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Abstract: Post-disaster housing, constructed on a massive scale, often overlooks the indoor thermal
environment, despite being a crucial design factor for residential satisfaction. This study examined
the indoor thermal environment in post-Gorkha earthquake-reconstructed prototype and traditional
vernacular houses in the Dolakha district of Nepal. It employed a questionnaire survey and measure-
ment of indoor and outdoor temperature in both house types across two study locations: Panipokhari
and Jillu, during the coldest winter month. Despite the indoor temperature in both house types
falling below the ASHRAE comfort standard, the study found that prototype houses’ nighttime
indoor temperatures were 2.1 ◦C lower in Panipokhari and 1 ◦C lower in Jillu compared to vernacular
houses. This difference is attributed to the use of local building materials with low U-values, sub-
stantial thermal mass in vernacular houses, and a low window-to-wall ratio. Occupants expressed
dissatisfaction with the thermal environment in prototype houses compared to vernacular ones. By
incorporating climate-responsive features seen in vernacular houses, heating energy could have been
reduced by approximately 21% in Panipokhari and 10% in Jillu, easing the economic burden on
vulnerable households. These findings hold significance for policy-makers, implementers, designers,
and other stakeholders involved in post-disaster resettlement housing programs, offering insights for
enhancing long-term satisfaction and sustainability in such programs.

Keywords: indoor thermal environment; post-disaster resettlement; prototype house; resident satis-
faction; vernacular house

1. Introduction
1.1. Overview

The past decades have witnessed an increasing number of disasters worldwide that
resulted in significant loss of lives and properties. In 2022, the disasters resulted in the
loss of 30,704 lives and affected 185 million individuals, with an economic loss of around
USD 223.8 billion [1]. Developing countries, in particular, were hardest hit, with the greater
number of deaths and people affected [2] due to poor governance, poverty, and low-quality
housing [3]. Out of the total 5.9 million people displaced by the disaster worldwide in
the year 2021, about 22.2% of the internal displacement was from South Asia [4]. Nepal,
an underdeveloped country, is ranked 11th in seismic risk, 30th in flood risks, and 4th in
climate change vulnerability [5]. The massive 2015 Gorkha earthquake of magnitude 7.6
Richter scale caused massive human losses and physical damage across 32 hilly districts
of Nepal. The National Planning Commission [6] reported that the earthquake destroyed
about 498,852 houses and partially damaged approximately 256,697 houses, requiring
significant settlement planning and reconstruction efforts. In response, the government of
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Nepal developed “Integrated Settlements” to reconstruct permanent housing for displaced
households and provide planned infrastructure provision.

Post-disaster housing is typically constructed within limited time and resource con-
straints, often overlooking important design considerations [7]. Several studies [8–10] have
highlighted the low priority given to the thermal environment in permanent houses, and
the climate adaptability [11] resulting in low thermal satisfaction among households [12,13].
Despite significant policy provisions and financial investment, displaced households in
Nepal have not fully resettled in the prototype houses provided to them. The use of a “one
size fits all” approach for all prototype houses in the Integrated Settlements (IS) has been
criticized for poor indoor thermal environments compared to vernacular houses.

The sense of urgency to complete the reconstruction of houses within a limited time
frame leads to the use of modern materials readily available in the market. The new
prototype houses in these IS have been constructed using modern materials and technolo-
gies, neglecting the principles of vernacular architecture and local climate. Vernacular
architecture represents the culmination of traditional knowledge and a long trial and error
process, making it best suited to local climate and culture. As only a limited number of
heating and cooling technologies are available to achieve thermal comfort, vernacular
houses are generally designed to optimize the use of natural resources, such as the sun and
wind [14,15]. Several researchers [16,17] have claimed that vernacular buildings exhibit
superior thermal performance due to their climate-responsive design features. In particular,
Bodach et al. [14] conducted a qualitative investigation of Nepalese vernacular architecture
and revealed that it was well adapted to local climate conditions. As a result, it is important
to compare the newly constructed prototype houses to vernacular houses to determine
their efficacy.

1.2. Thermal Environment

Indoor thermal environment investigation is an emerging research area that is closely
related to building energy consumption and plays a significant role in creating a com-
fortable, healthy, and efficient built environment [18]. Over the past decade, a growing
trend of studies [19,20] has focused on the thermal environment of housing in temperate
regions. For example, Lin et al. [18] conducted research on China’s cold winter climate
and found that the average internal temperature in the bedroom was 12.7 ◦C, with the
lowest acceptable internal temperature without heating at 10 ◦C. Similarly, Singh et al. [21]
demonstrated that vernacular buildings in India were significantly uncomfortable in the
winter months. In Nepal, Rijal [19] investigated the vernacular house in the temperate re-
gion and revealed the daily mean indoor air temperature of Bhaktapur as 11.5 ◦C; Dhading
as 14.8 ◦C, and Kaski as 15.3 ◦C in the winter season. Moreover, Rijal et al. [22] investigated
traditional houses in the temperate region during the winter season and reported daily
mean indoor air temperature of 11.5 ◦C for Bhaktapur; 14.8 ◦C for Dhading, and 15.3 ◦C for
the Kaski district of Nepal. Shahi et al. [20] evaluated the thermal performance of modern
houses in the temperate region during winter and found an average measured indoor air
temperature of 18 ◦C. The study suggested enhancing the thermal insulation and reducing
the infiltration to improve the indoor air temperature during nighttime. Additionally,
Pokharel et al. [23] conducted a survey in vernacular houses during the winter season, and
their findings revealed an average measured indoor air temperature of 13.9 ◦C, which is
below the ASHRAE comfort standard.

While the past post-disaster literature has largely focused on structural safety, socio-
cultural, and livelihood aspects, the examination of thermal environment has been largely
neglected. Cheng et al. [24] examined post-disaster housing in the Sichuan Province of
China and found that the average winter indoor temperature in the new house was 7.8 ◦C,
showing better performance than the vernacular house (6.6 ◦C) due to significant improve-
ments like replacing brick masonry with wood and bamboo. Similarly, Kim et al. [25]
studied a post-disaster temporary shelter in South Korea during winter, revealing an aver-
age indoor temperature of 16.0–20.6 ◦C when the outdoor temperature dropped to−11.3 ◦C
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with the use of a heating system. Wang et al. [26] found that the air temperature inside
the temporary prefabricated houses constructed after the disaster was 7.9 ◦C higher than
outside in the daytime, but nearly the same as the outdoor air temperature at nighttime,
suggesting an insignificant thermal mass of envelope to store heat gain. Some studies have
also attempted to assess the thermal performance of the post-disaster houses constructed
after the Gorkha earthquake. For instance, Uprety and Shrestha [27] conducted an inves-
tigation of post-disaster houses constructed in Dolakha and found that the utilization of
vernacular materials in the prototype houses can reduce discomfort by 35%. Another study
by Thapa et al. [28] examined the winter indoor thermal environment in five makeshift
shelters constructed after the Gorkha earthquake in Lalitpur, Nepal and found that the
mean indoor and outdoor air temperatures were 10.3 ◦C and 7.6 ◦C, respectively, during the
measured nighttime. However, the study found that the nocturnal indoor air temperature
was lower than the lowest acceptable temperature of 11 ◦C, largely attributed to the use of
the materials with a high heat loss coefficient per floor area (U-value).

