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Abstract: With the development of the Steel Truss Corridor (STC) toward long-span and gentle
development, human-induced vibration often causes large lateral vibration problems and time-delay
effects of the STC, which will have a non-negligible impact on the dynamic performance of the
STC. In this paper, the parametric vibration model proposed by Piccardo is improved, and the
nonlinear dynamic equation of the STC is established considering the longitudinal–lateral walking
force coupled parametric vibration with the time-delay effect. Taking the Millennium STC as an
example, the mechanism of lateral vibration under the time-delay effect is discussed by the numerical
calculation method, and the influence of the time-delay effect on its dynamic response is analyzed.
The results show that: considering the time-delay effect, when the frequency ratio θ/2Ω = 1, the
value of the time-delay coefficient has no effect on the critical number of STCs in the parametric
resonance region. As θ/2Ω moves away from 1, the more significant the effect. When the STC begins
to excite the parametric resonance phenomenon, the existence of the time-delay effect will change
the time for the STC to reach a stable amplitude and suppress the lateral vibration of the STC. When
the STC generates parametric vibration, the value of the time-delay coefficient has no effect on the
nonlinear dynamic response of the STC. For STCs in both the nonparametric resonance region and the
critical region, there is a pair of staggered critical bifurcation time-delay coefficients, which increase
or decrease the vibration response.

Keywords: STC; time-delay; the critical number of people; bifurcation; dynamic stability

1. Introduction

The development of STCs with large spans, light flexibility [1], and low damping will
inevitably reduce the structure’s fundamental frequency. Structures with low frequencies
are often prone to a series of vibration problems [2]. The lateral dynamic stability of STCs
is a long-neglected problem [3], and how to explain and predict the sudden increase in
lateral amplitude is a hot topic in the research on the dynamic stability of STCs [4]. Studies
have shown that the longitudinal and lateral first-order frequencies of normal pedestrians
walking are between 0.7 and 1.2 Hz [5]. When the fundamental STC frequency is in this
range, the forced resonance theory with a frequency ratio of 1:1 can explain the mechanism
of lateral dynamic instability occurring in low-frequency STCs. However, suppose the
frequency ratio satisfies the 1:2 relationship. In that case, it is difficult for the forced
vibration theory to provide a reasonable explanation and prediction of the mechanism of
sizeable lateral instability occurring in STCs [6]. The study by Piccardo [7] illustrates that
parametric vibrations can cause lateral dynamic instability in STCs, but it only considers
the limitations of the effect of lateral pedestrians walking forces, which occur in three
directions during the walking process [8]. The time-delay effect is a natural phenomenon
present in the field of STCs [9]. Due to the complexity of the internal systems of STCs, the
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body’s feedback regulation, and the lag in signal transmission when people are in contact
with the STC, the time-delay effect is inevitable. If the inherent time-delay effect of STCs
is not considered, it will inevitably significantly impact the dynamic performance and
stability of STCs [10]. The time-delay effect of STCs depends on two factors: the difference
in reaction time between pedestrians, which is not adjustable, and the external nature of
the STC. Studies have shown that the properties and thickness of the STC deck material
change the size of the time-delay coefficient; the thicker and softer the deck material, the
greater the time-delay effect, which is a modifiable factor [11].

In this paper, the parametric vibration model proposed by Piccardo [12] is improved to es-
tablish a nonlinear dynamic equation for an STC considering the coupled longitudinal–lateral
walking forces as parametric vibrations [13]. Firstly, the nonlinear dynamic equations for
a simply supported STC are established based on the energy method by considering the
vertical walking force as a uniform mass, the lateral walking force, and the longitudinal
walking force as simple harmonic forces. The time-delay affects the dynamic instability
region, the nonlinear dynamic response, and the stability of the Millennium STC.

2. Nonlinear Parametric Vibration Model for the STC
2.1. Basic Assumptions

The nonlinear dynamic equations for STCs under the action of pedestrians forces have
prominent characteristics of pedestrians–Steel Truss Corridor dynamic interactions [14],
and it is challenging to establish such equations directly [15]. Simply supported girder STCs
are one of the more common forms of urban STC systems, so studying the dynamic stability
of simply supported STCs is of more general application [16]. The pedestrians–Steel Truss
Corridor dynamic interaction is first excluded to facilitate the study, and the following
assumptions are made.

