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Abstract: Damage identification plays an important role in enhancing resilience by facilitating precise
detection and assessment of structural impairments, thereby strengthening the resilience of critical
infrastructure. A current challenge of vibration-based damage detection methods is the difficulty of
enhancing the precision of the detection results. This problem can be approached through improving
the noise reduction performance of algorithms. A novel method based partially on the errors-in-
variables (EIV) model and its total least-squares (LS) algorithm is proposed in this study. Compared
with a classical damage detection approach involving adoption of auto-regressive (AR) models and
the least-squares (LS) method, the proposed method accounts for all the observation errors as well
as the relationships between them, especially in an elevated level of noise, which leads to a better
accuracy. Accordingly, a shaking table test and its corresponding finite element simulation of a
full-scale web steel structure were conducted. The acceleration time-series output data of the model
after suffering from different seismic intensities were used to identify damage using the presented
detection method. The response and identification results of the experiment and the finite element
analysis are consistent. The finding of this paper indicated that the presented approach is capable of
detecting damage with a higher accuracy, especially when the signal noise is high.

Keywords: structure damage identification; autoregressive model; shaking table test; total least-
squares; web steel structure

1. Introduction

Structures are subjected to diverse types of adverse factors such as earthquakes,
hurricanes, explosions, and overcapacity loads, leading to evitable damages [1]. Damage
identification is crucial for enhancing resilience through timely detection and assessment
of impairments in systems [2]. By integrating advanced sensing technologies, data analysis,
and decision support systems, people can make informed decisions, optimize resource
allocation, and enhance the resilience of critical infrastructure in the face of unforeseen
events or operational challenges [3,4]. Aiming at enhancing structural resilience, many
techniques have been used to study structural performance after damage. Over the past
several decades, damage detection methods such as the finite difference method, finite
element (FE) simulations and analysis, and experiments such as shaking table model
tests [5–8] have been reported in the literature. Research on the shaking table test and the
corresponding FE analysis has reported on the dynamic responses and seismic performance
of structures [9]. Based on these results, the engineering community has also explored
damage detection methods [5], which have been used to deal with observational and output
data such as displacements, accelerations, and the natural frequencies of shaking table tests
and FE simulations.
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The vibration-based damage evaluation method has received considerable attention
for its noninvasive and uncomplicated characteristics [10,11], especially popular in the
shaking table test model. The mechanism of these approaches involves the observation of
the structural mode, frequencies, or time series output over time, the extraction of sensitive
damage features, and the evaluation of structural damages [12]. Vibration-based damage
detection can be divided into frequency-domain-based methods and time-domain-based
methods and their combination. As for frequency-domain based methods, He et al. [13]
carried out shaking table tests on two concrete shear wall model structures and the test
of complete uniaxial compressive constitutive curves of concrete. Moaveni et al. [14] con-
ducted a full-scale shaking table test of a reinforced concrete building section and found
that three damage identification methods used in the experiment did not exactly coincide.
As for time-domain-based methods, Li et al. [15] studied the performance of a high-rise
building through the shaking table test and its corresponding FE simulations. The damage
levels and distributions of the model building were successfully identified based on the
observations in the experiment. In addition, some research investigated effective damage
detection methods including vibration-based methods, and they have been successfully
applied to detecting and identifying the damages in structures constructed from vari-
ous types of materials, such as reinforced concrete [16], steel [17], and composites [18].
Morita et al. [19] detected and estimated the damage of steel frames through a shaking
table test by two identification methods.

One of the most commonly used time-domain-based techniques, a method based
on the auto-regressive (AR) model, has also been applied in a variety of engineering
applications [20]. The AR model can account for correlations between the current time
parameter with its predecessors in the time series [21]. In this model, the output variable
depends linearly on its previous values and a stochastic term, which means errors only exist
in the current observations. Damage levels in a structure can be identified by AR coefficients
between the undamaged structure and the structures to be detected [22]. The famous least-
squares (LS) method is one of the most commonly used methods for estimating parameters
such as the structural damage indicators in the AR model [23].

However, some research has pointed out that the classical AR model ignored the
errors of previous observations, which introduced errors in the evaluated AR parameters,
and led to biased results [24]. Zeng [25] proved and quantified the negligible differences
in the estimated parameters caused by the LS solution and the classical AR model. To
deal with this defect, a large variety of bias-compensated LS methods have recently been
proposed in the past few years. For instance, Diversi et al. [26] proposed a new and effective
identification method considering the AR model with additive noise. Esfandiari et al. [27]
presented four new methods for estimating the parameters of an autoregressive (AR)
process based on observations corrupted by white noise. One can notice that the AR model
with noise is actually the well-known errors-in-variables (EIV) model in the field of geodesic
surveys [28]. Among the various solutions for the EIV model, total least-squares (TLS)-
based algorithms indicate better accuracy compared with the classical LS solution [29].
Hence, new parameter estimation methods based on the AR model plus noise, based on
the extensive achievements in geodesic surveys, may potentially be applied to the field of
structural damage detection.