The lack of a comfortable thermal sleep environment affects daytime activities, impacts
health, and also deteriorates the quality of life [29]. Okamoto-Mizuno and Mizuno [29]
emphasized that the thermal environment is one of the most important factors affecting
human sleep and found that cold exposure might have a greater impact on sleep than heat
exposure. According to the ANSI/ASHRAE Standard 55 [30], temperature fluctuations of
2.2 ◦C or more per hour significantly contribute to thermal discomfort in indoor environ-
ments [31]. Scant attention has been paid to studying the indoor thermal environment of
permanent prototype houses constructed after the Gorkha earthquake, 2015 and compar-
ing them with the vernacular houses. Hence, it is essential to fill this knowledge gap by
investigating the indoor thermal environment of the prototype houses and the vernacular
houses during the winter season in Nepal’s temperate region. Such research can provide
valuable insights for improving indoor comfort and designing energy-efficient houses for
post-disaster settings.

1.3. Thermal Satisfaction

Indoor thermal comfort is a critical yet often neglected aspect influencing the residen-
tial satisfaction of displaced households. According to the ASHRAE Standard [30], thermal
comfort is defined as the state of “that condition of mind which expresses satisfaction
with the thermal environment and is assessed by subjective evaluation. Fluctuations in air
temperature significantly affect occupants’ thermal comfort [30]. Post-disaster permanent
housing has faced criticism for its uniform, one-size-fits-all design, employing similar
materials and technology, often without considering local conditions [32]. Rather than the
physical environmental features, user satisfaction is influenced by personal, social, and
cultural issues [33]. Tharim et al. [13] found that respondents were dissatisfied with their
post-disaster permanent houses’ indoor air temperature, with mean satisfaction values of
2.1 during the daytime and 2.9 at night (measured on a 5-point Likert scale from ‘1 highly
unsatisfied’ to ‘5 highly satisfied’). Kurum Varolgunes [34] in Turkey revealed that the fail-
ure to consider climate and topography in post-disaster permanent housing design led to
occupants’ dissatisfaction with thermal comfort. Dikmen and Elias-Ozkan [32] highlighted
complaints about damp and cold conditions in concrete permanent houses constructed
after the 1970 Gediz earthquake. Miculax and Schramm [35] reported poorer housing due
to improper use of technology in new roofs compared to traditional straw roofs, which
proved unsuitable for local climatic conditions.

The choice of appropriate building materials is another crucial factor that has not re-
ceived sufficient attention, impacting the long-term satisfaction of residents in post-disaster
housing reconstruction [36]. Research has emphasized the use of unsuitable materials as
a major contributor to poor indoor thermal comfort. For instance, Enginoz [37] found
households living in hollow brick masonry houses constructed after the 1995 Dinar earth-
quake complaining that their houses were “cold in winter and hot in summer, unlike the
vernacular mud-brick house”. Similarly, Carrasco et al. [8] reported the lowest satisfaction
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of the residents concerning thermal comfort, with an average mean satisfaction score of only
0.32 (measured on a 5-point Likert scale from ‘1 highly unsatisfied’ to ‘5 highly satisfied’),
attributed to poor ventilation and thermal insulation of building materials. Dias et al. [36]
also found dissatisfaction among residents with their permanent housing constructed
after the disaster due to the use of the building materials without considering the local
climatic conditions. Bang and Few [38] disclosed that respondents were more thermally
satisfied with their pre-disaster houses made of mud bricks and grass roofs than the newly
constructed houses made of cement bricks and aluminum zinc roofs. Ozden [39] high-
lighted climate-responsive houses as a major problem faced by post-disaster reconstructed
households. Additionally, Tas et al. [12] revealed nearly 43% of households living on the
top floor of the reconstructed houses were dissatisfied with roof insulation during both the
summer and winter seasons.

Figure 1 presents the conceptual model of this study to investigate the indoor thermal
environment of the prototype house constructed after the Gorkha earthquake and the
vernacular house. The prototype house utilized modern materials with a high U-value,
while the vernacular house was constructed with materials claimed to have a low U-value.
However, due to the poor economic conditions and lack of electricity supply, the households
did not use any mechanical devices for heating. Instead, occupants relied on behaviors such
as closing windows, adding layers of clothes, and staying inside quilts to keep warm during
winter. The existing literature [35,37] has identified that occupants of vernacular houses
expressed higher satisfaction compared to occupants of the prototype houses concerning the
thermal environment. Despite recognizing the significance of the thermal environment for
the satisfaction of resettled households in the literature, national policies in Nepal remain
silent on the minimum requirements for housing thermal performance. Consequently, there
exists a significant knowledge gap regarding the thermal performance of the prototype
houses constructed after the Gorkha earthquake, which were expected to be more resilient
and sustainable, following the “build back better” approach.
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Figure 1. Conceptual model of the study.

1.4. Objectives

The primary aim of this research is twofold: (i) to evaluate the thermal performance
of the prototype houses constructed after the 2015 Gorkha earthquake compared to the
remaining vernacular houses in the area, and (ii) to investigate the thermal sensation
and residential satisfaction of the disaster-displaced households currently residing in the
prototype houses. With the escalating scale, frequency, and severity of disasters worldwide,
the study’s outcomes are expected to hold significant practical implications in policymaking,
planning, designing, and reconstructing houses in the aftermath of disasters. The results
will be valuable for various stakeholders involved in resettlement planning, including
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policymakers, implementers, academia, and others, facilitating the design and planning of
more thermally comfortable housing, leading to reduced energy costs and contributing to
sustainable resettlement outcomes.

2. Methodology

The research involved three distinct methods: (i) building measurement and observa-
tion; (ii) data logging of indoor and outdoor air temperature and relative humidity data;
and (iii) questionnaire surveys conducted with residents residing in the prototype houses.

2.1. Study Area and Climate

A case study methodology was used to investigate the thermal performance of pro-
totype houses constructed after the 2015 Gorkha earthquake in both the Panipokhari
Integrated Settlement and Jillu Integrated Settlement. These settlements are situated within
the Bhimeshwor municipality of the Dolakha district in Nepal (Figure 2). The Dolakha
district was selected due to its severe impact during the 2015 Gorkha earthquake, which
resulted in around 170 fatalities, the complete destruction of 56,293 houses, and partial
damage to 4346 houses [40]. The earthquake displaced the Thami community, traditionally
living in the rural villages of Bhimeshwor municipality, forcing them to relocate to tempo-
rary shelters [41] (Figure 3a), compromising their safety, security, and quality of life. The
Panipokhari Integrated Settlement (Figure 3b) was developed by the Nepalese government
to relocate 56 households from the vulnerable Buma and Boshimpa villages. The relocation
brought the households situated from the old village at a higher altitude (1845 m) to Pa-
nipokhari, situated at 27◦42′43.3′′ latitude and 86◦03′16.6′′ longitude, at a lower altitude of
1765 m above sea level, roughly at an hour’s walking distance. Similarly, the Jillu Integrated
Settlement (Figure 3c,d) was initiated by the community to resettle 70 households in Fasmi
village, located between 27◦38′52.8′′ latitude and 86◦04′40.8′′ longitude at an altitude of
about 1170 m.
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Figure 3. Integrated Settlement in Dolakha: (a) Temporary shelter in Panipokhari, source: Mr. Yekraj
Adhikari; (b) Integrated Settlement in Panipokhari; (c) Aerial view of Jillu Integrated Settlement;
(d) Jillu Integrated Settlement.