(1) The number of pedestrians is considered to be evenly distributed along the span of
the STC.

(2) We ignore the effect of the pedestrians’ forward direction on the three-way walk-
ing force.

(3) The STC modeling obeys the Euler–Bernoulli beams’ assumption.
(4) We ignore the effect of the pedestrians’ damping.

Based on the above assumptions, the longitudinal walking force of the pedestrians
is equated to the simple harmonic force Qh(t), the lateral walking force of the pedestrians
is equated to the uniform, simple harmonic force Ql(t), and the vertical walking force of
the pedestrians is replaced by the uniform mass m. The longitudinal, lateral, and vertical
displacements generated by the STC are expressed as u, w, and v. The force model of the
STC is shown in Figure 1.

2.2. Dynamic Equilibrium Equations for STCs

Assuming that the section perpendicular to the beam axis before deformation and the
section perpendicular to the beam axis after deformation remain unchanged, i.e., without
considering the effect of shear deformation, the normal longitudinal strain at any point at
this point is shown in Equation (1) [17].

ε(x, t) =
∂u
∂x

+
1
2
(

∂w
∂x

)
2
+ z

∂2w
∂x2 cos θ ≈ ∂u

∂x
+

1
2
(

∂w
∂x

)
2
+ z

∂2w
∂x2

(
1 − 1

2
(

∂w
∂x

)
2
)

(1)

In Equation (1), t denotes time, u(x,t) and w(x,t) denote the displacements caused by
the longitudinal and lateral walking forces, and θ is the angle of rotation of the cross-section
around the oz direction.

At this point, the normal stress of the STC in the linear elastic range can be expressed as

σ(x, t) = Eε(x, t) (2)
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In Equation (2), E denotes the elastic modulus of the STC. Based on the principle of
the energy method, the Lagrange equation for an STC under the action of walking forces is
obtained in Equation (3).

La = T − U + V + D (3)
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Figure 1. Physical drawing and mechanical model of simply supported STC considering
longitudinal–lateral–vertical walking force. (a) Physical drawing. (b) Mechanical model.

In Equation (3), T, U, V, and D denote the kinetic energy, strain energy, work of
conservative forces, and work of non-conservative forces (damping) of the vibrating system,
respectively. Equation (4) represents the specific expressions for T, U, V, and D [17].

T = 1
2
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)∫ L
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D = −µ

∫ L
0

[
∂u
∂t u + ∂w
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]
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(4)

In Equation (4), ρs is the density per unit length of the STC material, A is the cross-
sectional region of the STC, I is the cross-sectional moment of inertia, mp is the mass of
pedestrians per linear meter, and µ is the damping coefficient of the longitudinal and lateral
of the STC.

From Hamilton’s principle, the dynamical equilibrium equation of the system can be
expressed as: ∫ t2

t1

δLdt =
∫ t2

t1

δ(T − U + V + D)dt = 0 (5)

In Equation (5), δ is the Dirac function, and [t1, t2] denotes any time interval. Ne-
glecting the effect of the lateral motion of the beam on the longitudinal motion and the
longitudinal inertia of the beam, the geometrically nonlinear dynamic equations of the STC
considering the longitudinal–lateral walking forces are obtained as: [17]

(
ρs A + mp

) ∂2w
∂t2 + µ

∂w
∂t

+ EI ·
[

∂4w
∂x4

(
1 − (

∂w
∂x

)
2
)
− ∂2w

∂x2

(
4

∂3w
∂x3

∂w
∂x

+ (
∂2w
∂x2 )

2)]
+ Qh L

∂2w
∂x2 − 3EA

2
∂2w
∂x2 (

∂w
∂x

)
2
= Ql (6)

