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Abstract: As global challenges evolve rapidly, lightweight architecture emerges as an effective
and efficient solution to meet rapidly changing needs. Textiles offer flexibility and sustainability,
addressing spatial requirements in urban and residential designs, particularly in underutilized
areas. This study developed a user-friendly and customizable textile hybrid structure prototype by
exploring different weaving methods to find more flexible and adaptable solutions. The research
adopts a three-stage process: concept design, parametric simulation prototype, and physical scale-up
testing. Methodologies include Finite Element Analysis (FEA) for assessing structural bending and
tensile behavior, evolutionary computation for multi-objective optimization, Arduino for enabling
interactive dynamic and lighting systems, and a website interface for bespoke decisions. Results
revealed a groundbreaking textile hybrid prototype, applicable individually or collectively, with
flexible assembly and disassembly in various scenarios. The prototype also offers an eco-friendly,
cost-efficient facade renovation solution, enhancing aesthetics and providing shading benefits. The
research encompasses interactive lightweight construction design, bending-active textile hybrids,
form-finding, circular economy, and mass customization, contributing to advances in lightweight
construction design while promoting sustainable practices in textile architecture.

Keywords: lightweight structure; assemble and disassemble; textile hybrids; weaving method;
parametric design; form-finding; adaptive design; interactive system

1. Introduction

Lightweight temporary constructions offer potential solutions through innovative
recyclable materials, bioengineering principles, and advancements in manufacturing tech-
nology, promising more sustainable construction methods [1–5]. The integration of digital
modeling and simulation tools in the architectural and engineering domains has sig-
nificantly enhanced design and analysis capabilities, leading to cost reduction, shorter
construction times, and improved building performance and sustainability [5–10].

In temporary constructions, textiles offer several advantages, including lightweight
properties, flexibility, and cost-effectiveness [9–11]. Moreover, textiles hold immense po-
tential for optimizing lightweight, structural, and non-structural applications, including
canopies, pavilions, and facade elements [8–14]. Notably, projects like CITA’s Hybrid Tower,
Isoropia, have further expanded computational methods, scale, and structural innovation,
bringing prototypes into the realm of large-scale manufacturing and real-world certifica-
tion [15–17]. These structures are characterized by various benefits that are easy to install,
making them ideal for rapid installation and disassembly, thereby addressing the demand
for quick, adaptable building solutions [12–14,17–19]. Furthermore, the inherent flexibility
of textiles enables their adaptive use in dynamic interactive installations [20–23].

The existing research on textile architecture predominantly revolves around machine-
knitted fabrics, with limited attention given to handcrafted woven textiles. Additionally,
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comprehensive studies on optimizing design and manufacturing processes throughout the
lifecycle for mass customization in different spatial types are lacking. Therefore, our research
emphasizes the exploration of lightweight textile architectural prototypes based on weaving,
aiming to achieve multifunctional adaptability with an efficient sustainable workflow.

Therefore, our research emphasizes the exploration of lightweight textile architectural
prototypes based on weaving, aiming to achieve multifunctional adaptability. The design
research considers the following five points: Design for Assembly (DfA), Design for Disas-
sembly (DfDisa), Design for Change (DfCh) [24], Material-based Computational Design
(MCD) [25], and Circular Economy Design Principles [26–28].

For experimentation, we use the recyclable, replaceable polymer materials provided
by PolRe@ Company. This resilient textile material comprises an inner core for structure
and an external jacket for cover, protection, and decoration. The tubular textile with an
extruded polymer structural core exhibits high mechanical resistance and recyclability.
Bending elements were applied with Glass Fiber Reinforced Polymer (GFRP), adhering
to common standard sizes while considering the ratio of flexural strength to stiffness on a
logarithmic scale. This approach was guided by the principles of “Ashby diagrams” on
common building materials with a ratio of strength to stiffness [29]. Furthermore, PolRe@

and GFRP offer a range of sizes and profiles that can be customized and conveniently
chosen to align with the unique requirements of building or furniture applications.

The use of elastic deformation in 20th-century architecture, particularly in the context
of double-curved shell structures, had several significant implications and applications [30].
Elastic deformation was employed as an economic construction method primarily for
double-curved membranes and shell structures.

In more recent times, advancements in simulation techniques have opened up new
possibilities in architectural design and construction. These developments have expanded
the use of elastic deformation beyond double-curved shells to various other applications in
bending-active structures. Generally, examples of bending-active structures include the
following [31]:

• Catenoids and grid shells: These are architectural elements with curved or grid-
like forms that can adapt to different loads and environmental conditions through
elastic deformation.

• Bent structural components with membranes: The combination of bent structural
components and tensioned membranes can create innovative architectural forms that
respond dynamically to changing conditions.