Both study areas are located in the hilly region of Nepal and have a warm temperate
climate with cold winters and warm summers [14]. The average monthly temperature
ranges from a maximum of 20.9 ◦C in August to a minimum of 9.2 ◦C in January (Figure 4a).
The highest average monthly maximum temperature occurs in June at 25.6 ◦C, and the
average monthly minimum temperature drops to 2.7 ◦C in January. The annual average
relative humidity is 76%. Figure 4b shows the monthly average relative humidity along with
average relative humidity at 12:00 and 15:00. Additionally, the average annual precipitation
is 2157 mm, with the maximum occurring in July at 579 mm and a minimum of 5 mm in
December (Figure 4c).

2.2. Selection of Houses

For this study, two houses—one vernacular and one prototype—were selected in
each of the Panipokhari and Jillu Integrated Settlements. The decision to choose houses
in two different locations stemmed from the presence of only one surviving vernacular
house in Panipokhari, which limited the possibility of a direct comparison within the same
settlement. Given that most vernacular houses in the district and the broader hilly region of
Nepal share similar architectural characters—such as a long axis facing south, a rectangular
floor plan, and walls constructed using mud mortar—two vernacular houses were selected.
One was selected within Jillu itself (Figure 5c), while the other was in the nearby Buma
area (Figure 5a), located at a 5-minute walk from Panipokhari. Likewise, two prototype
houses—one in Panipokhari (Figure 5b) and the other in Jillu (Figure 5c)—were selected
for the investigation. The distinction between these two locations lies in their genesis;
Panipokhari was initiated by the government, leading to the construction of 56 prototype
houses, while Jillu’s construction was driven by the community, resulting in 70 houses. The
prototype houses in Panipokhari are similar, while those in Jillu exhibit variations in terms
of design and construction. Concerning the vernacular buildings, they remained consistent
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in both locations, with the exception of roofing materials; corrugated iron sheets were used
in Panipokhari in contrast to slate roofs in Jillu.
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Figure 4. Monthly climatic data of the study area (Charikot meteorological station): (a) Outdoor air
temperature; (b) Relative humidity; (c) Precipitation.
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Table 1 presents a comparison of the characteristics of the vernacular and prototype
houses. The selected vernacular houses in Panipokhari (Figure 6a) and Jillu (Figure 7a)
represent a typical two-story design with a rectangular plan. In Panipokhari, the ground
floor is a single large room without partitions, serving as a kitchen, living, and bedroom
(Figure 6c), while in Jillu, the rooms are partitioned (Figure 7c). An open hearth is located
in the left corner of the room, providing warmth to both floors through the open staircase
at the center and inside the house. The staircase leads to the first floor, which serves
as a sleeping area with a wooden plank flat ceiling and storage space for food grains
(Figure 6b,d) in Panipokhari, and solely as a bedroom in Jillu (Figure 7b,d). The semi-open
space in front of the house, covered by the roof, serves multiple functions depending on the
time and season, including sun basking, rest, and entertaining guests. The vernacular house
is constructed using a 450 mm-thick random rubble stone masonry wall in mud mortar in
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Panipokhari, and a 350 mm-thick wall in Jillu. Inside the house, a 25 mm-thick mud plaster
is applied. Medium-sized wooden windows and doors are used. While the vernacular
house in Jillu retains the traditional slate roofing, the slate roofing in Panipokhari was
replaced with a corrugated galvanized iron (CGI) roof about five years ago.

Table 1. Characteristics of vernacular and prototype houses.

Description Vernacular House Prototype House

Building form Rectangular elongated Nearly square floor plan

Building orientation Longer walls with openings towards the south Building with openings towards the east in
Panipokhari and south in Jillu

Story Two Two

Walls 350–450 mm stone with 25 mm mud plaster inside 230 mm brick with 12 mm cement plaster inside

Roof Pitched roof; 0.26 mm corrugated galvanized iron (CGI)
roof with a wide overhang in Panipokhari, slate roof in Jillu

Pitched roof; narrow overhang 0.26 mm corrugated
galvanized iron (CGI) sheet in Panipokhar; RCC roof

in Jillu

Openings Medium-sized wooden windows with wooden frames
About 16% Glazing/wall ratio

5 mm single-glazed, medium-sized wooden framed
windows

About 12% Glazing/wall ratio
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Regarding the prototype house, a typical prototype house (house number 7)
(Figure 8a,b) was selected for the investigation among the 56 uniform houses constructed
in Panipokhari. This house, oriented eastward on a sloped site terrace, features a two-story
design and is built on a square-shaped plan. The ground floor consists of three rooms
with a veranda (Figure 8c), while a single-flight staircase leads to the first floor, utilized
as a bedroom and for storage (Figure 8d). Similarly, a typical house (plot numbers 53,
54, and 55) facing south (Figure 9a,b) was selected in Jillu. This house features bedrooms
and a kitchen on the ground floor (Figure 9c), with a staircase leading to the first floor
containing three bedrooms and an open terrace (Figure 9d). Both houses were constructed
using 230 mm-thick brick masonry in cement mortar and have 12 mm cement plaster on the
inside. The roofing in Panipokhari is made of 0.26 mm CGI, while Jillu has a 127 mm-thick
RCC roof. However, the overhang of both houses is narrower compared to the vernacular
houses. The windows have a wooden frame with 5 mm single-paneled glass. The floor
plans resemble the space layout planned for urban community life, such as space provided
for liquefied petroleum gas (LPG) in the kitchen instead of space for a fireplace provided in
a vernacular house. Consequently, households in Panipokhari have constructed a separate
kitchen for cooking with firewood and LPG outside the house. It is worth noting that, due
to the absence of a house ownership certificate, the houses in Panipokhari have not been
connected to the national electricity grid. Therefore, houses there are utilizing electricity
from the host communities’ houses.
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2.3. Occupant Behavior

The resettled households in Panipokhari mainly comprise members of the poor indige-
nous Thami community (about 95%) and the remaining 5% are from the Dalit community,
which is considered the lowest caste in Nepal (Figure 10a). Conversely, Jillu is predom-
inantly occupied by the high-class Brahmin (Chaulagain) community (Figure 10b). The
average household size is four and five people in Panipokhari and Jillu, respectively, with
approximately 15% of households having family members working abroad. Over 50%
of the households rely on subsistence agriculture and livestock, followed by 13% of the
households involved in labor work in Panipokhari and 26% earning livelihood from service
and business in Jillu. The households in Panipokhari have a very low monthly income of
nearly USD 155, and monthly expenditures of around USD 117, while the residents of Jillu
have better conditions with an average income and expenditure of nearly USD 260 and
166, respectively.
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The occupants of both Panipokhari and Jillu follow a similar daily routine, starting
their day by leaving their bedrooms at 6:00 to engage in morning activities. In Panipokhari,
they usually depart for daily farming activities around 21:00 and return at around 16:00
before finally going to their bedrooms at 21:00. The occupants usually sleep for an average
of nine hours each night. In Jillu, the households go to their farm and return home for
meals due to the closer proximity to the farm. Due to financial constraints, occupants
in Panipokhari do not use active heating or cooling systems, while a few households in
Jillu use heaters. In all four houses, the bedrooms are occupant-controlled and naturally
conditioned spaces, where occupants regulate thermal environments primarily by opening
and closing windows. To shield themselves from the cold winter air, occupants reported
keeping windows closed, which also reduced air movement during the study period.
These observations emphasize the need to consider these variations in housing design
and construction, utilizing local materials and techniques, both in vernacular houses and
reconstructed houses, when assessing the energy efficiency of these dwellings.