To overcome the current limitations of damage identification results based on AR
models, which are greatly affected by environmental interference and prove ineffective in
practical cases, this paper aims to propose a high anti-noise structural damage identification
method that considers all errors in observations. Furthermore, the application effects of
this method in real cases are thoroughly examined. In the proposed structural damage
detection method, a TLS solution based partially on EIV model theory is applied to identify
the parameters of the AR model with noise. A full-scale shaking table test of a two-story
web steel structure is conducted to study its seismic performance. The proposed damage
detection method is used to further identify the damage levels of the model under different
earthquake intensities. The structure of this paper can be listed as follows. In Section 2, an
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AR model with noise and its parameter estimation method are introduced. This method
considers not only the noise in current observations but also in past observations, and a
sensitive damage indicator is also adopted to represent damage levels. In Section 3, the
performance of the estimation method is analyzed based on a mathematical simulation.
Section 4 introduces the shaking table test and the corresponding FE simulation of the web
steel structure. The results of the experiment, FE simulation, and damage detection are
presented in Section 5. This study not only indicates that the light steel structure performs
well in earthquakes, but also proves that the proposed damage identification method is
effective in practice.

2. LS Adjustment for the AR Model with Additive Noise
2.1. AR Model with Additive Noise

A classical AR model of order m is described by:

xt = β1xt−1 + β2xt−2 + . . . + βmxt−m + ext, (1)

where xt is the discrete-time signal of the acceleration responses; ext is the possible ran-
dom noise in xt; m is the model’s order, it varies from 0 to (t − 1); βi(i = 1, 2, · · · , m) is
unknown coefficient in the AR model and it is calculated by corresponding algorithms. In
a practice conditions, when a structure operates under normal conditions, the noise ext can
be assumed as the famous Gaussian white noise, this noise has a zero-mean and unknown
variance [30].

In fact, the left term xt of the model can be seen as the sum of the two terms on the right.
The first term considers xt−1 to xt−m with unknown coefficients, while the second term
represents the noise affection. Denote y = [xt, xt−1, · · · , xt−m+1]

T, β= [β1, β2, · · · , βm]
T,

and ey = [ext, ex(t−1), · · · , ex(t−m+1)]
T. The AR model can be represented as:

y =


xt

xt−1
...

xt−n+1

 =


xt−1, xt−2, · · · , xt−m

xt−2, xt−3, · · · , xt−m−1
...

xt−n, xt−n−1, · · · , xt−n+1−m




β1
β2
...

βm

+


eyt

ey(t−1)
...

ey(t−n+1)

 = Aβ+ ey, (2)

where ey is the error corresponding to y. Since xt is obtained by observation in practice,
then vector y as well as the matrix A should contain errors. In this regard, the existing
errors in matrix A are neglected as a simplification in the classical AR model. However,
errors should be added to matrix A in Equation (2), represented by EA. And the AR model
can be rewritten as:

y=(A−EA)β+ey. (3)

subject to 
E(e) = 0, D(e) = σ2

0 W−1

W=
[

Wy WyA
WAy ω

]
, (4)

where Wy andω are diagonal weight matrices of y and a, respectively. Here, a = vec(A),
which is the vector of putting the elements of A into a vector one column after another;
ea = vec (EA) and e = [ey, ea]

T.
Equation (4) is the well-known EIV model. Notice that in a special case when the matrix

A contains no errors (EA = 0), then the model is the classical AR model in Equation (2) with
only noise ey. By comparing Equations (2) and (3), we can observe that Equation (3) includes
an error term, EA, corresponding to the matrix A. EA represents all the errors present in the
elements of matrix A. Since the elements of A are the previous observations, it is certain that
they would contain errors caused by various factors such as manual operations, machine
precision, and environmental influences. However, Equation (2) dismisses these errors.
Consequently, these errors, combined with the algorithm based on Equation (2), can result
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in inaccuracies in the calculated coefficients. Particularly in situations with high noise levels,
neglecting EA can lead to significant errors in parameter estimation, causing substantial
deviations in the identification factor from the actual scenario.