Today, economic reasons such as advantages in transportation and the assembling
process, as well as the performance and adaptability of structures, support the use of
active bending. The advantages of bending-active structures lie, however, not only in the
possibility of generating complex curved geometries for static structures but also in the
shape adaptation possibilities, based on reversible elastic deformation [32]. Summing up,
the adaptivity of active bending systems can result from the combination of two main
design requirements:

• Adaptivity in construction: Providing the right material properties and a reversible
deformation process, active bending may also be used for adaptive structures that can
be installed with different sizes and geometries, thus allowing a large tolerance during
the construction stage.

• Adaptivity in use: These structures can change shape or move during their service life, in
response to external stimuli, providing opportunities for dynamic architectural design.

In addition, the availability of industrial manufacturing processes for semi-finished
products like Fiber-Reinforced Polymer (FRP) through methods like pultrusion has made
these materials more economically viable for use in bending-active structures. FRP offers
lightweight, durable, and flexible properties that are well-suited for such applications.

In order to generate a comprehensive understanding of these potentials, the research
follows an iterative workflow of designing, prototyping, testing, and scaling up, employing
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a systematic approach to continuously improve and refine designs to align with desired
objectives and perform optimally in real-world scenarios.

Concept Generation

The Weaving Octopus (WO) concept is inspired by soft-bodied creatures, enabling
the structure to adapt flexibly to complex scenarios and meet diverse user needs. The
WO prototype composed of skeletons and skin and created a flexibility that can respond
in real-time to human behavior and the surrounding environment, adding convenience
and vitality to urban corners and vacant lots. This multifunctional prototype can be used
individually as decorative furniture, lighting devices, or art installations. Additionally, the
WO units can be modularly assembled to adapt flexibly to larger spatial environments
(Figure 1).
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Figure 1. Left: WO conceptual sketches for adaptive use in urban scale. Right: WO conceptual
physical models applied in different scenarios (on the ground, between two walls, and in the corner).

In the initial experiment, the model utilized only PolRe@ for the skin and skeleton for
recycling efficiency. The weaving-based skeleton did not exhibit the desired mechanical be-
havior. Thus, we introduced another elastic material for the skeleton while retaining PolRe@

for the skin, resulting in a textile hybrid structure. This “textile hybrid” integrates bending
and form-active systems based on textile material behavior, leading to a lightweight and
self-stable structure [15,33–35].

The concept model (Figure 1) shows the WO prototype’s adaptability for different
spatial typology, such as squares, walls, and corners, addressing functional deficiencies in
urban spaces caused by changing demands and activating overlooked areas.

2. Materials and Methods

This section focuses on the material and methodology employed during the WO
prototype design phase. Figure 2 illustrates the workflow of this stage, which involved
both physical model testing and digital model simulations to conduct experiments
and explorations.

Due to the limitations of the operating area and experimental equipment, a 1:10 scale
demonstrator was constructed to test the stability, flexibility, and material usage of different
weaving methods for generating WO prototype structures. Additionally, a single-board
microcontroller system was integrated into the 1:10 physical model to verify the dynamic
interactivity potential of different skin weaving methods.

The form-finding process for construction structures can be accomplished through
both physical prototype models and digital simulations. The primary objective is to deter-
mine the equilibrium shape of the prestressed mesh, which serves as input for assessing
the structural stability under external load conditions [36–40]. The parametric digital
model used various computational design tools and platforms for form-finding, weaving
algorithm development, and mechanical performance simulations.
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Figure 2. The working flowchart.

Due to limited material mechanical property data for PolRe, we adopted parameters
from polyethylene terephthalate (PET) in the actual computational process for form finding
and mechanical performance analysis [41]. This decision is based on the similarity between
PolRe and PET, as PolRe’s core is also made of PET material, albeit with enhanced strength
of skin. Additionally, properties for GFRP were obtained by referencing existing research
materials, including tensile strength and Young’s modulus and shear modulus [42,43].

Data on material usage, covering area, displacement, and other relevant parameters
were collected through these simulations. The results were the foundation for subsequent
multi-objective optimization, where customized fitness settings were employed to aid
in design customization and optimization decisions. Moreover, using Java and Visual
Studio allowed the simulation process to be implemented into an interactive web interface,
simplifying, and visualizing the mass customization process.

In the scale-up application stage, we conducted simulations using Karamba to analyze
the mechanical behavior of a parameterized textile facade composed of WO prototypes un-
der horizontal wind loads. In the specific context of architectural applications, we adapted
the dimensions and cross-sections of PolRe and GFRP while incorporating material param-
eters to perform more precise mechanical analysis calculations. This approach allowed us
to theoretically validate the stability of this hybrid textile-bending active structure in the
construction context. The detailed computational process and results will be presented in
Section 4.3.

