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Abstract: Major disasters and losses would be caused by the galloping of transmission lines. The
basis for studying the galloping mechanism of transmission lines is to analyze the aerodynamic
characteristics of iced conductors. The wind tunnel test is a traditional way to obtain the aerodynamic
coefficients of an iced transmission line under wind load. Due to the high cost and long duration
of wind tunnel tests, an experimental method based on machine learning to predict aerodynamic
coefficients is proposed. Here, the steady and unsteady aerodynamic coefficients of an iced conductor
under different parameters were obtained by wind tunnel test, and then the aerodynamic coefficients
of the iced conductor under different parameters were predicted by machine learning. The aerody-
namic coefficients of each iced conductor varied with the angle of wind attack by the wind tunnel test.
The Den Hartog and Nigol coefficients determined based on the aerodynamic coefficients obtained
by machine learning and wind tunnel test are in agreement. The results show the feasibility of the
machine learning prediction method.

Keywords: machine learning; aerodynamic coefficients; iced conductor; wind tunnel test

1. Introduction

China has actively created significant power transmission projects in recent years,
and the country has also successfully reduced its electricity demand. However, during
construction, transmission lines will cross some areas with dangerous terrain and complex
environmental climates. Transmission lines are covered in ice all year round due to low
temperatures, but especially in the winter. When wind in the horizontal direction acts on
an iced conductor, it will cause aerodynamic loads, which will lead to the occurrence of
galloping. Analyzing the aerodynamic coefficients of the iced conductor is the premise
for studying the galloping mechanism of transmission lines. Many wind tunnel tests and
numerical simulations of UHV transmission lines have been carried out in China [1–3].
The study of vibrations brought on by galloping and other flows has also recently received
increased interest—in particular, the investigation of vortex-induced vibration (VIV) of
flexible structures and self-excited galloping/flutter control of a civil structure [4,5].

Currently, research on the aerodynamic coefficients of iced conductors relies on an
expensive and time-consuming method called the wind tunnel test. Additionally, the
influence of outside circumstances can result in erroneous test findings. With the rapid de-
velopment of machine learning research, neural network methods in machine learning have
been widely used in many fields. Meng et al. [6] proposed a wavelet neural network with
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an enhanced particle swarm optimization algorithm to precisely describe the aerodynamic
properties of an airplane. Wang et al. [7] used the RBF network to build an aerodynamic
model of an aircraft and obtained the aerodynamic parameters of the aircraft. Raeesi
et al. [8] proposed a quasi-steady analysis method, and the effect of unsteady/turbulent
winds on the aerodynamic behavior of inclined cables was then studied. Ignatyev et al. [9]
modeled unsteady aerodynamic properties based on the neural network method. The
dynamic characteristics in a wide range of angles of attack were studied. Wang et al. [10]
put forward a power system gallop early warning algorithm based on SVM and AdaBoost
classification algorithms. Lee et al. [11] validated a prediction model of galloping accidents
using a logistic regression model and used the corresponding AUC results of the ROC
curve to assess the discriminant level of the estimated model. Ma et al. [12] considered
the galloping of elliptical cylinders at critical Reynolds numbers under normal winds and
evaluated the quasi-steady hypothesis when predicting these vibrations. Winter et al. [13]
combined the regression local linear neural fuzzy model (NFM) with a multi-level percep-
tron (MLP) neural network to establish a recognition method for nonlinear systems. Li
et al. [14], based on the principles of deep learning, proposed an unsteady atmospheric
dynamics model for large-scale training data and sample spaces. Wang et al. [15] proposed
a fuzzy neural network based on radial bases. It effectively addressed the limitation of
the number of various input variables. Chen et al. [16], based on a convolutional neural
network (CNN), proposed a graphical prediction method of airfoil multi-aerodynamic
coefficients. Jaffar et al. [17] performed a comparative study of the damping coefficient
characteristics of different workshops based on two independent neural network models,
support vector regression, polynomial regression, and linear regression. Mannini et al. [18]
proposed a nonlinear wake oscillator model that predicts the unstable galloping of slender
structures in large-scale turbulence. Mou et al. [19] obtained aerodynamic coefficients
through numerical simulation and used the extra trees algorithm to establish a prediction
model of the aerodynamic coefficients of iced quad-bundle conductors. Then, it could pre-
dict and analyze the characteristics of the iced conductor galloping. Rykaczewski et al. [20],
based on an artificial neural network, modeled the aerodynamic characteristics of a striped
wing miniature aircraft.