2.4. Thermal Environment Survey

The survey was conducted in a total of four houses, two each in Panipokhari and
Jillu, during the coldest winter months of January and February. This period was chosen
as winter presented a significant challenge for the settlement situated in the hilly region
of Nepal. For the study, a representative prototype reconstructed house was selected in
both Panipokhari and Jillu. This choice was made because all the other prototype houses
had similar floor plans oriented towards the east and were constructed using similar
building materials and technology. Similarly, the examined vernacular houses were the
only standing ones in Panipokhari and Jillu. The measurement duration spanned from
9 January to 18 February 2023, totaling 41 days. To ensure accurate measurements, data
loggers were positioned at a height of 1 m in the center of the bedrooms on the first floor
of all four houses. These bedrooms were equipped with openable windows facing east in
Panipokhari (Figures 6d and 8d) and south in Jillu (Figures 7d and 9d) to minimize the
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direct effect of solar radiation. This installation approach was based on the findings of a
study by Rodriguez et al. [31], which identified the worst thermal environments on the
top floor. To record outdoor air temperature, measurements were taken outside the houses
on the east side to avoid the effect of direct solar radiation on the sensors. Throughout
the measurement period, data loggers recorded indoor and outdoor air temperature as
well as relative humidity every hour. Detailed information about the devices used for the
recordings is provided in Table 2.

Table 2. Instruments used in the field survey.

Parameter Measured Name of Instrument Range Accuracy

Indoor air temperature and relative humidity (RH) Onset HOBO UX100-003 −20 to 70 ◦C, 15–95% RH ±0.21 ◦C, ±5% RH
Outdoor air temperature and relative humidity (RH) Onset HOBO MX2302A −40 to 70 ◦C, 15–95% RH ±0.2 ◦C, ±2.5% RH

2.5. Thermal Sensation and Satisfaction Survey

In addition to the thermal measurements, a questionnaire survey was conducted to
assess the thermal satisfaction experienced by occupants of both prototype and previous
vernacular houses (Table A1). As indicated by Bennet and O’Brien [42], capturing occu-
pants’ ratings is crucial for evaluating their thermal comfort. The thermal satisfaction
survey included a total of 102 households, 46 households (out of a total of 56) in the Pa-
nipokhari Integrated Settlement and 56 households in Jillu (out of a total of 70) in Jillu
Integrated Settlement. It is worth noting that not all households could be included due
to their absence—many homes were unoccupied and locked during seasonal migration
for labor jobs in larger cities. While all the vernacular houses, except for one standing
house in Panipokhari and two houses in Jillu, had collapsed in the earthquake, the thermal
satisfaction survey encompassed respondents from the remaining vernacular house, 46 pro-
totype houses (comprising 71% male and 29% of female respondents, aged between 15
and 75 years) in Panipokhari and 56 reconstructed houses (with 67% male and 33% female
respondents, aged between 15 and 75 years) in Jillu. The survey was conducted in the local
Nepalese language. Households who had lost their vernacular houses in the earthquake
were also queried about their satisfaction with their previous vernacular housing before
the earthquake. During the winter season, respondents were attired in thick clothing to
keep warm.

The thermal sensation of the households in both prototype and vernacular houses
was evaluated using a seven-point thermal sensation scale, ranging from ‘−3 very cold’ to
‘+3 very hot’ (Table A1). To prevent disruption during working hours, the survey was con-
ducted from 6:30 to 9:00 and 16:00 to 19:00. During these times, respondents were queried
about the thermal sensation of their sleeping rooms at nighttime. To account for language
nuances, the modified thermal sensation scale (mTSV) was used, wherein the terms ‘cool’
and ‘warm’ were substituted with ‘cold’ and ‘hot’ to align better with comfort perception
in the Nepali language as previously adopted by other researchers [20]. Additionally, a
5-point Likert scale was used to evaluate respondents’ satisfaction perception, ranging
from ‘1. highly unsatisfied’ to ‘5. highly satisfied’.

3. Result and Discussion
3.1. Variation of Indoor and Outdoor Air Temperature

In free-running buildings, the indoor air temperature is influenced by the outdoor
air temperature. This section discusses the variation in indoor air temperature within
both the prototype and vernacular houses, considering their relationship with the outdoor
air temperature. Figure 11a presents the indoor and outdoor air temperature profiles
of the vernacular house and prototype house for a week in both Panipokhari and Jillu.
Notably, the indoor air temperature has shown less fluctuation in the vernacular houses
compared to the prototype house, both during morning and nighttime. Similarly, Figure 11b
displays the 24-h temperature profile of a typical day on 13 January 2023. This day was
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selected as it displayed no significant deviation in the temperature profile. The indoor
air temperature tends to be higher in the prototype house during the daytime, as solar
radiation gets trapped in the CGI sheets and RCC roofs, leading to a phenomenon similar
to the greenhouse gas effects.
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However, the figure indicates that the indoor air temperature of the vernacular house
is higher at nighttime, creating thermal comfort for occupants who primarily use the rooms
at night, after their daytime farmwork. In Panipokhari, the indoor air temperature of
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the prototype house experiences notable fluctuations throughout the day, ranging from
2.5 ◦C at 7:00 to 17.5 ◦C at 13:00, with a diurnal range of 10 ◦C (Figure 11c). In contrast,
the vernacular houses demonstrate only a 6 ◦C diurnal range of the air temperature,
indicating reduced indoor temperature fluctuations. High fluctuations during the daytime
coincide with solar radiation exposure. It is important to recognize that in free-running
buildings, the outdoor air temperature significantly impacts indoor air temperature. In
Jillu, despite similar fluctuation patterns, indoor temperature variation remains lower
compared to the vernacular houses. This study’s findings underscore the importance of
designing buildings that provide occupants with thermal comfort while minimizing indoor
air temperature fluctuations.

3.2. Thermal Environment Assessment of Prototype and Vernacular House

According to the literature, vernacular houses tend to exhibit a warmer thermal
environment than prototype houses constructed after disasters [34,36]. In this section, we
examine the thermal environment of the prototype and vernacular houses reconstructed
for displaced households in the Panipokhari Integrated Settlement and Jillu Integrated
Settlement for a period of 41 days. Figure 12 illustrates that the average mean indoor
temperature of the prototype house is 0.7 ◦C lower than that of the vernacular house in
Panipokhari, but in Jillu, it is 0.8 ◦C higher. Furthermore, Figure 13 shows the wider
standard deviation of indoor temperature in prototype houses (4.8 ◦C in Panipokhari
and 3.0 ◦C in Jillu) compared to vernacular houses (3.3 ◦C in Panipokhari and 1.4 ◦C in
Jillu). This higher indoor temperature variation within prototype houses might stem from
factors such as low insulation levels [21], materials with higher U-values, and poor air
tightness [43].
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Table 3 presents the comparison of the indoor and outdoor air temperatures of this
study with the previous research carried out in the temperate region in the international and
national context. In the context of China, Juan et al. [43] revealed that the traditional earth
dwelling, although well adapted to the local climate in summer, was not quite so during the
winter. The study found that on the coldest day of winter, the average indoor temperature
of the bedrooms of earth dwellings and brick dwellings was 6.3 ◦C and 4.2 ◦C, respectively,
when the outdoor air temperature was 0.8 ◦C. In India, Singh et al. [21] measured the
indoor air temperature of 15 ◦C in vernacular houses when the outdoor air temperature
was 13.7 ◦C. Likewise, in the Nepalese context, Rijal et al. [22] also revealed that the indoor
air temperature of the traditional houses in the temperate climate in the winter month
is 11.5 ◦C in Bhaktapur, 14.8 ◦C in Dhading, and 15.3 ◦C in Kaski districts, which are
also the 2015 earthquake-affected districts of Nepal. This study found that the indoor air
temperature was similar to the outdoor air temperature in the post-disaster house with a
difference of only 1.4 ◦C in prototype house of Panipokhari, which is similar to the findings
of Thapa et al. [28] with the difference of only 2.7 ◦C in the study of the earthquake-affected
districts of Nepal. The result of this study is similar to other studies, which revealed that
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although the indoor air temperature of the vernacular house was higher than the prototype
house, both were as low as the outdoor air temperature.
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Table 3. Comparison of indoor and outdoor air temperature with previous research.