As mentioned in the introduction, studies of the EIV model have been quite popular in
the field of geodesic surveys and a lot of valuable results have already been reported. An ex-
tended, more general, EIV model called the partial EIV model proposed by Xu et al. [31,32]
have been proposed. Not all the elements in the design matrix A are random in the partial
EIV model. This model is represented as follows: y =

(
βT ⊗ In

)(
h + B

¯
a
)
+ ey

a=
¯
a + ea

, (5)

In Equation (5)
(

h + B
¯
a
)
= vec(A − EA); h is a nm × 1 deterministic constant vector

whose elements are composed of non-random elements of vec (A−EA); ⊗ is the symbol of

the Kronecker product;
¯
a is a vector with the size of t × 1, and with independent random

entries in the design matrix A, it is also the true value of a; B is a given matrix with the size

of nt × m, it depends on random element numbers in the matrix A; and B
¯
a is a vector that

represents the random component.
It is clear that the AR model with additive noise is a special case of the partial EIV

model. When t = nm and h = 0, Equation (5) reduces to Equation (3), which is shown
as follows:

y =
(
βT ⊗ In

)
Ba + ey= (A − EA)β+ ey. (6)

The observations utilized for damage detection can be acquired from the same types
of time-series. For example, accelerations are obtained by the same equipment in the same
testing sites. Hence, the diagonal weight matrix W in Equation (4) is assumed as the unit
matrix. By evaluating the unknown vector β of the partial EIV model, the coefficients of
the AR model with additive noise can be obtained.

2.2. Existing TLS Solutions for the EIV Model

The solution for Equation (6) can be described as follows. Firstly, assuming that ea and
ey are stochastically independent, that is,

cov(ey, ea) = 0, (7)

W=
[

Wy WyA
WAy ω

]
=

[
Wy 0
0 ω

]
. (8)

The TLS solution is,

ˆ̄
a =

(
ω+ ST

βWSβ

)−1
{
ωa − ST

βW

(
m

∑
i=1

hiβ̂i

)
+ ST

βWy

}
, (9)

(Nh + NB + NBh + NhB)β̂ = µh + µB, (10)

where µh = γhWy, µB = γBWy, and h = [h1, h2, . . . , hm]
T, B = [B1, B2, · · · , Bm]

T,

γB =

[
ˆ̄
a

T

BT
1 ,

ˆ̄
a

T

BT
2 , · · · ,

ˆ̄
a

T

BT
m

]T

, Sβ =
m
∑

i=1
Biβ̂i =

(
ˆ̄
β⊗ In

)
B, γh =

[
hT

1 , hT
2 , · · ·hT

m

]T
.
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Nh,NB,NBh,NhB are m × m matrices, for i, j = 1, 2, · · · , m, these matrices are, respectively,
given by the following: 

Nh(i, j) = hTWhj

NB(i, j) =
ˆ̄
a

T

BT
i WBj

ˆ̄
a

NBh(i, j) =
ˆ̄
a

T

BT
i Whj

NhB(i, j) = hj
TWBj

ˆ̄
a

. (11)

Based on this solution, an optimistic solution for the partial EIV model can be consid-
ered as an optimization problem. Thus, the cost function is rewritten as follows:

min : S(
¯
a ,β) = (

¯
a − a)

T
ω(

¯
a − a) + (

¯
Aβ− y)

T

W(
¯
Aβ− y). (12)

Finally, the solution is as follows:

β̂ =

 ˆ̄
A

T

W
ˆ̄
A

−1
ˆ̄
A

T

Wy, (13)

ˆ̄
a = a +ω−1ST

βE−1(y − Aβ̂
)
. (14)

where E = W−1 +Sβω
−1ST

β . The final solution can be obtained through an iterative process.
The new solution may be more concise and straightforward compared to formulas (9) and
(10). Specifically, the alternative approach is simpler and can be processed more efficiently
when the number of independent random elements in the design matrix A is considerably
larger than the number of measurements.

2.3. TLS Solution for the Modified AR Model

It is clear that in the AR model plus noise, the same elements occur in EA and ey,
which means that they should be not stochastically independent. Thus, simply assuming
W = diag(Wy,ω) is not reasonable. This may lead to the solution above (Equations (13)
and (14)) not being able to be used directly. In this work, this solution is still used, named
as TLSp. The errors of xi in the ey are not assumed to be the same as the errors of xi in
the EA, i = (t − n + 1, · · · , t). That is, eyi is not always the same as ei. Then, the solution
above (Equations (13) and (14)) can be used for solving the AR model plus noise. Although
eyi should be the same as ei in true cases, the actual value of errors in xi is unknown.
Thus eyi and ei may be closer to true errors. In this regard, it is more appropriate to
assume that eyi and ei are not the same, and we should estimate them independently rather
than disregarding these errors in matrix A. Under these assumptions, the TLSp parameter
estimation steps of the AR model with additive noise are shown as follows,

1. Given A and y, W = I(n+1)m, h = 0;

2. Initialize
ˆ̄
a = a;

3. Compute β̂ by Equation (13);

4. Compute
ˆ̄
a by Equation (14) based on the obtained β̂ in Step 3.

5. Given a predetermined tolerable error value, if the errors between
ˆ̄
a and β̂ are within

the given value, terminate the estimation. Otherwise, go to Step 3.