However, predictive research on the aerodynamic coefficients of iced conductors under
the impact of various conditions is lacking. Unsteady aerodynamic coefficient projections
have not yet been seen. Therefore, the aerodynamic coefficients of iced conductors were
first measured in a wind tunnel. Then, a model was created by using machine learning. The
aerodynamic parameters of iced conductors under different parameters were predicted, and
the results of the wind tunnel test were compared. The results show that the aerodynamic
coefficients obtained by the two methods are the same with the variation in the angle of
wind attack. The Den Hartog and Nigol coefficients derived by the two different methods
of calculating aerodynamic coefficients are quite similar to the change curve with the angle
of wind attack. The issue of time-consuming and expensive wind tunnel tests has been
successfully resolved, which is helpful for managing and preventing transmission line
galloping.

2. Wind Tunnel Test
2.1. Test Model

Wind-driven wet snow on transmission lines in winter can accumulate on the wind-
ward side, forming hard deposits with sharp edges. The final asymmetric shape of the ice
may cause galloping. China has conducted extensive research on ice shape in recent years.
Yu et al. [21] experimentally studied the dependence of the size and shape of ice on the
duration of the ice and some structural properties. Xu et al. [22] studied the aerodynamics
of circular cylinders with and without ice accretion through wind tunnel tests. Crescent ice
and sector ice are two common forms of ice covering transmission lines and are the most
likely to occur. The focus of this study is iced conductors in crescent and sector shapes.
The aerodynamic coefficients were ascertained by the test. The cross-sectional model of
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the crescent-shaped ice conductor is shown in Figure 1a. The cross-sectional model of the
sector-shaped ice conductor is shown in Figure 1b.
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Figure 1. Crescent-shaped and sector-shaped ice cross-sections.

The artificial ice model was constructed of wood with a density of 836.81 kg/m3,
which is comparable to real ice. The test diameter of the model was 1:1 smaller than that of
the actual conductor model, which had a diameter of 30 mm. The cross-section of the iced
conductor is shown in Figure 2. The transmission conductor is shown in Figure 3.
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Figure 3. Test transmission conductor.

2.2. Test Equipment
2.2.1. Wind Tunnel

The tests of the iced conductor were performed in a 1.4 × 1.4 m direct-action wind
tunnel, as indicated in Figure 4a. The conductor force test model was mounted vertically
on a special support device located in the center of the turntable in the wind tunnel test
section (Figure 4b). The wind tunnel was a DC low-speed wind tunnel with a wind speed
range of 0–65 m/s. The conductor model was in the center of the wind tunnel. Through
observation of the galloping of the transmission line in operation, it was observed that the
wind speed range was normally within 4~20 m/s, and the transmission line would gallop.
The initial angle of wind attack was 0◦, and various angles of wind attack between 0◦ and
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180◦ were employed during the wind tunnel test to gauge the aerodynamic coefficients.
The increment was set at 5◦ (considering the expense of the wind tunnel test).
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Figure 4. Aerodynamic force measurement test system for iced conductor: (a) wind tunnel test;
(b) test model support device.

2.2.2. Measurement and Control Equipment

In this test, TG0151A and TG0151B balances were used to measure the drag, lift, and
moment coefficients of the conductor model. The PXI system was selected for the force
test data acquisition system of iced conductors. Angle control and speed pressure control
were realized by the corresponding industrial computer system. Instructions were passed
between devices by network communication.

The iced conductor galloping characteristics measurement instruments included a
dynamic signal analyzer, an acceleration sensor, a linear array CCD, etc. The accelerometer
measured the natural frequency of lateral vibration and the natural frequency of torsional
vibration of the dancing test model; the data were displayed, stored, and analyzed in real
time through the dynamic analysis system; and the linear CCD measured the galloping
response signal.

3. Fundamentals of Neural Network
3.1. BP Neural Network

The error backpropagation network (BP neural network) model was put forth by
Rumelhart et al. in 1985. Three layers make up the BP neural network: the input layer, the
hidden layer, and the output layer. The two steps of its training learning process—signal
forward propagation and error backpropagation—can be separated. The BP neural network
is one of the most well-liked neural network models. Figure 5 depicts the BP neural network
structure framing diagram.
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Signal forward transmission: For any hidden layer neuron j, its input Ij is as follows:

Ij =
n

∑
i=0

ωijxi (1)

where ωij is a weighted result between an input layer neuron i and a hidden layer neuron j,
and xi is the input variable.