2.1. Bending-Active Skeleton

To satisfy high elasticity and strength ratios for skeletons in the WO prototype, the
Ashby diagram was utilized to select the appropriate material [29]. GFRP was chosen for its
bending-active properties after considering the material’s performance and availability. The
research on skeleton bending initially began with single-bent rod elements and progressed
to multi-bent rod elements (Figure 3). Kangaroo was employed for quick form-finding,
while Karamba 3D facilitated accurate Finite Element Analysis (FEA). Ultimately, a planar
hexagonal configuration formed by six bent rods was selected as the skeletons’ footprints
for further investigations.
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2.2. Form-Active Weaving Surface

The investigation into the weaving methods for both the skeleton and skin components
of the WO prototype was carried out using both physical and digital models. The use of
weaving-based surfaces offers advantages in terms of easy assembly and disassembly, as
well as reducing the need for additional connection components.

The weaving system on the bending-active skeleton utilized two PolRe@ fibers inter-
twined with each other. The logic of weaving on the skeleton surface in the physical model
was translated into a weaving algorithm in Grasshopper (GH) for further exploration and
analysis (Figure 4).
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Figure 4. Weaving method on the skin (Left: physical model, Right: digital model), number in the
right figure shows the sequent of the list of the weaving algorithm.

The experiment of form-active weaving skin expanded from 2D diagrams to 3D mod-
els, exploring three different weaving methods (A, B, and C). Manual bending experiments
were performed on weaving models using methods A, B, and C to test flexibility and
stability. The physical and digital models provided data on material usage and form config-
uration with different weaving methods while maintaining the same bending behavior of
the skeleton (Figure 5). After evaluating parameters such as flexibility, stability, material
usage, and spatial form, methods B and C were selected for subsequent overall application
analysis and optimization experiments.
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2.3. Computational-Aided Design
2.3.1. Form-Finding and Parametric Process

Parametric control played a crucial role in exploring the morphological variations of
the WO prototype. After finalizing the skin’s weaving method and the skeleton’s footprints,
the overall form-finding process was conducted. Figure 6 illustrates the parametric design
workflow based on weaving method B.
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The process started with using Kangaroo for fast form-finding, considering both the
skin strain and skeleton elasticity. The next step involved using Karamba 3D to obtain
rapid Finite Element Analysis (FEA) engineering performance results and to visualize the
assembled WO components. Finally, GH tools were used to collect data on material usage,
covering area, height, max displacement, max curvature, and other relevant parameters,
which were then utilized in the subsequent optimization and customization process.

The parametric design process enabled the efficient generation of a wide variety of
WO units by simply adjusting the input related to the skeleton’s load conditions. However,
manually adjusting and selecting the WO form consumed significant computational time
each time the input was changed. To streamline and expedite the customization process,
there was a need for an optimized and user-friendly interface.

The input end of the GH battery pack allows for the adjustment and control of the
length of each woven skin. Using the Kangaroo solver, we obtain preliminary form-finding
results. This initial form serves as input for Karamba’s mechanical analysis, where we
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collect data such as axial stress displacement and utilization for various WO configurations.
Additionally, information regarding the coverage area, height, and material usage can be
derived from the form-finding process using the GH base calculator. In the subsequent
multiple objective optimizations, we focus on data relevant to design objectives, particularly
for temporary pavilions. This includes considerations such as available space, material
usage, and maximum displacement. The weights of these three fitnesses are equally
emphasized in the objective optimization process.

2.3.2. Multiple Objective Optimization

The optimization process utilized the evolutionary multi-objective optimization en-
gine, Wallacei, within Grasshopper. This plugin allows users to set multiple different fitness
criteria to cater to diverse requirements. The optimization process was demonstrated by
optimizing the WO prototype as an assembled pavilion. Thus, the main objectives for this
optimization were to ensure less material consumption, better mechanical performance,
and sufficient available space for people to stay inside. To address these objectives, three
constraints and fitness components were set (Figure 7):

• Minimizing total material usage: a sum length of materials for weaving skin used in
every 2 skeletons.

Total Material usage (m) = Material usage (AOC + A’OC’ + A’OB + AOB’ + BOC + B’OC’)

• Better mechanical performance: minimal–maximum displacement assessed in Karamba
3D. The maximum displacement in Karamba 3d can be calculated using the follow-
ing equation:

δ_max = 5qL4/384EI

(δ_max: maximum displacement at the center of the beam, q: uniform load, L: length of
the beam, E: Young’s modulus of the beam material, I: moment of inertia of the beam’s
cross-section.)

• Sufficient available space: endure the ratio of the final form’s area to its height within
the range of 0.058 to 2.444. The available space can be calculated using the follow-
ing equation:

As = |H/A(c) − 0.058|+|H/A(c) − 2.44| − (2.44 − 0.058)

H/A(c) = H/Area

H/A(min) = 0.058

H/A(max) = 2.44

(As: available space for fitness 03, A(c): value of current state area, H: height, A: area)
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The optimization results will be presented in Section 3, showcasing the iteration of op-
timization of the WO prototype that meets the specified criteria for an assembled pavilion.