Dillard [18] carried out experiments on the relationship between lateral forces and
the lateral vibration velocity of a structure on a mobile platform in the laboratory. The
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experimental results show that the lateral walking forces of pedestrians are related to the
lateral vibration velocity of the STC, i.e.,

Ql(t) = λ
(
αl1 + αlv

.
w
)
mpg cos(ωpt) (7)

In Equation (7), αl1 = 0.04 represents the dynamic load coefficient for pedestrians
on fixed platforms and αlv = 0.7 is the dynamic load coefficient associated with the
lateral vibration velocity of the structure. ωp is longitudinal and lateral walking frequency.
For girder STCs, where higher-order modes are less likely to occur and the higher-order
frequencies are not within the range of pedestrians step frequencies, only the first-order
mode is considered; thus,

w(x, t) = Y(t) sin
(πx

L

)
(8)

In Equation (8), Y(t) is the generalized coordinate of the first mode shape. Substituting
Equation (8) into Equation (7) for modal coordinate transformation and integrating over
the STC span L, the second-order variable coefficient ordinary differential equation for
the longitudinal–lateral coupled parametric vibration of the STC is obtained as shown in
Equation (9) [17].

..
Y(t) +

[
ζ1 − ζ2 cos(ωpt)

] .
Y(t) + ω2

0
[
1 − 2β1 cos(ωpt)

]
Y(t) + β2Y3(t)− F0 cos(ωpt) = 0

β1 =
λαh1mp gL3

2π2EI , β2 = π4(EAL2−2EIπ2)

2L6(ρs A+mp)
, ω0 =

√
EIπ4

L4(ρs A+mp)

ζ1= 2ζ0ω0, ζ2 =
λαlvmp g
ρs A+mp

, F0 =
πλαl1mp g

2(ρs A+mp)

(9)

In Equation (9), ω0 is the natural circle frequency of the first order of the STC consider-
ing the influence of pedestrians mass, ζ0 is the damping ratio of the STC, ζ2 cos(ωpt)

.
Y(t) is

the parametric vibration of the STC by the pedestrians due to the lateral vibration velocity
of the STC, 2w2

0β1 cos(ωpt)Y(t) is the parametric vibration due to the longitudinal pedes-
trians walking force, β2Y3(t) is the nonlinear elastic term in the equation, F0 cos(ωpt) is the
forced vibration of the pedestrians walking, λ is the synchronous ratio of the pedestrians,
αh1 is the longitudinal walking force dynamic load coefficient, αl1 is the lateral walking
force dynamic load coefficient, ωp is the longitudinal and lateral pedestrians step frequency,
g is the gravitational acceleration, and αlv is the dynamic load coefficient associated with
the vibration velocity of the STC.

From Equation (9), it can be seen that there are nonlinear damping forces and nonlinear
elastic forces in the equation. The nonlinear damping force indicates that the walking force
in the synchronous state of the pedestrians will give the STC a negative damping, and
when the negative damping cancels out the inherent positive damping of the STC, the STC
enters an unstable state.

3. Parametric Vibration Equations for STC Taking into Account Time-Delay Effects

The correlation terms for pedestrians walking force excitation contain coefficients
related to the time-delay effect τ (τ > 0). Therefore, the equation is rewritten based on
Equation (9) as a nonlinear parametric vibration equation for the STC, considering the
time-delay effect.

..
Y(t) + ζ1

.
Y(t) + ω2

0Y(t) + β2Y3(t) = cos
[
ωp(t − τ)

]
·
[
ζ2

.
Y(t − τ) + 2ω2

0 β1Y(t − τ) + F0

]
(10)

3.1. Solution of Dynamically Unstable Regions Considering Time-Delay Effects

Based on the conclusions of Bolotin [19], omitting the effect of the nonlinear and
forcing terms, Equation (10) can then be written as:

..
Y(t) + ζ1

.
Y(t) + ω2

0Y(t) = cos
[
ωp(t − τ)

][
ζ2

.
Y(t − τ) + 2ω2

0 β1Y(t − τ)
]

(11)



Buildings 2023, 13, 98 5 of 13

The Bolotin method is used to solve the second-order dynamical instability region of
Equation (11), corresponding to a period of 2T. Let Y(t) have a periodic solution with a
period of 2T, whose expression for the Fourier series is:

Y(t) =
∞

∑
n

[
an sin

(
nωpt

2

)
+ bn cos

(
nωpt

2

)]
, n = 1, 3, 5, · · · (12)

In Equation (12), an and bn are the coefficients of the periodic solution corresponding
to the period 2π.