Reference Season Country Place House Type Material Altitude
(m) To (◦C) Ti (◦C)

This study Winter (January) Nepal Panipokhari Vernacular,
Prototype

Stone, CGI
Brick, CGI 1765 10.2 12.3

11.6

Jillu Vernacular,
Prototype

Stone, Slate
Brick, RCC 1170 10.0 16.7

17.5

Rijal [44] Winter (January) Nepal Mustang Vernacular Sun-dried brick,
small opening 3705 −3.1

−0.4~2.3
(Non-heated

room)
4.1 (Heated

room)

Juan et al. [43] Winter (January) China
Qinba

mountainous
area

Vernacular
Modern

Earth
Brick 1200 0.8 (coldest

day)

6.3 (Earth
dwelling)
4.2 (Brick
dwelling)

Singh et al.
[21] Winter (January) India North India,

Cherrapunjee Vernacular Rock slab, brick,
small opening 1400 13.7 15.0

Thapa et al.
[45] Winter India Kurseong Modern

Brick in cement
mortar, CGI roof

with wooden plank
1420 14.2 16.6

Rijal et al. [22] Winter (December) Nepal
Bhaktapur
Dhading

Kaski
Traditional

Brick, CGI roof
Stone, slate roof

Stone, thatch, slate

1350
1500
1700

10.1
11.9
11.8

11.5
14.8
15.3

Pokharel et al.
[23]

Winter (December–
January) Nepal Panchthar Traditional,

Modern
Stone in mud
mortar, CGI 4.1~22.1 13.9

Shahi et al.
[20]

Winter
(January–February) Nepal Kathmandu Modern Brick, concrete 11.3–18 18

Gautam et al.
[16]

Winter (December–
January) Nepal Kavrepalan-

chok Traditional
Stone in mud,
medium-sized

opening
10~16 16.9 *

Thapa et al.
[28]

Winter
(January–February) Nepal Lalitpur Temporary

shelters CGI sheet 1329 7.6
(Nighttime) 10.3 (Nighttime)

To: Outdoor air temperature, Ti: Indoor air temperature; CGI: Corrugated Galvanized Iron, *: Mean indoor globe
temperature.
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3.2.1. Mean Thermal Environment of the Nighttime

The study also investigated the nighttime mean indoor temperature of both the ver-
nacular and prototype houses and subsequently compared it with outdoor air temperature.
Based on the mapping of everyday activities, it was observed that the households used
the bedroom exclusively for a period of 9 h each day, specifically between 21:00 and 6:00.
This leaves the remaining 15 h to be divided into daytime (6:00 to 21:00) and nighttime
(21:00 to 6:00). As outlined in Table 4, the average mean indoor air temperature during
nighttime in Panipokhari was found to be 8.3 ◦C for the prototype house and 10.4 ◦C for the
vernacular house. These values are, respectively, 0.5 ◦C and 2.6 ◦C higher than the outdoor
air temperature. Notably, the standard deviation of the prototype house (2.6 ◦C) exceeded
that of vernacular houses (2.4 ◦C), indicating a wider fluctuation in indoor air temperature.
Similarly, in Jillu, the indoor air temperatures of both prototype and vernacular houses
are 4.5 ◦C and 5.5 ◦C higher than the outdoor air temperature, respectively. These results
suggest that vernacular houses were better suited to the local climate conditions. Consistent
with the findings of Thapa et al. [28], the study observed that the indoor air temperature
of the prototype house in Panipokhari closely aligned with the outdoor air temperature
during nighttime. Meanwhile, the indoor relative humidity of vernacular houses remained
relatively stable, fluctuating between 37% and 77%. A separate study has indicated that
maintaining indoor relative humidity levels within the range of 40% to 60% could reduce
adverse health effects [35].

Table 4. Nighttime thermal environment of prototype and vernacular houses.

Study Area Description
Air Temperature (◦C) Relative Humidity (%)

Outdoor Prototype Vernacular Outdoor Prototype Vernacular

Panipokhari Mean 7.8 8.3 10.4 77 68 63
Std. Deviation 2.3 2.6 2.4 10 10 8

Jillu
Mean 7.9 12.4 13.4 77 58 54

Std. Deviation 2.3 4.8 3.6 10 12 10

3.2.2. Relationship between Indoor and Outdoor Air Temperature

Regression analysis of the indoor and outdoor air temperature was carried out to
estimate the indoor air temperature of the prototype house and vernacular house. Figure 14
shows the relationship between the indoor air temperature of the prototype house and the
vernacular house with the 80% and 90% limits of the ASHRAE standard. It asserts that
the indoor air temperature of the prototype houses and the vernacular house has a strong
positive correlation with the outdoor air temperature. Based on the regression analysis, the
following regression equations were obtained.

Prototype house in Panipokhari: Ti = 0.99 To + 0.5 (n = 984, R2 = 0.95, S.E. = 0.008, p < 0.001) (1)

Vernacular house in Panipokhari: Ti = 0.67 To + 4.9 (n = 984, R2 = 0.88, S.E. = 0.008, p < 0.001) (2)

Prototype house in Jillu: Ti = 0.43 To + 12.7 (n = 984, R2 = 0.44, S.E. = 0.008, p < 0.001) (3)

Vernacular house in Jillu: Ti = 0.18 To + 14.7 (n = 984, R2 = 0.36, S.E. = 0.008, p < 0.001) (4)

where Ti is the indoor air temperature (◦C), To is the outdoor air temperature (◦C), n is the
number of data samples, R2 is the coefficient of determination, S.E. is the standard error of
the regression coefficient, and p is the significance level of the regression coefficient.
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The vernacular houses exhibited a lower regression coefficient compared to the proto-
type houses, attributable to their higher thermal mass. As illustrated in Figure 14, the indoor
air temperatures in both the prototype and vernacular houses fell below the ASHRAE
standard in Jillu and were significantly lower than the ASHRAE standard in Panipokhari,
suggesting a need for active heating systems. This observation is consistent with previous
studies. For instance, Pokharel et al. [23] found that indoor air temperatures in temperate
regions were as low as 10.5 ◦C, falling below the ASHRAE comfort standard. Similarly,
Rodriguez et al. [31] affirmed that indoor temperatures were below the acceptable comfort
zone, leading to reduced occupant satisfaction. Yoshino et al. [46] also documented that
the winter indoor thermal environment of residential buildings in Shanghai was notably
colder than the ASHRAE standard, but they speculated that the improvements could occur
with higher household income levels.