Buildings 2023, 13, 2413 8 of 21

2.4. User-Friendly Website Interface

To enhance user experience and facilitate customization while obtaining essential
parameters, we developed a user-friendly web interface. The process involves packaging
complex algorithms using the Hops component in Grasshopper for Rhino7.0, developing
web page functionality using the Java programming language in Visual Studio Code 2022,
adding web components, and utilizing the Rhino Compute API to construct the web inter-
face (Figure 8). Rhino Compute, acting as a Geometry Server, enables seamless integration
and communication between Rhino and Visual Studio, ensuring efficient cross-platform
compatibility. Through the web interface, users gain the convenience of directly adjusting
input parameters. As a result, they receive real-time responses concerning the model and
material usage data, which proves instrumental in informed design decision making. The
user-friendly web interface thus plays a pivotal role in enhancing the accessibility and
efficiency of the design process.
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2.5. Interactive Electronic Control

The WO prototype further explored the potential of textile hybrid applications through
single-board microcontroller kits for electronic interactive control. Utilizing Arduino board
and Arduino IDE2.2.1 software, the study investigated dynamic interactivity and illumi-
nated interactions (Figure 9). The experimentation involved various electronic components
such as Ultrasonic Sensor, MG996R servo, and LED light sources. By programming the
Arduino IDE in C++, the control of lighting switches or servo speed and direction was
achieved by reading distance data from the Ultrasonic Sensor via the serial monitor, allow-
ing interactive electronic control of the WO prototype.

Buildings 2023, 13, x FOR PEER REVIEW 8 of 21 
 

The optimization results will be presented in Section 3, showcasing the iteration of 

optimization of the WO prototype that meets the specified criteria for an assembled pa-

vilion. 

2.4. User-Friendly Website Interface 

To enhance user experience and facilitate customization while obtaining essential pa-

rameters, we developed a user-friendly web interface. The process involves packaging 

complex algorithms using the Hops component in Grasshopper for Rhino7.0, developing 

web page functionality using the Java programming language in Visual Studio Code 2022, 

adding web components, and utilizing the Rhino Compute API to construct the web in-

terface (Figure 8). Rhino Compute, acting as a Geometry Server, enables seamless integra-

tion and communication between Rhino and Visual Studio, ensuring efficient cross-plat-

form compatibility. Through the web interface, users gain the convenience of directly ad-

justing input parameters. As a result, they receive real-time responses concerning the 

model and material usage data, which proves instrumental in informed design decision 

making. The user-friendly web interface thus plays a pivotal role in enhancing the acces-

sibility and efficiency of the design process. 

 

Figure 8. Workflow to build a user-friendly web interface. 

2.5. Interactive Electronic Control 

The WO prototype further explored the potential of textile hybrid applications 

through single-board microcontroller kits for electronic interactive control. Utilizing Ar-

duino board and Arduino IDE2.2.1 software, the study investigated dynamic interactivity 

and illuminated interactions (Figure 9). The experimentation involved various electronic 

components such as Ultrasonic Sensor, MG996R servo, and LED light sources. By pro-

gramming the Arduino IDE in C++, the control of lighting switches or servo speed and 

direction was achieved by reading distance data from the Ultrasonic Sensor via the serial 

monitor, allowing interactive electronic control of the WO prototype. 

 

Figure 9. Workflow to integrate interactive electronic control system into the Weaving Octopus pro-

totype. 

3. Results 

The study developed two prototypes, type B and type C, which applied the different 

weaving methods mentioned above (Figure 10, Left). We first compare the parameters of 

the results when the base area formed by the type B and type C is the same, that is, when 

the fulcrum positions of the skeletons are fixed (Figure 10, Right). From Figure 10, it can 
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prototype.

3. Results

The study developed two prototypes, type B and type C, which applied the different
weaving methods mentioned above (Figure 10, Left). We first compare the parameters of
the results when the base area formed by the type B and type C is the same, that is, when
the fulcrum positions of the skeletons are fixed (Figure 10, Right). From Figure 10, it can
be observed that the max displacement formed by type C is about 8.11 cm, which is much
larger than type B, which is 0.76 cm. The max utilization of B and C’s skeletons are 0.3%
and 1.4%. Therefore, B is more stable than C. In addition, the heights of the internal space
formed by B and C are 3.13 and 1.9 m, and the total weaving consumables are 351.97 m
and 291.98 m. The binding force of C weaving method to the skeleton is not as strong as
that of B. We also designed different experiments to further explore the characteristics of
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these two. According to their characteristics and potential, the specific application of these
two prototypes is discussed.
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3.1. Type B Prototype
3.1.1. Form-Finding and Results

In our physical model testing, we confirmed the prototype’s stability relying solely
on skeleton elasticity and weaving constraints. To evaluate the overall stability of type B
and type C structures, we conducted simulations using Karamba3D. The results, presented
in Figure 10 (right) show that the type B weaving method exhibited superior stability
compared to type C in maximum displacement and maximum curvature. Type B adopts
weaving method B, which can effectively control the relative distance between the skeletons
and provide higher stability for the whole structure. However, once this method is used,
the result will be a fixed shape, and the skeleton will not have mobility.

