layer. As the ReLu and hyperbolic tangent functions can only be applied in the
hidden layers, while the sigmoid function is always employed in the output layer, there
are nine combinations of training, testing, and validation sets for each network. Ten runs
were once again conducted for each combination, with 90% of the sampled data used for
training the neural network and the remaining 10% for testing. In the following, we will
examine the average MSE values for different combinations of activation functions for all
three components. For the simplicity neural network, the average MSE values for diverse
combinations of activation functions in the hidden and output layers are obtained, and
only the test results are presented in Table 8. The training time for each combination is also
included in Table 9. The minimum mean square error value for the test set is observed when
the activation function of the first layer is ReLu and the second layer is hyperbolic tangent,
and it is lower than the mean square error value for the test set of other combinations.
Furthermore, the mean square error values for all three sets are close to one another, which
helps prevent overfitting. As a result, in this network, the ReLu and hyperbolic tangent
functions were used for the first and second hidden layers, respectively, while the sigmoid
function was utilized for the output layer.

Table 7. Equations related to activation functions.

Function Equation

Sigmoid f(x) = 1
1+e−x

ReLu f(x) = x+ = max(0, x)
Hyperbolic Tangent f(x) = tanh(x) = 2

1+e−2x − 1
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Table 8. Mean MSE for the testing set of the simplicity network for different combinations of
activation functions.

First Layer
Second Layer Sigmoid ReLu Hyperbolic Tangent

Sigmoid 0.0377 0.0398 0.0443
ReLu 0.0298 0.0322 0.0216

Hyperbolic Tangent 0.0299 0.0297 0.0362

Table 9. Training time for different combinations of simplicity network activation functions.

First Layer
Second Layer Sigmoid ReLu Hyperbolic Tangent

Sigmoid 10.1 10.1 10.9
ReLu 14.8 12.3 10.6

Hyperbolic Tangent 14.1 12.4 13.6

The average MSE values for various combinations of activation functions in the hidden
and output layers for the complexity component neural network are shown in Table 10.
The training time for each combination is also presented in Table 11. The minimum mean
square error value for the test set is observed when the activation function of the first layer
is ReLu and the second layer is sigmoid, and it is lower than the mean square error value
for the test set of other combinations. Additionally, in this combination, the mean square
error values for all three sets are close to one another, which helps prevent overfitting. As a
result, in this study, the ReLu and sigmoid functions were employed for the first and second
hidden layers, respectively, while the sigmoid function was utilized for the output layer.

Table 10. Mean MSE for the testing set of the complexity network for different combinations of
activation functions.

First Layer
Second Layer Sigmoid ReLu Hyperbolic Tangent

Sigmoid 0.0169 0.0202 0.0181
ReLu 0.0160 0.0240 0.0179

Hyperbolic Tangent 0.0176 0.0201 0.0185

Table 11. Training time for different combinations of complexity network activation functions.

First Layer
Second Layer Sigmoid ReLu Hyperbolic Tangent

Sigmoid 7.1 8.7 8.7
ReLu 8.8 12.9 8.3

Hyperbolic Tangent 10.4 9.2 9.5

The average MSE values for various combinations of activation functions in the hidden
and output layers for the practicality neural network are shown in Table 12. The training
time for each combination is also presented in Table 13. The minimum mean square error
value for the test sets is observed when the activation function of both layers is sigmoid,
and it is lower than the mean square error value for other combinations. Additionally, in
this combination, the mean square error values for all three sets are close to one another,
which helps prevent overfitting. Consequently, in this network, the sigmoid function is
utilized for both the hidden layer and the output layer.
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Table 12. Mean MSE for the testing set of the practicality network for different combinations of
activation functions.

First Layer
Second Layer Sigmoid ReLu Hyperbolic Tangent

Sigmoid 0.0115 0.0161 0.0150
ReLu 0.0183 0.0259 0.0258

Hyperbolic Tangent 0.0209 0.0300 0.0340

Table 13. Training time for different combinations of practicality network activation functions.