However, the impoverished indigenous Thami community has encountered limited
income-generating prospects, a situation further exacerbated by the earthquake’s aftermath,
which has driven them into deeper economic hardship and substantial debt. Consequently,
their precarious financial situation and inability to afford electricity bills have compelled
them to endure the cold conditions of their living spaces, with just one among the surveyed
households being equipped with a heater. This situation is particularly challenging for
vulnerable populations, such as the elderly, children, and the sick, who are compelled to
endure cold environments. To cope with these conditions, households resorted to adopting
various measures, such as adding extra layers of clothing, shutting windows, and using
blankets to stay warm during cold winter nights.

3.2.3. Explanation of Thermal Performance by U-Value

This study also examined the U-value of the prototype and vernacular houses in both
resettlement sites. The calculation of the U-value revealed that vernacular houses with
a stone wall and wooden window have lower U-values compared to prototype houses
with a brick wall, and glass window (Figure 15). Specifically, the U-value of the roof in the
prototype house with CGI sheet was 3.34 W/(m2·K), while for the vernacular house with
CGI sheet and 1.5 mm bamboo beneath was 3.26 W/(m2·K). In Jillu, the roofing material had
a lower U-value of 2.73 W/(m2·K) in the case of a slate roof and 2.38 W/(m2·K) in the case
of an RCC roof. The wooden windows in the vernacular houses have less infiltration and
thus less heat loss compared to the glass windows in the prototype houses. The prototype
houses, built using high U-value building materials compared to vernacular buildings,
exhibited a temperature fluctuation of 12.8 ◦C, indicating poor thermal performance and
lack of significant thermal mass to store solar heat gain. As indicated by Rodriguez et al. [31]
and, Sarkar and Bose [47], the study confirms that the building envelope, thermal mass,
infiltration, and roof leakage contribute to poor thermal performance. The use of CGI
roofs in both house types could be attributed as one of the main reasons for the low indoor
temperature. Additionally, the study found that the infiltration and leakage increased heat
loss, resulting in the indoor air temperature being similar to the outdoor air temperature
during the nighttime. The findings of Yoshino et al. [46] align with this study, emphasizing
the importance of thermal insulation and air tightness for energy conservation and better
performance of residential buildings. Enhancing the thermal performance of windows,
walls, roofs, and floors is crucial for enhancing the indoor thermal environment [20].
The findings of this study are consistent with Yoshino et al. [46], which emphasize the
importance of better thermal insulation and air tightness for energy conservation and
improving residential building performance.
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3.3. Resident Satisfaction Survey

In the context of post-disaster resettlement, resident satisfaction does not solely hinge
on physical environmental factors but also intertwines with personal, social, and cultural
factors [33]. The resident satisfaction survey, encompassing eight distinct factors that
influence housing satisfaction, was conducted in both study sites. Using a questionnaire
survey with a 5-point Likert scale (‘1. highly unsatisfied’ to ‘5. highly satisfied’), the survey
was administered among the 46 households in Panipokhari and 56 households in Jillu with
the aim of evaluating the difference between actual and desired housing outcomes from
the households’ perspective. The results showed a consistent trend: residents were least
satisfied with the thermal comfort of their homes, as evidenced by low mean satisfaction
scores of only 1.9 in Panipokhari and 2.5 in Jillu (Figure 16).
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Consequently, this study proceeded to carry out a thermal sensitivity survey among
the 102 earthquake-displaced households, currently residing in the prototype houses in
both study sites. The focus was on assessing their perceptions of thermal sensation in their
newly constructed post-earthquake houses and comparing them with their experiences in
the vernacular house before the earthquake.

The result of the thermal sensation survey in Panipokhari indicated that a significant
70% of occupants characterized their houses as “very cold”, while another 30% described
their rooms as “cold” in the morning (Figure 17). Similarly, in the same setting, 7% of the
occupants found their houses to be “very cold”, while 61% deemed their rooms “cold”,
and 33% felt them to be “slightly cold”. During nighttime hours, more than half of the
occupants reported that the indoor environment of the house was very cold, with 35%
indicating “cold” and 2% opting for “slightly cold” in the afternoon. In Jillu, the prevailing
perception among respondents was that their houses were “slightly cold” (45% in the
morning, 55% in the afternoon, and 45% at night), followed by a neutral feeling in thermal
comfort (11% in the morning, 36% in the afternoon, and 11% at night). These results
were consistent with the temperature measured by data loggers, which demonstrated that
morning and night temperatures were akin to the outside temperature. These findings
correspond with a previous thermal sensation survey by Thapa et al. [28], wherein 58% of
respondents reported a “cold” thermal sensation in winter. Similarly, the occupants’ reports
of experiencing “cold” sensations in their homes during winter align with the findings of
Rodriguez et al. [31] and Shahi et al. [20].
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Figure 17. Thermal sensation of the occupants of the prototype houses: (a) Panipokhari; (b) Jillu.

The thermal environment satisfaction survey, as presented in Figure 18, indicates
a clear disparity in occupants’ satisfaction levels between the prototype houses and the
vernacular houses. In Panipokhari (Figure 18a), approximately 80% of the occupants
expressed their dissatisfaction with the thermal environment in the prototype houses, while
another 13% and 7% stated that they were “neutral” and “satisfied” with these houses’
thermal environment. In contrast, about 69% of the occupants were satisfied with the
vernacular houses, and 7% had a “neutral” perception. Only 24% were “unsatisfied” with
the bedrooms in their previous vernacular houses. In Jillu (Figure 18b), about 55% of
the households were neutral in their assessment of prototype houses, followed by 38%
unsatisfied and 7% very unsatisfied. The household’s satisfaction with their previous
vernacular houses was notably higher, with 59% expressing satisfaction, while those who
were neutral and very satisfied accounted for 18%. These findings are in contrast to
the results reported by Rodriguez et al. [31], where they found that slightly over half of
the occupants surveyed were satisfied with the indoor temperature of their prototype
houses. This indicates a strong preference for the thermal environment and overall comfort
provided by vernacular houses compared to the newly constructed prototype houses.
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This analysis shows that the occupants living in the prototype houses were very
dissatisfied with the indoor thermal environment and considered their rooms to be cold.
The majority of the households expressed that the cement and CGI sheets used in the
house made the house cold and difficult to live in. The residents also expressed that
their former vernacular houses before the earthquake were very warm. Similar to several
studies [8,34], this study also confirms that the residents were dissatisfied with the post-
disaster permanent housing constructed after the earthquake. Additionally, this study
also supports the findings of studies [38,48] that the residents were unsatisfied with the
prototype houses compared to the pre-disaster vernacular houses constructed to suit the
local climate. Furthermore, the households also complained about their degraded health
condition in the prototype houses, such as headaches, colds, coughs, body aches, swelling in
legs, etc. However, the respondent of the vernacular house, who also has a prototype house
in Panipokhari, expressed high satisfaction with the thermal comfort of his vernacular
house. He further stated that the thermal environment was one of the reasons for staying
in the vernacular house in the winter season.

4. Overall Discussion

The investigation into the indoor thermal environment and resident satisfaction with
newly constructed prototype houses and standing vernacular houses following earthquakes
has revealed critical insights that can greatly inform post-disaster resettlement programs.
Despite the intentions behind resettlement as an opportunity for development [49], it has
inadvertently exacerbated thermal discomfort to vulnerable households. This discrepancy
highlights the need for a more holistic approach in the design and construction of the
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prototype housing within resettlement efforts, which should encompass a thorough under-
standing of thermal dynamics, local context, and climate, rather than merely focusing on
structural aspects [50].