In the first experiment of type B, the length of the weaving material between every two
skeletons is uniformly shrunk at the same time, and we can obtain the simulation results in
GH as follows (Figure 11): Controlling the weaving material consumption can effectively
change the shape of the prototype. We control the initial length to one and gradually adjust
the ratio of “length” in Kangaroo to shrink the weaving length. Its prototype gradually
changes from a relatively flat plane to resemble a cocoon. These weaving structures bind
the entire skeleton. With shrinkage, the max curvature in the structure gradually increases
(from 0.155 to 0.727), and the max displacement formed by the entire structure is gradually
smaller (from 1.84 to 0.488 cm).

To further analyze the prototype, the second experiment is to change the weaving
material between the two skeletons unevenly, to observe how the control of weaving will
affect the final shape of the prototype. The results are impressive; stochastic control over
the weave allows us to obtain more diverse variant states of the prototype. Figure 12
(Figure 12, Left) is only a part of the many variation results, but the actual situation is
more abundant. This means that we can exploit this property for adaptive applications
of this prototype. Each result gives real-time feedback of the following parameters: the
actual weaving consumables between each group of skeletons, the total weaving consum-
ables, the enclosed area, and the height of the internal space. We selected some variation
results to further analyze their mechanical properties in Karamba 3D. Taking Figure 12
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(Figure 12, Right) as an example, it can form a good internal space for human activities.
The total weaving material is 358.46 m; the max displacement is 1.35 cm, which is within
the acceptable range. The area and height of the inner space are 18.9 sqm and 3.1 m. That is
to meet the scale of human activities.
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area/curvature/displacement of the prototype. Right: Taking one of the variations as an example for
further analysis.

3.1.2. Optimization and Results

In the above form-finding process, structural stability, weaving consumables, and
whether the variation result can form a reasonable space to be used fare the parameters
that need to be compared in each variation process. Simple comparisons cannot capture the
changing rules of these parameters, so this research assumes whether there are certain spe-
cific shapes that can form an available space, making the variation results less consumable
and more stable. By using Wallacei, a multi-objective optimization plug-in in Grasshopper,
the research obtained the following results.

During the optimization process using Wallacei, we performed a total of 24,000 itera-
tions at the beginning, which took 20 h. After around 4000 iterations, the stated outcome
of multiple optimizations comes to the convergence criteria. As the number of iterations
increases, the results of the last few iterations are closer to the ideal results in the three
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Fitness items (Figure 13: the red line represents the initial iteration, and the blue line
represents the last few iterations). The optimization direction is to minimize the weaving
consumables, minimize the structural displacement, and ensure that the available space is
within a reasonable range.
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Figure 13. Parallel Coordinate Plot (PCP) graph of optimization results.

By observing all the iteration results, the optimization process controls the available
space (Fitness03) so that most of the results are at or close to the XY plane (Figure 14, Left).
This means that the value of fitness03 is close to or equal to 0, from above in Section 2.3.2
(Figure 7), that is, the ratio of length to area of each result is between 0.058 and 2.444, which
can be regarded as a space that can provide human activities. For weaving consumables,
the final optimized results are concentrated between 29 and 305 m (Figure 14, Middle: the
blue peak in graph). For the max displacement in the structure, the final optimized results
are concentrated between 0.4 and 0.6 cm (Figure 14, Right: the blue peak in graph).
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In the Parallel Coordinate Plot (PCP) graph, each iteration is a polyline, reflecting
the size of its corresponding fitness value. The Parallel Coordinate Plot (PCP) obtained in
this study will generally appear in the following situations (Figure 13): sample01 is from
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the first iterations’ result; sample02 is from the last iterations’ results. Sample03 shows an
unexpected situation, and checking this result found that all the skeletons were flattened
on a plane and could not form a valid shape. This may be due to the crash of the Kangaroo
solver, so this study will not consider this case. Sample04 exemplifies a situation where the
available area is seriously unsatisfied. The foot points of the generated shape all overlap at
one point, making the shape unable to form an internal cavity and not enough to provide
internal activity space.

Finally, we compare the result of the initial iteration with the last optimization. Taking
Generation01 as an example (Figure 15, black line in the left), a total of 96 different results
were obtained after deduplication (Figure S1). The shape of the prototype is closer to an
exaggerated form. In these cases, the value of the material consumables and the structural
displacement are relatively large. Observing the last iteration Generation199 (Figure 15,
black line in the right), a total of 17 different results were obtained after deduplication
(Figure S2). As the evolutionary direction moves closer to the fitness goal, the shape
of each prototype is closer together, forming a similar cocoon shape. At the same time,
the material consumables and structural stability are optimized compared to the original
generation results.
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All the optimization results are recorded in the form of an Excel table in Table S1.
In this experiment, some more efficient prototypes were obtained through optimization,
which will be an intuitive result in the selection of prototypes. However, considering
the practical application, our ideal prototype is not some specific form but a variety of
possibilities to meet the different needs in practical applications.