Error backpropagation: According to the accumulated error, the modified weighted
result ωij is obtained by the gradient descent method:

∆ωij= −η
∂D
∂ωij

(2)

where η is the learning rate of the set error direction propagation and D is the cumulative
error between the actual output of the hidden layer and the desired output.

3.2. Neural Network Parameters

(1) Creation Function and Activation Function

The newff function was used to establish a neural network, in which the number
of network layers and the number of neurons in each layer were determined, and the
corresponding activation function is given. This article uses logsig and tansig activation
functions.

1© logsig activation function:

logsig(x) =
1

1 + e−x (3)

2© tansig activation function:

tansig(x) =
2

(1 + exp(−2x))−1
(4)

(2) Learning function and training function

The learning function was used to modify the weights between neurons and the thresh-
old value within neurons and finally achieve local optimization. The L-M optimization
algorithm has advantages for function fitting problems, and its prediction accuracy was
verified in the simulation example session. Therefore, the L-M optimization algorithm was
used as the training function to train the model.

(3) Loss function

The loss function is an operation function that measures the degree of difference
between the predicted and actual results of a model. Using the data from the wind tunnel
test, the accuracy of the sample data described by the prediction model was determined by
the mean squared error loss function (MSE).

MSE =
(y − z)2

N
(5)

where y represents the predicted results, z is the number of test results, and N is the sample.

4. Database Creation
4.1. Determination of the Input Feature Parameters

The lift, drag, and moment coefficients of the iced conductor are represented by the
following definitions:
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CL =
FL

1
2 ρU2LD

(6)

CD =
FD

1
2 ρU2LD

(7)

CM =
M

1
2 ρU2LD2

(8)

The aerodynamic coefficients indicate the force of the external environmental wind
load, where FD is the drag on the iced conductor, FL is the lift, FM is the moment, ρ
indicates air density, and U indicates wind speed. The length of the iced conductor model
is represented by L, and its diameter by D. In this paper, CL is the same as Cl, CD is the
same as Cd, and CM is the same as Cm. Additionally, the direction of the wind affects the
aerodynamic coefficients of the conductor (the angle between the mainstream direction
of the wind and the horizontal plane). Therefore, these three influencing factors were
determined to be the input characteristic parameters of the neural network.

4.2. Model Building

The settings and experimental findings from the wind tunnel test are utilized as
example sources in this paper. The input parameters include wind speed, ice thickness,
and angle of wind attack. The output parameters are the moment, drag, and lift coefficients.
Training of the sample data was started after importing the training set into the Neural
Network Fitting toolbox. The most precise training model was determined by observing
the training results based on the MSE values. After adding the necessary data to the trained
model, the prediction outcome could ultimately be obtained.

(1) The number of model layers and neurons

The model consisted of a three-layer network with an input layer, a hidden layer, and
an output layer. From the sample data, both the input and output variables were three-
dimensional, and both the input and output layers were set to three neurons. According to
the empirical formula and trial and error method, the number of hidden layer nodes of the
reasonable BP neural network model was determined, and when the hidden layer was set
to 10 neurons, the mean squared error of the prediction result was the smallest. Therefore,
it was established that there are 10 hidden layer neural network nodes overall.

(2) Parameter settings

The model was trained using the L-M optimization process, and the error was calcu-
lated using the average square error algorithm. By default, the model allows up to 1000
iterations, with a maximum target error of 0.001 and a learning rate of 0.01.

4.3. Model Training

The training data had to be normalized before training. The Mapminmax function
was used during the experiment to perform the procedure. The data range was [−1,1]. The
processed data were randomly divided into three groups in the proportion of 70%, 15%,
and 15% for the training set, verification set, and test set, respectively. After the training
model was completed, the error transformation during network training could be observed
through the performance interface. The training state interface in the network training
process displayed the gradient transformation, Mu factor size, and generalization capacity.
The regression ability of data of the network was shown through the regression interface.
The numerical size of the MSE was observed through parameter adjustment. Until the
target forecast was reached, the mean square error was within 10%.
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5. Prediction Results of the Neural Network of the Aerodynamic Coefficients of the
Iced Conductor

A portion of the data were chosen as the training data based on the data collected
during the test in the wind tunnel, and the rest were used as the test data. The training data
were imported into the neural network prediction model for training, and the prediction
data were generated.