The comparison of daily average indoor air temperatures highlights the thermal supe-
riority of vernacular houses. For instance, in Panipokhari, the vernacular house maintained
an average indoor temperature of 12.3 ◦C, whereas the prototype house had a slightly lower
average of 11.6 ◦C. Similarly, in Jillu, the vernacular houses registered an average indoor
temperature of 16.7 ◦C, contrasting with prototype houses’ 17.5 ◦C. This finding challenges
the previous findings made in China by Cheng et al. [24] that the indoor air temperature of
post-disaster permanent houses exceeded that of vernacular houses. Our study found the
opposite trend: lower indoor air temperatures in prototype houses compared to vernac-
ular buildings at night. The prototype house exhibited notable temperature fluctuations
throughout the day, unlike the more stable conditions in vernacular houses, showcasing the
latter’s inherent thermal resilience. Moreover, vernacular houses consistently maintained
indoor air temperatures higher than the prototype houses, further affirming their superior
thermal performance.

The indoor air temperature of the vernacular house was found to be 2.1 ◦C higher
than that of the prototype house and 2.6 ◦C higher than the outdoor air temperature in
Panipokhari. Similarly, the indoor air temperature of both prototype and vernacular houses
in Jillu were 4.5 ◦C and 5.5 ◦C higher than the outdoor air temperature, respectively. These
findings, align with Juan et al.’s [43] study, confirming that the indoor temperature in
the bedroom of vernacular houses is 2.1 ◦C and 5.5 ◦C higher than the prototype houses
when auxiliary thermal sources are absent. Similarly, our study in the case of Panipokhari
supports Thapa et al.’s [28] findings that the indoor and outdoor air temperatures of
the prototype houses closely match outdoor air temperatures, resulting in occupants’
discomfort due to the lack of differentiation. Displaced households are compelled to live
in indoor air temperatures similar to outdoor air temperatures. This concurs with prior
research [23,46] indicating that indoor air temperatures often fall far below the lower
limit of the acceptable comfort temperature range specified by ASHRAE standard. Our
study also aligns with Singh et al.’s [21] conclusions that vernacular buildings tend to also
be uncomfortable during winter months. Additionally, other studies [22] have similarly
found that the mean comfort temperature in vernacular houses during winter is below
the ASHRAE standard. However, in Jillu’s prototype case, the result showed higher
indoor temperature with respect to outdoor air temperature, suggesting the paramount
importance of the choice of material and construction techniques used in determining the
thermal condition.

The observed temperature patterns in both case locations, with high daytime tempera-
tures and low nighttime temperatures, indicate a potential issue with the construction of the
prototype houses, likely involving high U-value materials. Further field observations and
examination into the thermal transmittance of building components (e.g., wall, window,
and roof) revealed a significant difference in U-values between vernacular and prototype
houses. The vernacular house has notably lower U-Values, attributed to the minimal heat
gain or loss through the stone wall, wooden window, and slate roofing in the case of Jillu,
while Panipokhari showed slightly higher U-values due to the use of CGI roofing. This
suggests that CGI sheets, given their thinness and high thermal conductivity, provide poor
insulation, allowing heat to escape easily. Slate, though thicker and with better insulation
than CGI sheets, is still not highly insulating. In contrast, Reinforced Concrete (RCC)
roofs, with their significant thickness and lower thermal conductivity, offer much better
insulation, making them more energy-efficient for maintaining indoor temperatures. In
contrast to Juan et al.’s [43] findings that the air tightness of brick houses is better than
that of the vernacular house, field observations showed issues with the prototype house in
Panipokhari, including air infiltration and thermal leakage through the uninsulated roof
construction with gaps at eve levels, warping of unseasoned woods used for doors and
windows, poor fittings, and irregular operation schedules of doors and windows. These
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factors collectively increased heat loss in the prototype house in Panipokhari, leading to
the indoor air temperature being similar to the outdoor air temperature at night.

Such a close resemblance of indoor and outdoor air temperatures at night and in-
creased fluctuations in indoor air temperature within the prototype house in Panipokhari
can be attributed to factors such as inadequate insulation levels [21], the usage of materials
with higher U-values [20], and suboptimal air tightness [43]. This finding aligns with the
results of Tas et al. [12], who found that occupants living on the top floor were unsatisfied
with the roof insulation. The poor thermal performance of the CGI sheets was one of the
major reasons for the low indoor temperature in the winter. In the case of the prototype
in Jillu, where a higher indoor temperature was observed compared to Panipokhari, the
insulation provided by a concrete roof with a lower U-Value can be attributed as one of
the key reasons for the warmer environment, especially considering the prototypes in both
locations shared similar problems discussed in the preceding paragraph. Some of these
problems also existed in vernacular houses, but to a lesser degree than in the prototypes.

Moreover, the survey analyzing occupant perceptions also revealed that 70%, 7%,
and 63% of respondents deemed prototype houses to be “very cold” during the morning,
afternoon, and evening, respectively in Panipokhari. Conversely, in Jillu, a majority of the
respondents characterized their houses as only slightly cold, followed by a neutral rating.
The occupants indicated greater satisfaction with the thermal environment of vernacular
houses [17] compared to prototype houses. In the vernacular house, central hearths pro-
vided heating, whereas the prohibition of firewood-based room heating in prototype houses,
due to concerns about interior aesthetics, left occupants without this option. With limited fi-
nancial means, households could not afford active heating systems. The absence of auxiliary
heater compelled households to endure the cold, exacerbating the health-related vulnera-
bility of already loan-burdened, economically disadvantaged, displaced households. Juan
et al.’s [43] study similarly recommended auxiliary heating systems, underscoring that both
vernacular and modern brick houses faced unsatisfactory indoor thermal environments.
However, the Thami community’s constrained economic circumstances, compounded by
earthquake-induced hardships and an inability to cover electricity costs, left many with no
choice but to occupy cold rooms. The predicament especially affected the elderly, children,
and the sick. While only one household reported having an electrical heating system to
warm their room, others have adopted various strategies, such as adding a layer of clothing,
closing the windows, and staying under blankets to keep warm during the cold winter
nights to cope with the low indoor temperature. The unsatisfactory living conditions and
dissatisfaction with housing may eventually prompt households to consider abandoning
the houses or returning to their original locations [50,51], seeking better options.

Furthermore, while post-disaster reconstruction is typically expected to result in
housing improvements, our study reveals that the constructed prototype houses actually
performed less effectively in comparison with their vernacular counterparts. This discrep-
ancy could potentially lead to decreased satisfaction and acceptance of these prototype
houses, thereby affecting the overall success of the reconstruction initiative. The study
suggests that constructing post-disaster prototype houses should carefully consider the
local climate conditions and available materials to ensure their effectiveness and alignment
with the thermal and energy needs of the community. Research by Fuller et al. [52] indicates
high infiltration rates due to poor levels of construction. Shahi et al. [20] emphasize that
augmenting thermal insulation and reducing infiltration can effectively raise nighttime
indoor air temperature by 1.1–1.8 ◦C. Furthermore, they propose that enhancing building
envelope systems can contribute to increased indoor air temperatures without a corre-
sponding rise in energy consumption for heating. Shahi et al. [20] have also reviewed
energy savings achieved through adjustments in temperature settings. In the context of this
discussion, Juan et al. [43] found that the brick house required 19% more energy for heating
compared to vernacular houses. Furthermore, insights from Hoyt et al. [53] suggest that
a mere one degree Celsius change in the setpoint can result in an energy savings of 10%.
Similarly, Nicol et al. [54] found that a 1 ◦C increase in indoor air temperature could lead to
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a 10% reduction in heating energy usage during winter. Building upon these insights, a
shift towards the indoor air temperature similar to the vernacular building’s 2.1 ◦C and
1 ◦C advantages could potentially lead to a substantial 21% and 10% reductions in heating
energy requirements for prototype houses in Panipokhari and Jillu Integrated Settlements
respectively. This becomes particularly significant when considering the socio-economic
challenges faced by the disadvantaged Thami community. In light of these circumstances,
adopting passive design strategies akin to those observed in vernacular houses could have
resulted in notable energy savings for winter heating.