3.2. Type C Prototype
Dynamic Behavior Experiment and Results

Type C adopts weaving method C, which provides less stability than method B, but the
advantage is that the woven prototype has the possibility of flexible movement with a single
skeleton while maintaining its basic shape. Inspired by the structure of human fingers [44],
we first restore the movement principle through a physical model (Figure 16, Left): Add a
component that can constrain the control line in the middle of the skeleton, and change
the lifting and gathering state of the skeleton by shrinking or relaxing the control line
at the vertex. The movement of a single skeleton can be easily and flexibly controlled
(Figure 16, Middle). Applying it to the entire structure, the simulation results are as follows
(Figure 16, Right). We concluded that due to the difference in the weaving method, C
provides limited constraints on its skeleton, allowing the skeleton to move freely to take
advantage of the bending-active structure. Therefore, it has the potential to become a
flexible structure in interactive and robot design [45].
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Figure 16. Left: Skeleton movement principle and experiment. Middle: Single skeleton movement
effect display. Right: Physically simulate the motion state of the skeleton on the entire structure.

3.3. Self-Combination Exploration

As an independent unit, WO has good adaptability, flexibility, a changeable shape,
and shape controllability. In the modular design, it has the ability of various splicing
with other units, which makes it have a very wide application range. The flexible self-
combination capability was not discussed too much in this study, but it is worth noting
that the prototype, as an independent module, has many possibilities to connect with other
modules. The connection methods are mainly divided into the following (Figure 17, Left):
two modules share one foot point; two modules can be connected through two different
foot points; two modules are connected through up to three different foot points. The
connection method and the changeable modules determine that the combination results will
have many different changes, reflecting the flexibility and adaptability of the combination
structure. In addition, the layout of the plan formed by the aggregation of many modules
is also diverse in order to meet the venue construction of different temporary activities
(Figure 17, Right). Considering the modular architectural form, this prototype is also
meaningful and valuable.
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4. Applications

The WO prototypes under the B and C weaving methods show different mechanical
properties and development potential. This chapter will explore the application of WO
prototypes based on this research from small-scale furniture decorations to architectural
facades to large-scale urban installations.



Buildings 2023, 13, 2413 14 of 21

4.1. Web Interface Assist Customization

With its stable structure and controllable shape, type B can be widely used in light
devices that require customization [46]. We have developed a set of user-customized
processes in this application scenario (Figure 18): Users adjust the slider on this interactive
web to explore their desired shape, and the web page will provide real-time feedback on
material usage and mechanical properties to assist in product construction. After the user’s
order is generated, the manufacturer will send materials and assembly manuals to help the
user complete the construction of the product. These materials will also be recycled at the
end of the product’s life cycle. Variations of the prototype will have different sizes—large,
medium, and small,—and they can be applied in various fields such as urban furniture,
pavilions, interior decoration, and even clothing (Figure 18).
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4.2. Interactive Demo

The type C weaving method is more flexible. The application based on this weaving
method focuses on exploring the WO prototype for interacting with human behavior and
the environment.

The dynamic results presented as photographs (Figure 19, Left, and Right up) demon-
strate a demo-like experiment. Due to the size limitation, this model does not use real
PolRe@ material but uses PVC wire instead. This experimental demo verified that the WO
prototype’s interactive possibilities could be further improved into a mature product. In
addition, the research also introduces the lighting system in terms of interaction (Figure 19,
Middle and Right down). The weaving material was changed into an optical fiber tape
in this demo, and the light source was at both ends of the weaving structure. In practical
applications, materials can be selected based on specific needs, providing greater versatility.
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4.3. Kinetic Façade

This application explores the potential of implementing a dynamic textile facade [47–49]
using the WO prototype. As a practical example, we selected the Pedagogy in the Secondary
Education School Universidad Católica and integrated the textile hybrid facade comprised
of WO units onto the building’s elevation (Figure 20, Left). The WO modules can be opened
or closed manually or automatically, offering aesthetic enhancements and practical sun-
shade functionalities. This dynamic feature adds an interactive dimension to the building’s
facade, accommodating changing environmental conditions and user preferences.
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This chapter further verified the feasibility of the prototype in specific scenarios
through mechanical simulation of the facade design. In order to simplify the calculation,
we cut the simulation range into a building facade of 6 × 6 m. These 12 connected facade
elements are considered as a structural whole for calculation. The focus of the simulation is
to compare the stress in the skeleton and weaving system of the WO facade under normal
state and wind load, as well as the deformation displacement of the whole structure. In the
parametric structural engineering tool, Karamba 3D, we preset that the structure consists of
three parts: control rope, GFRP skeleton, and weaving system. Detailed material selection
and input parameters in Karamba 3D are as shown in Table 1.