Taking n = 1 and n = 3, substituting into Equation (12), and taking the first and second
derivatives for time t, we obtain the derived equation.

Substituting the periodic solution assumed by the derived equation into Equation (12),
the system of system of homogeneous linear equations is obtained by trigonometric trans-
formation, and the system of equations is written in a matrix-vector form. There exists a
non-zero solution to the system of homogeneous linear equations only if the coefficient
determinant is equal to zero.

Ax = 0
x = [a3, a1, b1, b3]

T

A =

[
A11 A12
A21 B22

] (13)

Solving det(A) = 0 can obtain the second-order critical frequency equation correspond-
ing to the periodic solution with a period of 2T.

3.2. Nonlinear Dynamic Response Solution Considering the Time-Delay Effect

For Equation (10), let Y(t) = y1,
.

Y(t) = y2 and expand cos
[
wp(t − τ)

]
by the Taylor

series to obtain Equation (16).

.
y2 = F0

(
1 − wp

2(t−τ)
2 +O

(
wp

4(t−τ)4

24

))
− ζ1y2

+ζ2y2(t − τ)

(
1 − wp

2(t−τ)
2 +O

(
wp

4(t−τ)4

24

))
− ω2

0y1

+2ω2
0 β1y1(t − τ)

(
1 − wp

2(t−τ)
2 +O

(
wp

4(t−τ)4

24

))
+ β2y1

3

(14)

Ignoring dimensionless quantities, since Equation (14) has a unique equilibrium
solution at the origin, Equation (14) is linearized at the origin to obtain its characteristic

equation, order 1 − wp
2(t−τ)

2 = k, which gives

λ2 +
(

ζ1 − ζ2ke−λτ
)

λ + ω2
0 = 0 (15)

Let τ = 0; thus, Equation (15) degenerates into ordinary differential equations

λ2 + (ζ1 − ζ2k)λ + ω2
0 = 0 (16)

When ζ1 − ζ2k = 0, Equation (16) has a pair of pure imaginary roots, i.e., λ1,2 = ±iw0.
When ζ1 − ζ2k < 0, it means that the real part of Equation (16) is greater than 0, the negative
damping caused by the pedestrians’ speed will aggravate the lateral dynamic instability of
the STC; when ζ1 − ζ2k > 0, it means that the real part of Equation (16) is less than 0, and
the positive damping of the STC will slow down the lateral vibration of the STC. By Hopf’s
bifurcation theorem [20], bifurcation will occur near ζ1 − ζ2k = 0.

Let λ = iw(w > 0); then, substitute into Equation (16) and separate the real and
imaginary parts of the equation such that k = 1, giving:

−w2 + ω2
0 − ζ2w sin(wτ) = 0

ζ1w − ζ2w cos(wτ) = 0
(17)
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Simultaneously, using (17), remove the time-delay coefficient τ, and obtain

w4 − 2w2ω2
0 + ω4

0 + ζ2
1w2 − ζ2

2w2 = 0 (18)

To solve further,

w1,2 = −a2 ±
√

a2 − w4
0 (19)

Thereinto, a =
ζ1

2−ζ2
2−2w2

0
2 . From Equation (17), we obtain

τ1 = 1
w (2nπ + arccos ζ1

ζ2
)

τ2 = 1
w (2(n + 1)π − arccos ζ1

ζ2
)

(20)

In Equation (20), n = 0, 1, 2, 3, . . . When there is positive damping of the STC, the
negative damping caused by the pedestrians’ speed and the fundamental frequency of the
STC are determined; then, the time-delay coefficient τ corresponds to two values τ1 and τ2
in constant crossing. If τ1 < τ2, the STC is stable; if the time-delay coefficient τ = τ1, the
STC will undergo a Hopf bifurcation, at which point the STC has no real solution, and if
the time-delay coefficient τ = τ2, the STC will again undergo a Hopf bifurcation, at which
point the STC has a real solution. Therefore, changes in the time-delay coefficient τ may
affect the lateral vibration of the STC.