First Layer
Second Layer Sigmoid ReLu Hyperbolic Tangent

Sigmoid 9.9 9.1 13.5
ReLu 10.6 8.5 10.5

Hyperbolic Tangent 10.3 14.6 8.1

4.4. Other Parameters and Final Specification of Neural Networks

The neural network training process also necessitates the adjustment of several other
parameters which can have a significant impact on the speed and accuracy of the process.
These parameters include the optimization method, loss function, learning rate, and the
number of epochs. In this research, the Adam optimization algorithm, mean square error
loss function, learning rate 0.001, and 50 epochs were used. Finally, after finding the most
optimal state of each neural network, the final specifications of all networks are given in
Table 14.

Table 14. Final specifications of artificial neural networks.

ANN
Hidden
Layers

Hidden
Neurons

Optimization
Algorithm

Activation Functions Loss
Function

Learning
Rate

Epochs
First Layer Second Layer

Simplicity 2 331 Adam Hyperbolic
Tangent ReLu MSE 0.001 50

Complexity 2 15 Adam Sigmoid ReLu MSE 0.001 50

Practicality 2 15 Adam Sigmoid Sigmoid MSE 0.001 50

5. Discussion and Results

The primary and most critical objective of this study was to address the challenge of
assessing the aesthetic aspect of free-form space structures. By utilizing machine learning
algorithms and expert preference test results, the researchers aimed to develop a method
that could quantitatively evaluate the qualitative characteristics associated with aesthetics.
The results of the study have significant implications and shed light on the assessment of
the aesthetic aspect of these complex structures.

Through the successful development of a method that combines machine learning
algorithms and expert preference test results, the study showcased a breakthrough in the
evaluation of aesthetic qualities. By leveraging the power of machine learning, it became
possible to analyze and quantify subjective aesthetic preferences, providing a means to
objectively assess the aesthetic appeal of free-form space structures.

The findings of the study hold crucial insights for the field of architectural aesthetics.
They illustrate that it is indeed feasible to evaluate qualitative characteristics, such as
aesthetics, in a quantitative manner. This represents a significant advancement, as it
bridges the gap between subjective perception and objective assessment. The successful
utilization of machine learning algorithms and expert preference test results demonstrates
the potential for developing reliable and accurate methods to assess the aesthetic aspect of
architectural designs.
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The implications of this study extend beyond the field of architecture. By showcasing
the possibility of quantitatively evaluating aesthetic characteristics, the research contributes
to a broader understanding of how machine learning can be applied to subjective domains.
This has implications for various industries where subjective evaluations play a crucial role,
such as product design, marketing, and user experience.

Overall, the study’s results highlight the significance of combining machine learning
algorithms and expert preferences in assessing the aesthetic aspect of free-form space struc-
tures. The successful development of a method that enables the quantitative evaluation of
qualitative characteristics related to aesthetics opens new avenues for objective assessment
in the field of architecture and beyond.

Another significant outcome of the study was the detailed analysis and explanation of
the parameter settings for the three artificial neural networks used in the research. This
comprehensive exploration of the network configurations added novelty and significance
to the article, as no previous studies had delved into such depth. The findings consistently
indicated that shallow networks with only two hidden layers achieved the best results
across all three networks. This observation suggests that a simpler network architecture
can effectively capture the aesthetic aspects of free-form space structures.

Following the configuration of the neural networks, their performance was thoroughly
tested to assess their ability to evaluate the aesthetic qualities of free-form space structures.
For this purpose, four new structures were specifically created and inputted into the
networks for evaluation. The outcomes of this assessment are presented in Table 15,
providing a clear overview of the scores assigned by each network to each structure.

Each neural network, having learned from the preference test data, assigned a score
ranging between 0 and 1 to each evaluated structure. These scores represented the average
potential ratings given by the experts for each specific structure. The assignment of scores
by the networks allows architects and designers to gain an estimate of the aesthetic quality
associated with a particular structure. This quantitative estimation provides valuable
insights that can inform architectural decision-making processes.

The inclusion of Table 15, which presents the assessment outcomes and corresponding
aesthetic scores assigned by each network, greatly enhances the value and utility of your
research findings. This table serves as a vital tool for architects and designers, providing
them with a comprehensive and comparative analysis of the aesthetic qualities associated
with various free-form space structures.