The AIC criterion is used in this paper to determine the optimal order m of the AR
model, formulated as [33]:

AIC(n) = ln σ̂2
a(n) + 2n/N (15)
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where σ̂2
a is the estimated variance of the residual errors of order n. N is the total number

of samples.

2.4. Damage Detection Indicator

After obtaining the parameter β of the AR model, a damage indicator can be intro-
duced to indicate the damage degree of the structure. The differences in the indicators
between β in the healthy conditions with those of the damaged conditions cannot be mea-
sured simply by visual inspection, especially where numerous elements exist in β. In this
paper, the structural damages are represented by the ratio between the Euclidean distance
of the undamaged βwith the damaged β. The calculation steps are clarified as follows:

1 The obtained response acceleration time-series data are divided into two parts, i.e.,
part A0 and part B0, where A0 is used as the baseline data and B0 serves as the
unknown data to be estimated when there is damage to the structure.

2 Estimating βA0= [βA0,1, βA0,2, · · · , βA0,m]
T and βB0= [βB0,1, βB0,2, · · · , βB0,m]

T through
Equations (12) and (13). The square of the Euclidean distance between βA0 with βB0
is calculated as:

D0 =
m

∑
j=1

[(βB0,j − βA0,j)]
2. (16)

3 Estimating the βi= [αi1, αi2, · · · , αim]
T of ith output data of the damaged structure

through Equations (12) and (13). The Euclidean distance between βi and βB0 is
calculated as,

Di =
m

∑
j=1

[(βi,j − βA0,j)]
2. (17)

4 Finally, the damage indicator, named IF in this paper, is calculated as the ratio between
Di and D0, as follows:

IF =
Di
D0

. (18)

The IF should be close to 1 when the data to be estimated are acquired from an
undamaged structure. As the damage level of the structure increases, the differences
between the parameters of the undamaged structure and the damaged structure should
increase, resulting in an increase in the IF value.

3. Performance Analysis

In this section, a mathematical simulation is used to analyze the performance of the
damage detection method presented above. The estimation results of the adopted TLS
method in Equations (13) and (14), and AR model with noise are studied carefully. A
comparison between the traditional AR model with the corresponding LS solution and the
AR model and the addition of noise with its TLS solution is demonstrated.

Taking the following 4th-order AR model as an example [26],

xt = 2.4xt−1 − 3.03xt−2 + 1.986xt−3 − 0.6586xt−4 + et, (19)

where et is Gaussian white noise, i is the time sequence number. e(t) = [et, et−1, · · · ]T,
and E

[
e2(t)

]
= 1. The number of samples is limited to 200, and the Gaussian white noise

series with different signal-to-noise ratios (SNR) are applied to the real time-series values
xi (i = 1, 2, · · · , 200). Six SNR conditions, 60 dB, 50 dB, 40 dB, 30 dB, 20 dB, and 10 dB, are
simulated. Specifically, for each SNR, the elements in the noise series are the same. The real
value of xi and xi with the error conditions of 30 dB and 10 dB are shown in Figure 1. The
obtained β for different SNR conditions is listed in Table 1.
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Figure 1. Output time series: (a) real value; (b) SNR is 30 dB; (c) SNR is 10 dB.

Table 1. Values of estimated parameters.

SNR/dB NO 60 50 40 30 20 10

LS

β1 2.4 2.4001 2.3966 2.3942 2.3714 2.3357 2.2017
β2 −3.03 −3.0298 −3.0233 −3.0224 −2.9820 −2.9456 −2.5086
β3 1.986 1.9859 1.9793 1.9795 1.9452 1.8973 1.4482
β4 −0.6586 −0.6584 −0.6557 −0.6562 −0.6486 −0.6162 −0.4064

TLSp

β1 2.4 2.4001 2.3966 2.3944 2.3736 2.3563 2.2818
β2 −3.03 −3.0298 −3.0234 −3.0228 −2.9860 −2.9840 −2.6567
β3 1.986 1.9859 1.9793 1.9799 1.9491 1.9340 1.5899
β4 −0.6586 −0.6584 −0.6557 −0.6564 −0.6500 −0.6301 −0.4600