4. Numerical Analysis of the Millennium STC Parametric Vibration Considering
Time-Delay Effect
4.1. Calculation Parameters Related to the Midspan of the Millennium Bridge

The middle span length is L = 144 m, the width of the STC deck is b = 4 m, the height of
the main beam is h = 0.06 m, the elastic modulus is E = 2.1 × 1011 N•m2, the mass of the STC
per meter is ms = 2000 kg/m, the weight of a pedestrian is msp = 70 kg, the equivalent cross-
sectional region is A = 0.255 m2, the equivalent tensile stiffness and compressive stiffness
are EA = 5.355 × 1010 N•m2, the dynamic load coefficient for longitudinal walking forces is
ah1 = 0.037, the equivalent bending stiffness is EI = 7.650 × 1010 N•m2, the dynamic load
coefficient for lateral walking forces is al1 = 0.04, the dynamic load coefficient related to
the vibration speed of the STC is alv = 0.7, the synchronization coefficient for pedestrians
is λ = 0.3, the damping ratio of the STC is ζ0 = 0.007, and the lateral first-order frequency
is 2.4 rad/s.

4.2. Time-Delay Effects on the Dynamic Instability Region in the Midspan of the Millennium STC

Figure 2 shows the relationship between the midspan frequency ratio θ/2Ω and the
critical number of pedestrians N at the time time-delay coefficient τ = 0 s. It can be seen
from the figure that the number of critical rows calculated without considering the time-
delay effect N = 170 is not much different from the critical number of rows N = 178 obtained
by Piccardo [8] based on the parametric resonance analysis method, the number of critical
pedestrians obtained by the multi-scale method [21], and the number of critical pedestrians
N = 173 obtained by the midspan field organization [8]. The calculation results show
that the equation establishment and solution method in this paper have good accuracy
and rationality.

In order to explore the stability characteristics of the left and right border separately,
we study them. Figure 3a shows the relationship curve of the midspan left border corre-
sponding to different time-delay coefficients. When the frequency ratio θ/2Ω = 1 is taken
in the left border, and the time-delay coefficients τ are taken as 0 s, 0.2 s, 0.4 s and 0.6 s, the
corresponding critical number of pedestrians N is 170, 169, 172 and 170, respectively. It was
shown that when the STC was in the parametric resonance region, the time-delay effect
had little effect on the critical number of pedestrians in the left border. When the frequency
ratio θ/2Ω = 0.955 is taken in the left border, and the time-delay coefficients τ are 0 s, 0.2 s,
0.4 s and 0.6 s, the corresponding critical number of pedestrians N is 1773, 1878, 1770 and
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1884, respectively. It shows that when the STC is far away from the parametric resonance
region, with the increase in the time-delay coefficient, the number of critical pedestrians
increases first; then, it decreases and then increases. Obviously, when the STC is far away
from the parametric resonance region, the time-delay effect has an effect on the value of the
parametric resonance point.
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Figure 3b shows the relationship curve of the right border of the midspan correspond-
ing to different time-delay coefficients. When the frequency ratio θ/2Ω = 1 is taken in the
right border, and time-delay coefficients τ are 0 s, 0.2 s, 0.4 s and 0.6 s, the corresponding
critical number of pedestrians N is 170, 171, 168 and 170, respectively, indicating that when
the STC is in the parametric vibration region, the value of different time-delay coefficients
τ has little effect on critical number of pedestrians in the right border. When the frequency
ratio θ/2Ω = 1.045 is taken in the right border, and the time-delay coefficients τ are taken
as 0 s, 0.2 s, 0.4 s and 0.6 s, the corresponding critical number of pedestrians N is 1770,
1792, 1733 and 1798, respectively. The regions of stability and instability on the right border
are constantly changing. It is shown that when the STC is far away from the parametric
resonance region, the values of different time delay coefficients have a slight influence on
the critical number of people.