By presenting the aesthetic scores in a tabulated format, the research offers a clear
and structured overview of the subjective assessments conducted by each network. This
enables architects and designers to easily identify patterns, trends, and variations in the
perceived aesthetic appeal of different structures. They can readily compare and contrast
the scores assigned to specific design elements, such as curvature, symmetry, proportion,
and spatial composition, among others.

The availability of this comprehensive comparative analysis empowers architects and
designers to make informed decisions during the design process. They can refer to the
aesthetic scores provided by the model presented in this research to gain valuable insights
into the visual appeal and artistic merit of various design alternatives. Armed with this
knowledge, architects and designers can evaluate the potential impact of different design
choices on the overall aesthetic experience and make conscious decisions that align with
their artistic vision and project objectives.

Furthermore, the inclusion of these aesthetic scores in the research findings not only
benefits individual architects and designers but also contributes to the broader architectural
community. The availability of such empirical data and comparative analysis serves as a
valuable resource for future research, enabling researchers to build upon your work and
delve deeper into the understanding of aesthetics in free-form space structures. It fosters
a more evidence-based approach to architectural design, allowing the advancement of
aesthetic theories and the development of innovative design methodologies.
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Table 15. Artificial neural networks scores given to the new input structures.

Free-Form Structures

Networks

Simplicity
Score

Complexity
Score

Practicality
Score
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The presentation of the assessment outcomes in Table 15 significantly enhances the
practical applicability of the research. Architects and designers can leverage these aesthetic
scores to gain a deeper understanding of the aesthetic appeal of different free-form space
structures, facilitating more informed and deliberate design decisions. Moreover, the
availability of this comparative analysis contributes to the advancement of the architectural
field by providing a valuable resource for further research and exploration of aesthetic
principles in design.

Overall, the research findings not only expand our knowledge of aesthetics in free-
form space structures but also have the potential to shape the future of architectural design,
fostering the creation of visually captivating and artistically meaningful built environments.

In summary, the results of the study validate the developed method’s effectiveness in
assessing the aesthetic aspect of free-form space structures. The preference-test-trained neu-
ral networks successfully assigned scores to evaluate the aesthetic quality of the structures,
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providing a quantitative estimate that can assist architects in making informed decisions.
The findings also emphasize the importance of network architecture, highlighting that
shallow networks with two hidden layers consistently achieved the best results across all
three networks. These results contribute to advancing the field of architectural aesthetics
and provide practical guidance for professionals in the industry.

6. Conclusions, Limitations, and Future Works

This study presents a simple but powerful artificial intelligence model for evaluating
the aesthetic value of free-form space frame structures. The well-defined data structure of
these structures enables the artificial neural network to easily comprehend their features
and evaluate their form. Conversely, the artificial neural network can learn the design
priorities of experts through the preference test administered to them. As a result, this
method enables the assessment of the aesthetic quality of designed forms in the three
components of simplicity, complexity, and practicality based on the preferences of expert
designers. The results indicate that the proposed model can evaluate the qualitative concept
of aesthetics. Additionally, the current study presents the step-by-step setup method of an
artificial neural network model and the selection of its parameters in the field of aesthetic
evaluation. However, the research also has limitations. This research includes a limited
number of aesthetic components (simplicity, complexity, and practicality). In future works,
more components, such as order, symmetry, and coordination, can be investigated. In
addition, there are two other limitations regarding the artificial neural network. First, in
this study, only a multilayer perceptron is used as an ANN model. In future works, other
types of ANNs can be used and the final results can be compared with each other. Second,
in this article, only three activation functions, which are the most important, have been
used. Indeed, other well-known activation functions can be used in the hidden and output
layers, and the outcomes can be compared to the results obtained in this study. This can
help to determine which activation functions are most effective for assessing the aesthetic
quality of free-form space structures. Finally, the effect of other parameters of the network,
such as epoch, learning rate, and optimization algorithm, on the learning speed of the
network and its accuracy could be investigated.
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