When n = 4, the AIC meets its minimum value. When there is no noise, the identifi-
cation results are real values βT = [2.4 − 3.03 1.986 − 0.6586]. More identification results
with different SNR conditions are shown in Table 1. It is indicated that as the SNR = 60 dB,
the solution of the LS estimation and the TLSp estimation are nearly the same and quite
close to the real value, indicating both methods perform well in this condition. However,
the differences between the two methods increase as the SNR rises. As for the condition
of SNR 20 dB, the estimation results of the proposed model and algorithm are closer to
the true value, while the LS solution differs more significantly. When the SNR is 10 dB,
the results from both of the two methods contain large errors, The identification vector of
TLSp, [2.2818, −2.6567, 1.5899, −0.4600], exhibits four elements that are relatively closer
to the actual values compared to the four elements of the LS solution, which are [2.2017,
−2.5084, 1.4482, −0.4064]. This comparison highlights the improved accuracy of the TLSp
method in estimating the true values of the elements. Hence, it can be concluded that the
parameter estimation method proposed in this paper performs better, even in the presence
of strong noises.

It is clear that, as the SNR increases, the gaps between parameters of healthy and
estimated stages become larger. Assuming that the changes in the parameters in Table 1 are
not caused by different levels of errors, but by the different levels of inner damage of the
system. For example, assume βT = [2.3563 − 2.9840 1.9340 − 0.6301] (SNR = 20 dB, TLSp)
is estimated by the output signals of a damaged condition of a structure by the proposed
method. Then, in order to measure the structural damage level, the damage indicator needs
to be calculated to quantify the parameter changes to this system. Therefore, different levels
of SNR represent different levels of gaps between the parameters of the healthy system,
which can be estimated. The damage levels represented by the IF values of structures are
expected to increase as the SNR values increase. The IFs of the example in Table 1 are
shown in Table 2.
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Table 2. IFs of different conditions.

SNR/dB 60 50 40 30 20 10

LS 2.22 2.20 × 10 2.79 × 102 9.80 × 102 4.18 × 103 1.33 × 105

TLSp 2.16 2.18 × 10 2.50 × 102 8.20 × 102 1.50 × 103 6.99 × 104

It is clear that the increases in the IFs values are related to the rising SNR, reflecting
the effectiveness of the damage indicator. As for the same SNR, the IFs of the LS solution
are larger than that of the TLSp solution. For example, when the SNR = 10 dB, the IFs of the
LS solution are approximately twice as large as the IFs of the TLSp solution. Therefore, the
TLSp solution outperforms the traditional LS solution.

4. Experimental and Numerical Techniques

A shaking table test of a two-story full-scale web steel model under seismic excitation
with increasing intensities and the corresponding FE simulation is presented in this section.

4.1. Shaking Table Model Test

A full-scale model of a two-story web steel structure was subjected to a shaking table
model test to investigate its seismic performance. The web steel originating from Canada
is a type of cold-formed steel with a thin wall which has already been utilized in various
countries. The model used in the experiment has dimensions of 2 m × 3 m and a total height
of 6 m. Accelerations and displacements were measured using the DASP2003 dynamic
signal acquisition and analysis system, developed by the China Orient Institute of Noise
and Vibration. The dynamic strain was obtained using the DH3817 dynamic and static
testing instrument. The data acquisition instrument can be seen in Figure 2, and a photo of
the completed model structure is shown in Figure 3
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The seismic excitation of the El Centro waves (1940, America), and the Qian’an waves
(1976, China) with different intensity conditions are simulated on the shaking table model.
The sequence of the experiment is shown in Table 3. As can be seen, there are five levels
of tested earthquakes with the corresponding peak ground acceleration (PGA) values.
The free vibration and the swept frequency method are conducted before the seismic test.
Furthermore, white noise excitation is utilized before and after all of the groups of seismic
activities to capture the output shifts due to the seismic induced damage. The sampling
time interval is 3.905 ms. The seismic waves used in the experiments were unidirectional
input excitations, with the peak accelerations corresponding to the seismic intensity values
specified in the Chinese Code [34].

Table 3. Sequence of the shaking table test.

Sequence Number Input Seismic Wave PGA (g)

1 Free vibration
2 Sweeping (0–30 Hz) 0.02
3 Sweeping (30–0 Hz) 0.02
4 El Centro wave, Qian’an waves 0.1
5 El Centro wave 0.15
6 El Centro wave, Qian’an waves 0.2
7 El Centro wave, 0.27
8 El Centro wave, Taft wave 0.3

The displacement is achieved by pulling the top of the structure with a certain degree
of deflection, and then fixing the deflection, followed by an abrupt cutting of the rope, for
the purpose of assessing the structure’s free vibrations. The measured response represents
the characteristic free vibrations of the structure. The white noise excitation had a peak
acceleration of 0.2 g and a duration of 40 s. The sweep frequency excitation, consisting of
both upward and downward frequency sweeps, had peak accelerations of 29 g for each
direction and a duration of 40 s. The peak accelerations of the excitation waves used in the
experiment can be referred to in Table 3.