In order to prove the correctness of the conclusion, by setting the number of pedestrians
N on the STC to 50, 170 and 300 people, the nonlinear dynamic response numerical
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analysis of the midspan parametric vibration of the Millennium STC was carried out
under three different working conditions: stable region, critical region and instability
region, and the influence of time-delay effect on the dynamic stability of the STC was
analyzed. The number of pedestrians and working conditions correspond to the three
states of unexcited parameter vibration, excitation parameter vibration critical conditions,
and excited parameter vibration.

4.3. Effect of Time-Delay Effect on the Nonlinear Dynamic Response of the Midspan of the
Millennium STC
4.3.1. Stable Region

Figure 4a–d show the displacement time course and phase plane curves for the
midspan of the Millennium STC for the number of pedestrians N = 50 and the time-
delay coefficients of 0 s, 0.2 s, 0.4 s, and 0.6 s. The corresponding displacement time course
and phase plane curves differ for different initial conditions. When the time-delay co-
efficient τ = 0 s, the lateral displacement time course curve shows the characteristics of
first attenuation and then equal amplitude vibration. Each closed phase trajectory of the
corresponding phase plane curve undergoes attenuation oscillation and finally tends to
the equilibrium state, and the trajectory around the limit ring converges to the coordinate
origin, which is a convergent and attenuated non-reciprocating motion.

The figure shows that the STC has not yet excited the parametric vibration at this time
and is in a stable transient vibration state at this time, and the coordinate origin is the stable
focus. Comparing Figure 4a–d, when the time-delay coefficient τ changes from 0 s, 0.2 s,
0.4 s and 0.6 s, the corresponding lateral displacement amplitude changes, and the shape of
the phase plan diagram has obvious changes.

4.3.2. Critical Region

Figure 4e–h show the displacement time course and phase plane curves of the midspan
of the Millennium STC for the number of pedestrians N = 170 and the values of time-delay
coefficient 0 s, 0.2 s, 0.4 s, and 0.6 s. When the time-delay coefficient τ = 0 s, the lateral
displacement time course curve shows a transition from “linear variation” to “exponential
dispersion”. Each phase trajectory corresponding to the phase plane curve has the charac-
teristic of being half far away and half convergent to the coordinate origin. It indicates that
the STC begins to excite parametric vibration, which is in a semi-stable state; that is, the
STC is in a stable to unstable transition stage.

Comparing Figure 4a–d, when the time-delay coefficient τ changes from 0 s, 0.2 s,
0.4 s and 0.6 s, the lateral displacement amplitude and the phase trajectory of the phase
plane change significantly, indicating that the existence of the time-delay effect will not
only affect the time when the STC reaches a stable amplitude but also change the motion
state of the STC. Therefore, when the STC is in a critical region, the time-delay effect will
affect its lateral vibration. When the time-delay coefficient τ = 0.2 s, the corresponding
displacement amplitude is smaller than that of other times, indicating that there is an
appropriate time-delay value for the STC, which can play a role in suppressing its lateral
vibration, which can be achieved by adjusting the material, thickness and length of the
bridge deck material of the STC.

4.3.3. Regions of Instability

When the number of pedestrians on the bridge N = 300 and the time-delay coefficient
values are 0 s, 0.2 s, 0.4 s and 0.6 s, the displacement time course curve and phase plane
curve of the midspan of the Millennium STC are shown in Figure 4i–l. The time-delay
coefficient τ = 0 s at that time, and the lateral displacement time course curve shows the
characteristics of “equal amplitude vibration” first, then “exponential divergence” and then
“chaotic amplitude vibration”. The phase plane curve shows that the phase trajectories
near the limit ring all diverge from the coordinate origin, and each phase trajectory is far
away from the coordinate origin, which is accompanied by a state of chaotic motion. It can
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be found that the time-delay coefficient τ will not change the displacement time course
curve and phase plane curve of the STC when the four values are 0, 0.2, 0.4 and 0.6. This is
because STC in the parametric resonance region, even if there is a slight time-delay effect,
will gradually be overwhelmed by the violent parametric resonance over time.