In the context of the preceding discussion, it is evident that despite comparable out-
door air temperatures at both case locations, variations are observed in indoor temperatures,
contingent on the selection of materials and construction techniques. This phenomenon
becomes a significant concern in post-disaster resettlement initiatives not only in Nepal but
also in other locations. The existing policies in Nepal have primarily focused on reducing
seismic vulnerability, while paying limited attention to the indoor thermal environment
and energy efficiency. Government policies and initiatives from development partners have
widely promoted the use of lightweight CGI sheets in roofing and gables, overlooking the
varying thermal properties of these sheets across different climatic regions and altitudes.
Consequently, this practice has contributed to the inadequate thermal performance of the
prototype houses. Despite the availability of locally sourced stone in Panipokhari, imple-
menters opted for bricks in construction, disregarding the material’s thermal properties and
high U-values. A comparison of materials and their U-values used in the prototype and the
vernacular house indicated that the latter was constructed over time with careful material
selection, resulting in low U-values due to accumulated knowledge. In contrast, the proto-
type houses were designed and constructed by technical experts, who prioritized seismic
safety without adequately considering material properties. Alternative material selection
could not only have improved the indoor thermal environment, but also reduced the need
for energy to increase room temperature. Thus, the judicious choice of building materials
in housing construction can enhance thermal comfort, reduce energy consumption, and
contribute to the overall sustainability of the resettlement projects.

As indicated by Sarkar and Bose [55] or policymakers, planners, and implementers,
a deliberate emphasis on building materials that account for thermal comfort and long-
term energy cost is crucial for the sustainability of post-disaster resettlement programs.
The study recommends that reconstructed prototype houses following disasters prioritize
the indoor thermal environment by meticulously selecting building materials with better
U-values, surpassing those used in vernacular houses. However, it is important to note
that vernacular houses have better aesthetic appeal, generate local employment, and use
locally available materials, making it cost-effective and thus, offering a sustainable solution.
Learning from the design principles of vernacular houses, adapted to the local climate
and context, can pave the way for an improved indoor thermal environment, reduced
energy expenses, and overall program sustainability. Integrating these findings holds
practical significance for policy-formulation, planning, design, and construction of houses,
particularly in the context of increasing climate and disaster-induced displacements.

This study acknowledges two main limitations. Firstly, it did not extensively investi-
gate health problems associated with poor thermal performance in houses. Addressing this
aspect in future research would enhance our understanding of the study’s implications and
occupants’ well-being. Secondly, for a more comprehensive understanding, further research
on surface temperature, along with a longitudinal study during the summer months is
needed. This should also include a larger sample of houses to ensure robust results, which
could not be done due to the limited availability of only one or two remaining traditional
buildings following the earthquake. Additionally, this study does not include a detailed
analysis of the glazing and window wall ratio’s impact on indoor thermal environments,
which also plays a role in determining indoor comfort. Including this analysis in future
research would enable the development of improved design strategies for energy-efficient
and comfortable living spaces.
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5. Conclusions

In this study, we investigated the indoor thermal environment and resident satisfaction
of the prototype house constructed for displaced households in Nepal’s Dolkaha district,
a region frequently affected by disasters. This study utilized the primary data collected
in two case locations through fieldwork, including measurements of air temperature and
relative humidity, a structured questionnaire survey, and direct observations. This’s study
findings highlight several key points:

1. Nighttime Temperature Variations: The nighttime indoor air temperature of the
prototype house was 8.3 ◦C, which was 2.1 ◦C lower than the vernacular house
reconstructed before the Gorkha earthquake of 2015 during the coldest month of
January and February in Panipokhari. In Jillu, the nighttime temperature in the
prototype house was recorded at 12.4 ◦C, which is 4.5 ◦C higher than the outdoor air
temperature. This suggests that the vernacular houses were able to provide a warmer
indoor environment compared to the prototype houses.

2. Non-Compliance with Comfort Standard: Both the prototype houses and the vernacu-
lar houses had indoor air temperatures that fell short of meeting ASHRAE comfort
standard, particularly during nighttime hours. This indicates a need for an improved
thermal environment, especially for occupants engaged in farmwork and who cannot
afford auxiliary heating systems.

3. Material Properties: The U-value of the building construction materials in the vernac-
ular house was found to have a lower value than the prototype house, indicating that
the materials used in the prototype house have poor thermal insulation properties.
Despite reconstruction being an opportunity to build back better, the prototype houses
exhibited poor thermal performance attributed to the mismatch in the selection of
material according to the local climate and context. If the indoor air temperature in the
prototype could be increased to an indoor air temperature similar to the vernacular
building of 2.1 ◦C and 1 ◦C higher in both study locations, the heating energy could
be saved by 21% and 10%, respectively. This suggests that selecting building materials
aligned with local climate conditions could result in an improved indoor thermal
environment and substantial energy savings.

4. Resident Dissatisfaction: Residents of prototype houses expressed high dissatisfaction
with their thermal environment, underlining the importance of considering thermal
comfort in design and construction. Drawing from lessons in vernacular architecture,
which utilizes local materials with higher U-values suitable for the climate, can guide
future resettlement programs.

Overall, this research emphasizes the critical need to address indoor thermal comfort in
post-disaster resettlement efforts, particularly for the well-being of vulnerable communities.
Despite the opportunity to enhance the living conditions of over 5,000 displaced house-
holds, insufficient attention has been given to the indoor thermal environment. Integrating
considerations of indoor thermal comfort in the design and construction of post-disaster
prototype houses not only holds the potential to elevate occupants’ well-being and sat-
isfaction, but also contributes to the long-term success and sustainability of resettlement
initiatives. This study’s recommendation to select construction materials based on the
local context and climate, drawing insights from vernacular architecture, offers a practi-
cal pathway for improvement. Moreover, for economically disadvantaged communities
like the Thami community in Panipokhari, implementing passive design strategies and
utilizing locally appropriate building materials akin to those in vernacular houses can
yield substantial energy savings and improved thermal comfort for occupants. These
measures can significantly enhance the sustainability and overall success of post-disaster
resettlement programs.

It is evident that prototype houses in earthquake-affected regions often employed
similar materials and technologies, designed without considering local climate nuances and
material availability. This highlights the broader relevance of the findings of this research
on indoor thermal comfort, energy efficiency, and material selection. Insights from this
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study may benefit not only the specific study area, but also similar contexts undergoing
post-disaster reconstruction and resettlement efforts, providing valuable insights for pol-
icymakers, implementers, and researchers working towards thermally comfortable and
environmentally sustainable resettlement solutions
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Table A1. Questionnaire used in the thermal sensation and thermal satisfaction survey.

Thermal Comfort Parameter English Nepalese Translation

Thermal sensation –3 Very cold
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0 Neutral
+1 Slightly hot
+2 Hot
+3 Very hot
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