Five accelerometers were distributed around the model, with two on the top floor,
two on the second floor and one on the first floor, shown in Figure 4. Three displacement
sensors and eight strain gauges were used. The accelerometer distribution is shown in
Figure 4. Point 1 is on the table surface, points 2 and 3 are on the second floor, and points 4
and 5 are on the top floor.
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4.2. Finite Element Simulation

An FE simulation of the shaking table test was also conducted using ANSYS. The
properties of the steel were determined by the experiment and the nonlinear performance
was considered. The beam and shell elements were used to simulate the square steel tube
and bamboo plywood. Properties of the main steel components in the web-steel structure
are shown in Table 4. The steel strip and V fittings were simulated by bar elements. The
steel strip only sustains tension. Other elements in the model are simulated by solid 70.
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There were approximately 11,500 nodes in total. The finite element model of the structure
is shown in Figure 5.

Table 4. Properties of the main steel components in the web steel structure.

Components Elastic Modulus
(N/mm2)

Yield Strength
(N/mm2)

Tensile
Strength
(N/mm2)

Tensibility

Square steel tube 2.02 × 105 299.6 330.1 19%
Rectangular tube 2.42 × 105 279.9 334.5 19%

Connector 2.45 × 105 361.1 374.3 14%
Steel band 1.75 × 105 228.4 333.1 35%
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The testing conditions were consistent with the experiment. The input waves were
simulated by the tested acceleration data recorded on the table surface. The input waves
were simulated by the tested acceleration data recorded on the table surface. The frame
foundation and nodes at the base of the columns were set as rigid joints. The bound-
ary constraint types for the bottom three nodes of the frame columns were symme-
try/antisymmetry/encastre. The encastre type boundary condition was selected to define
the boundary condition at the bottom of the frame columns. According to the specific
conditions of the structure, the grid size for the beam elements in the structure was 0.6 m,
while the grid size for the shell elements and the solid elements was 0.3 m. The weight
of the model was adjusted by the material density of the floor units to ensure that the
self-weight of the simulation model was the same as that of the shaking table test model.

Firstly, modal analysis was performed to determine the natural frequencies of the
structure based on the vibration tests. The dynamic response of the structure under
earthquake excitations, such as the El Centro wave and the Qian’an wave, was then
obtained by applying these excitations to the finite element model. The natural frequencies
of the structure were calculated through frequency analysis, while the dynamic response
under earthquake excitations was determined using the modal dynamics analysis module
within linear perturbation analysis.

5. Experimental, Numerical, and Identification Results

In this section, the seismic performance of the model structure is studied. Based on
the proposed damage detection method, the damage levels and distributions of the test
model are identified using the output accelerations induced by white noise after different
testing conditions.



Buildings 2023, 13, 2480 11 of 18

5.1. Experimental Results and Analysis

The dynamic characteristics, such as the natural frequency, and the damping ratio
are listed in Table 5. The web steel structure performed well when subjected to seismic
waves in the experiment. No components were cracked or destroyed after all the testing
earthquake waves were applied. All of the steel pipes, connections, and other construction
members appear to remain in good condition. When the accelerations were small, such as
0.1 g, there were no visible responses or obvious sounds occurring. However, the model
responds with squeaky sounds when accelerations increase to 0.3 g, which reflects tension
and occlusion appearing in some joints, such as the connections between the bamboo
plywood and steel pipes and inter-story connections. Therefore, it can be inferred that the
structure has satisfactory energy dissipation capacity when suffering from seismic waves.

Table 5. Dynamic characteristics of different excitations.

Condition First Order (Hz) Second Order (Hz) Damping Ratio

Free vibration 4.42 14.2 1.2%
White noise 4.26 14.4 1.7%

Sweeping (0–30 Hz) 3.62 15.4 1.4%
Sweeping (30–0 Hz) 3.83 13.9 1.5%

Representative peak acceleration and displacement responses of the model subjected
to EI Centro waves and Qian’an waves under different testing conditions are shown in
Table 6. The acceleration time–history curves of the top floor suffering from 0.1 g and 0.3 g
EI Centro waves are shown in Figure 6. Figure 7 shows the relationship between the bottom
shear and the second story displacement corresponding to EI Centro waves.

Table 6. Peak responses of the model under different test conditions.