Table 1. Material selection and input parameters in Karamba 3D.

Element
(Material)

Diameter (d) or
Width (w) &
Thickness (h)

[cm]

Specific Weight
Gamma
(KN/m3)

In-Plane Shear
Modulus G12

(KN/cm2)

Transverse
Shear Modulus

G31, G32
(KN/cm2)

Yield Strength
fy1, fy2

(KN/cm2)

Tensile Strength
ft1, ft2 (KN/cm2)

Compressive
Strength fc1, fc2

(KN/cm2)

Skeleton (GFRP,
orthotropic) d = 3 E1 = 3656.9

E2 = 1092.4 1026 1026 45 74 −3112.3

Weaving
system/Control

rope (PET,
isotropic)

w = 0.4/w = 0.8
h = 0.1 E1 = E2 = 109.5 52.5 52.5 5.52 5.52 −9.8

During the simulation process, the stress conditions of each component and anchor
points are shown in Figure 21, Left. Wind load is calculated with reference to such formula:

F = 0.00256 Cd V2A

(F = wind force (lb), Cd = drag coefficient, V = wind velocity (mi/h), A = projected area
(ft2)) [50].



Buildings 2023, 13, 2413 16 of 21

Buildings 2023, 13, x FOR PEER REVIEW 16 of 21 
 

is to compare the stress in the skeleton and weaving system of the WO facade under nor-

mal state and wind load, as well as the deformation displacement of the whole structure. 

In the parametric structural engineering tool, Karamba 3D, we preset that the structure 

consists of three parts: control rope, GFRP skeleton, and weaving system. Detailed mate-

rial selection and input parameters in Karamba 3D are as shown in Table 1. 

Table 1. Material selection and input parameters in Karamba 3D. 

Element (Mate-

rial) 

Diameter (d) or 

Width (w) & 

Thickness (h) 

[cm] 

Specific 

Weight 

Gamma 

(KN/m3) 

In-Plane 

Shear Modu-

lus G12 

(KN/cm2) 

Transverse 

Shear Modu-

lus G31, G32 

(KN/cm2) 

Yield 

Strength 

fy1, fy2 

(KN/cm2) 

Tensile 

Strength 

ft1, ft2 

(KN/cm2) 

Compressive 

Strength fc1, 

fc2 (KN/cm2) 

Skeleton (GFRP, 

orthotropic) 
d = 3 

E1 = 3656.9 E2 

= 1092.4 
1026 1026 45 74 −3112.3 

Weaving sys-

tem/Control 

rope (PET, iso-

tropic) 

w = 0.4/w = 0.8 h 

= 0.1 
E1 = E2 = 109.5 52.5 52.5 5.52 5.52 −9.8 

During the simulation process, the stress conditions of each component and anchor 

points are shown in Figure 21, Left. Wind load is calculated with reference to such for-

mula:  

F = 0.00256 Cd V2A   

(F = wind force (lb), Cd = drag coefficient, V = wind velocity (mi/h), A = projected area 

(ft2)) [50].  

 

Figure 21. Comparison of the stress on the facade system under normal state (Lcase: 0) and wind 

load (Lcase: all). 

The wind speed of 24 m/s is used to test the designed adaptive structure. This value 

is obtained from Eurocode EN 1991-1-4:2005 [51], with action on the structures. Wind 

Figure 21. Comparison of the stress on the facade system under normal state (Lcase: 0) and wind
load (Lcase: all).

The wind speed of 24 m/s is used to test the designed adaptive structure. This value is
obtained from Eurocode EN 1991-1-4:2005 [51], with action on the structures. Wind loads in
the simulation will be applied in the direction perpendicular to the building facade. After
calculation, the comparison of the value of stresses and the displacement in this structure
between equilibrium and wind load can be seen in Figure 21. The maximum utilization
in both states does not exceed 100%. Under the action of wind load, the maximum dis-
placement of the structure is approximately 0.676 cm, which is far less than the maximum
threshold allowed for structural deformation.

The maximum value of tensile stress in this weaving system is 3.02 kN/cm2, in control
rope is 2.85 kN/cm2 (Table 2). The yield strength of PET is 5.52 kN/cm2, which means
this weaving system can withstand relatively high wind speeds. The maximum value of
the axial stress in the skeleton is 3.47 kN/cm2 (Table 2). The yield strength of GFRP is 45
kN/cm2. Through the above simulation and calculation, it can be seen that the structure as
a whole can distribute high loads without crushing. It is feasible to apply this structure to
building facades.

Table 2. Comparison of results of different structural elements under normal state and wind loads.