4.4. Analysis of the Impact of Time-Delay Effect on the Midspan of the Millennium STC

The variation pattern of the number of pedestrians on the midspan of the Millennium
STC under the influence of the time-delay effect is analyzed according to the central
flow-form theorem and normality theory. Figure 5 shows that when n = 0, there are two
solutions in the time-delay coefficient τ corresponding to the critical number of people,
and the characteristic root is crossing.
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From Figure 5, as the time-delay coefficient τ increases, the equilibrium point on the
midspan of the Millennium STC is destabilized due to the co-existence of Hopf bifurcation.
That is, when the STC is in the nonparametric resonance region and the critical region, the
number of pedestrians N on the STC will correspond to a pair of mutually staggered critical
bifurcation time-delay values, and the critical bifurcation behavior of this time-delay effect
will cause the STC to cross from a stable state to an unstable state and back to a stable state.

As number of pedestrians N increases, τ1 first increases and then decreases; τ2 first
decreases and then increases. When the number of pedestrians exceeds 170, the time-delay
coefficient τ has no real solution, i.e., the violent parametric resonance phenomenon of the
STC overwhelms the delayed effect of the time-delay effect, which is consistent with the
solution of the critical number of pedestrians N = 170 for the midspan parametric resonance
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in the Millennium STC obtained from the above theoretical calculation. When τ > τ1, the
positive damping effect on the midspan of the Millennium STC suppresses the lateral
vibration of the STC; when τ > τ2, the negative damping effect caused by the pedestrians
velocity intensifies the lateral vibration on the midspan of the Millennium STC and exhibits
the characteristic that the lateral vibration of the STC increases with the increase in the
time-delay coefficient τ.
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5. Conclusions

In this paper, the lateral vibration of the STC is studied by combining the engineering
example of the midspan of the Millennium STC and the experimental research of Dallard,
and the Bolotin method is used to solve the second-order approximate solution of the critical
frequency curve of the Millennium STC, and the calculation results are more consistent
with the existing research results, which proves the correctness of the selection method.
Then, a program is written to explore the influence of the time-delay effect on the lateral
nonlinear dynamic response of the midspan of the Millennium STC. Finally, combined
with the principle of nonlinear Hopf bifurcation, the stability of the equilibrium point of
the midspan of the Millennium STC is studied. The following conclusions were obtained:

(1) When there is a time-delay effect, the frequency ratio θ/2Ω = 1, the regional boundary
size, shape and rotation center of its dynamic stability do not change, and the value of
the time-delay coefficient has no effect on the critical number of pedestrians on the
STC in the parametric resonance region. As the frequency ratio θ/2Ω gradually moves
away from 1, the time-delay effect slightly affects the value of the critical number of
pedestrians, and the effect becomes more significant as the frequency ratio θ/2Ω is
farther away from 1.

(2) For STC in nonparametric resonance regions, the time-delay coefficient will affect the
lateral dynamic stability of the STC. When the STC begins to excite the parametric
resonance phenomenon, the existence of the time-delay effect will change the time for
the STC to reach a stable amplitude, and the existence of a suitable time-delay value
on the STC can suppress the lateral vibration of the STC. When the STC generates
severe parametric vibration, the value of the time-delay coefficient will not affect the
nonlinear dynamic response of the STC.

(3) As a dynamic control parameter, the time-delay coefficient will affect the complex dy-
namic behavior of the parametric vibration of the STC. For STC in the non-parametric
resonance region and critical region, there is a pair of staggered critical bifurcation
time-delay coefficients, and the number of pedestrians N on different STC corresponds
to different critical time-delay values τ1 and τ2, and different time-delay coefficients
will change the vibration response of the midspan of the Millennium STC; the instant
time-delay effect causes the pedestrian bridge to cross between a steady state and an
unstable state.
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