Test Conditions
Peak Displacement (mm) Peak Acceleration (m/s2)

Second Floor Top Floor Second Floor Top Floor

El Centro wave
(0.1 g) 0.41 0.67 0.47 0.61

El Centro wave
(0.2 g) 0.9 1.46 1.14 1.56

El Centro wave
(0.3 g) 1.9 4.32 2.95 2.94

Qian’an wave
(0.1 g) 0.39 0.14 0.32 0.62

Qian’an wave
(0.2 g) 4.1 0.46 1.64 1.05

It can be seen in Table 6 that as the earthquake intensities increase, both the peak
accelerations and displacements of the model increase significantly. For example, the peak
displacement of the model responding to the El Centro waves (0.1 g) on the top floor is
0.61 m/s2, while the response under the El Centro wave (0.3 g) is 2.94 m/s2. Furthermore,
the peak accelerations of the top floor are always larger than those of the second floor,
reflecting the damage of the top floor may be more significant than that of the second floor.
The influence of El Centro waves is consistently larger than that of the Qian’an waves.
Figure 6 indicates that the peaks and valleys of acceleration responses under different
waves with different intensities are mainly accumulated in the same time instants. It can
be concluded, in Figure 7, that as the earthquake intensity rises, the relationship between
bottom shear and the displacement in the second story is response to the El Centro waves
significantly, which may be due to inner damages in the model.
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5.2. Finite Element Simulation Results

The first and second vibration modes are shown in Figure 8. The comparison between
the dynamic characteristics in the experiment and the results in the FE simulation is shown
in Table 7. It can be seen that the experimental and the FE simulation results are consistent
with each other, indicating the FE simulation is reasonable. Therefore, the FE model can be
used for further study.
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Figure 8. Vibration modes of the FE model: (a) first mode; (b) second mode.

Table 7. Dynamic characteristics of the model in the experiment and FE simulation.

Vibration Mode

Experiment FE Simulation

Frequency
(Hz) Period (s) Frequency

(Hz) Period (s)

Direction
First 4.42 0.23 4.87 0.21

Second 14.2 0.07 15.01 0.067

The comparison between the peak displacement and acceleration responses in the
experiment and the results in the FE simulation is shown in Table 8. The results of the FE
simulation are consistent with results in the experiment. All the results indicate that as the
earthquake intensity rises, the peak displacement and acceleration responses increase.

Table 8. Peak displacement and acceleration responses of the model in the experiment and the
FE simulation.

Test Condition

Second Floor Top Floor

Displacement (m/s2) Acceleration (m/s2) Displacement (m/s2) Acceleration (m/s2)

Experiment FE Experiment FE Experiment FE Experiment FE

0.1 g 0.41 0.5 0.47 0.56 0.67 0.63 0.61 0.69
0.2 g 0.9 1.08 1.14 0.92 1.46 1.43 1.56 1.71
0.3 g 2.7 2.49 2.95 3.07 4.32 3.91 2.94 3.17

The acceleration amplification factor represents the ratio between the peak acceleration
values of each story with the peak input accelerations at the shaking table. As shown in
Figure 9, the acceleration amplification factors in the experiment and the FE simulation
are similar. Therefore, it can be concluded that the acceleration responses are modest and
indicate the satisfactory seismic performance of the model. The structure is an assembly
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structure that combines components with self-tapping screw connections. This type of
connection is flexible and has a strong energy dissipation capacity, which may be greatly
beneficial in providing earthquake resistance capacity.
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5.3. Damage Detection Results

As mentioned before, the damage identification results can directly represent the
property changes in the model structure. To further study the inner damage of the web steel
structure under different earthquake intensities, the proposed damage detection method
in Section 2 is adopted to identify the damage of the model. The study also includes
comparisons between the AR model with additive noise and its adopted total least-squares
(TLS) solution, as well as the classic AR model and least-squares (LS) solution.

The acceleration responses in the experiment excited by Gaussian white noise are used
for detecting the damage levels and distributions of the model structure. The test model
can be divided into two parts. The lower part is the first story, which is between the table
surface and the second floor. The upper part is the second story, which is between the
second floor and the top floor. The damage levels of the model structure are represented by
the values of the detection indicator presented in Section 2. The structure is considered in
healthy stage under the white noise excitation before the earthquake wave tests.

The IFs of each testing point under different intensities are shown in Figure 10. The
results indicate that the intensity factors (IFs) increased as the seismic intensity rose in
all testing points, indicating that damage to the structure increases with the earthquake
level. Besides, the gaps between 0.27 g and 0.3 g are relatively small compared to those of
other levels (except testing point 3, which may be due to some unknown mistakes). Which
reflects that the damage identification method can be used to detect structural damage
levels correctly.