Element (Material) Max Axial Stress
(KN/cm2) Lcase0/Lcase1

Max Bending Moment
(KNm) Lcase0/Lcase1

Max Utilization (%)
Lcase0/Lcase1

Max
Displacement (cm)

Lcase0/Lcase1

Skeleton (GFRP,
orthotropic) 3.446532/3.477179 ±0.095258/±0.9623 0.084179/0.083935 0.3394/0.3363

Weaving system
(PET, isotropic) 3.029832/3.023727 0/0 0.765444/0.767842 0.3394/0.3363

Control rope (PET,
isotropic) 2.858931/2.856777 0/0 0.408419/0.408111 0.2729/0.2723



Buildings 2023, 13, 2413 17 of 21

4.4. Adaptive Canopy

In the last application exploration, a 1:1 physical model of the WO prototype was
fabricated using PolRe@ to explore its adaptive use in different indoor space types. The 1:1
WO model was installed in the open space and stairwell of Polimi Textiles Lab (Figure 22),
forming furniture or an interior decoration ceiling for resting or viewing according to differ-
ent space types. This successful implementation confirms the WO prototype’s adaptability
for various indoor and outdoor spatial environments.
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5. Discussion

Developing and designing the “Weaving Octopus” typology presents innovative
approaches for sustainable and environmentally friendly textile temporal construction and
decoration. However, there are limitations in the research that require further investigation
and consideration.

5.1. Contribution

This research thoroughly explores and discusses the textile hybrid structure of bending-
active and weaving. Unlike traditional weaving methods, this research creates a new
weaving algorithm based on our irregular surface. Different weaving methods employed
for the skin result in distinct dynamic behavioral characteristics, allowing users to choose
suitable methods based on desired states.

This study develops two weaving methodologies with two distinct characteristics.
“Weaving Octopus” (WO) demonstrates strong adaptability, excellent flexibility, ease of
self-connection, and a wide range of controllable forms. Notably, WO fulfills the diverse
needs of urban blank spaces and finds applications in installation design, interior design,
and building facades.

The study establishes a comprehensive research-application workflow that begins with
material research and progresses through physical experiments and computer simulations.
Different application potentials are then explored based on the prototype’s characteristics.
The research also culminates in developing a small interactive demo, a user-friendly web
interface, and a 1:1 scale physical model to verify the prototype’s practical application
potential. These experimental results are well implemented in practical applications.

From a life cycle perspective [27], prototypes in this study are sustainable. The wo-
ven skin and structural elements minimize connection joints and materials, enabling easy
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material recovery and recycling. The weaving technique allows convenient assembly and
disassembly [26,52], with a parametric design flow ensuring precise control over the final ef-
fect and materials [46], significantly reducing waste and time costs. These solutions address
the circular economy and environmental challenges of temporary lightweight architecture.

5.2. Limitation

Due to the manual hand weaving involved in this prototype, achieving precise control
over the weaving accuracy is challenging. Additionally, the weaving methodology requires
users to invest time in learning the techniques, limiting its universal applicability. Possible
solutions could involve combining robotic arms for precise weaving manufacturing [53] or
integrating virtual reality (VR), augmented reality (AR), and mixed reality (XR) technologies
to assist users in achieving precise manufacturing [54].

The practical application of the prototype requires further consideration of specific
details. For example, the detailed design of anchor points for outdoor installations and the
ability to withstand snow and rain loads require examination. These factors need to be
addressed to ensure the structural integrity and performance of the “Weaving Octopus” in
outdoor environments.

Parametric tools and optimization software greatly aided the project’s research. How-
ever, to simplify the problem and facilitate the calculation, the optimization of the type
B prototype does not traverse all the possibilities of variations. We think that the current
iteration is basically enough for us to observe its optimization direction and draw rough
conclusions. The prototype also did not take wind loads and other live loads into account
during the Karamba 3D simulations. The mechanical analysis should be recalculated when
considering different cases of application.

5.3. Future Work

This paper does not further explore the modular application of this prototype, but
this paper presents some inspiring possibilities through simple simulations. In future
in-depth research, it is necessary to consider the detailed and feasible connection methods
between modules, the overall mechanical conditions of the aggregation results, the effective
combination methods, and application scenarios between groups.

While this typology exhibits dynamic and variable potential, currently it lacks respon-
siveness to climatic conditions. Future research could focus on developing responses to
solar forces and rain based on the dynamic behavior of the WO prototype. This would
enable the realization of dynamic shading components, solar energy collection, and rainwa-
ter harvesting.

6. Conclusions

The research conducted on the “Weaving Octopus” typology confirms the feasibility
and adaptivity of a textile hybrid system based on a bending-active structural system,
achieved through innovative weaving methodologies. At the construction level, through
specific facade applications, we have theoretically demonstrated the structural stability of
the WO bending-active textile-hybrid structure. This offers a promising solution to address
the diverse challenges faced by the world in terms of environmental concerns and human
settlements. Moreover, it contributes significantly to advancing lightweight structural
design and promoting sustainable practices in textile architecture.
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