The IFs of some accelerometer testing points under the same earthquake intensities
are listed in Figure 11. Testing points 2 and 3 are on the second floor, and 4 and 5 are
on the top floor. It can be concluded that the IFs of the first story are consistently larger
than the IFs of the second story (except for seismic intensity of 0.2 g), indicating more
damage occurs in the top part of the model structure. The damage to the top part increases
more rapidly and easily as the seismic intensity rises. In addition, IF values of the two
symmetrical testing points of the same floor are not the same, the eastern part (testing
points 3 and 5) of the web structure model contains more damage, which shows that the
west part of the model may have performed better. This may be due to construction errors.
Moreover, all the IFs are relatively smaller (in comparison with the IFs in the mathematical
simulation in Section 3), this indicates that the web steel model structure performs well
under earthquake excitations.
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The differences between the results obtained by the detection method presented in
Section 2 and the classical model and its LS solution are shown in Figure 12. It is clear that
the IFs of the two methods are quantitatively different. For example, redarding testing
point 5, the IF of the proposed method is larger than the IF of the LS solution at intensities
of 0.27 g and 0.3 g, while being smaller at 0.1 g. Furthermore, the variations in IFs from
the method are greater than that from the LS solution. It is argued that the differences
attributed to the LS solution ignore possible errors in the designed matrix. Regarding the
model of the proposed identification method TLSp, all the observation data in matrix A,
which consisted of the acceleration time series output in this experiment, are considered
as signals with noise. However, the AR model does not account for the presence of errors,
despite the fact that these errors do exist during experimental operation, originating from
manual operations, unstable sensor fixation, environmental noise, etc. Based on the TLSp
model and its corresponding parameter estimation algorithm, a more accurate parameter
solution should be obtained, thereby resulting in an IF that is closer to the true value.
Hence the proposed damage identification method in this paper can be more suitable in
practice use.

To summarize, the experiment, FE simulation, and damage detection indicate that
the web steel structure can perform well in response to seismic waves. As the earthquake
intensity increases, the response values such as the acceleration and displacement of the
model structure become large. Furthermore, by applying the proposed damage detection
methods, it can be concluded that damage to the model rises with increases in earthquake
intensity. However, none of the damage is significant, due to the good seismic performance
of the web steel structure.
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Figure 11. IFs of different testing points after the same intensities: (a) 0.15 g; (b) 0.2 g; (c) 0.27 g;
(d) 0.3 g.
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6. Conclusions

This paper presents a highly robust structural damage identification method that can
maintain stability even in the presence of high levels of noise. The method overcomes
the current limitations of AR-based damage identification, which is greatly affected by
observation errors. This paper introduces a modified auto-regressive (AR) model that
accounts for additive noise. Unlike traditional AR models, this modified model takes into
consideration all the errors in observations. To solve the modified AR model, a total-least-
squares (TLS) solution is adopted for the partial EIV model. In a mathematical simulation
example, the solution of the modified AR model along with its TLS solution is compared
to the classic AR model with the least-squares (LS) solution. The results demonstrate that
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the proposed method outperforms the traditional approach, even when dealing with high
levels of noise. Additionally, an effective damage indicator is employed to measure the
differences in AR parameters and quantify the extent of damage to a system. Finally, a
shaking table test and the corresponding finite element (FE) simulation of a full-scale two-
story web steel structure was conducted. The damage identification method proposed in
this paper was also applied to the acceleration responses to further study the damage levels
and distributions of the model structure under different earthquake conditions. It can be
concluded from the results that the web steel structure studied in this paper performs well
and that the damage incurred increases as the earthquake intensity increases. The damage
detection method presented in this paper can detect both damage levels and distribution in
the structure. This damage detection method may be effective for practical applications in
civil engineering.

The proposed detection method shows promise in reducing identification errors
compared to classical detection methods using the AR models and its LS solution. It
exhibits relatively accurate results, even in conditions of high levels of noise. Furthermore,
its performance with the web steel structure affected by earthquake waves can provide a
valuable reference for further studies on similar structures.

However, structural information in a healthy state for comparison is always necessary
when applying this method in practical engineering. This makes the identification impossi-
ble for structures that do not have stored healthy information. It also poses difficulties in
installing sensors and monitoring signals for complex and hazardous structures. Future
research could focus on the development and utilization of long-term stable embedded
sensors for structures to be monitored. This would enable real-time monitoring of structural
health based on the signals from these sensors combined with the damage identification
method proposed in this study. Another thing to address is how to fix the sensors to struc-
tures to reduce the noise. These advancements would provide new avenues for tracking
and identifying techniques in civil engineering.
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