5.1. Steady Aerodynamic Coefficients Prediction

From the steady data, the aerodynamic coefficients of crescent-shaped iced conductors
with ice thicknesses of 12 mm, 20 mm, and 28 mm at 14 m/s wind speed were selected. The
aerodynamic coefficients of crescent-shaped iced conductors under 12 mm ice thickness
and wind speeds of 10 m/s, 12 m/s, and 18 m/s were also selected.

5.1.1. Ice Thicknesses

The aerodynamic coefficients of crescent-shaped iced conductors with the same wind
speed were predicted under different ice thicknesses. The angle of wind attack and the ice
thickness were input variables, and the lift, drag, and moment coefficients were output
variables.

As seen in Figure 6, the linear regression law of the aerodynamic coefficients of the
crescent-shaped iced conductor was essentially the same with ice thicknesses of 12 mm,
20 mm, and 28 mm under the wind speed of 14 m/s. The lift coefficients displayed an
increasing trend between 0◦ and 35◦ and between 120◦ and 60◦ and a downward trend
at 35◦~120◦ and 160◦~180◦. The drag coefficients showed a downward trend at 0◦~10◦

and 85◦~165◦ and an upward trend at 10◦~85◦ and 165◦~180◦. The moment coefficients
showed an upward trend at 0◦~40◦ and 160◦~180◦ and a downward trend at 40◦~160◦.

Under the crescent wind speed of 14 m/s, the aerodynamic parameters under the ice
thicknesses of 28 mm, 20 mm, and 12 mm were predicted (Figure 6a–c, respectively).
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In Figure 6a, the predicted moment coefficient result at an angle of wind attack of
0◦~20◦ is lower than the wind tunnel result, while the predicted lift coefficient result is
slightly higher than the wind tunnel result. The predicted drag coefficient result is also
slightly higher than the wind tunnel result. When the wind attack angle is 15◦, the loading
surface of the iced conductor is the largest, and according to the principle of Bernoulli,
the lift coefficients and moment coefficients will increase significantly at this time. The
gradient of change in the sample data is too obvious, and there is a large local difference in
Figure 6a. In Figure 6b, the predicted results of the lift coefficient and the drag coefficient fit
well, and the predicted results of the moment coefficient are slightly lower than the wind
tunnel result at 0◦~50◦, while the predicted results at 50◦~90◦ are higher than the wind
tunnel results. Figure 6c shows that the drag coefficients and moment coefficients have
good predictive abilities, whereas the lift coefficient predictions for the angles of attack
of 125◦~150◦ and 150◦~180◦ are marginally higher and lower, respectively, than the wind
tunnel data. There are some inflection points in the prediction data, but the overall linearity
is similar; the locally existing prediction differences are within control, and the prediction
results meet the expectations.

5.1.2. Wind Speeds

Using crescent-shaped iced conductors of the same ice thickness as the research object,
the aerodynamic coefficients for various wind speeds were predicted.

As seen in Figure 7, under speeds of 10 m/s, 12 m/s, and 18 m/s, the linear regression
law of the aerodynamic coefficients of the crescent-shaped iced conductor was essentially
the same. The lift coefficients of the crescent-shaped iced conductor showed an upward
trend at 0◦~30◦ and 125◦~160◦ and a downward trend at 30◦~125◦ and 160◦~180◦. The
drag coefficients showed an upward trend at 0◦~100◦, 130◦~145◦, and 150◦~160◦ and a
downward trend at 0◦~10◦, 130◦, 145◦~150◦, and 160◦~180◦, as well as a downward trend
at 0◦~10◦ and 85◦~165◦. The moment coefficients showed an upward trend at 0◦~40◦ and
160◦~180◦ and a downward trend at 40◦~160◦.

With a crescent-shaped iced thickness of 12 mm, aerodynamic coefficients were pre-
dicted under wind speeds of 18 m/s, 12 m/s, and 10 m/s (Figure 7a–c, respectively).
According to the Reynolds number calculation formula, the Reynolds numbers at wind
speeds of 10, 12, and 18 m/s were 488,108, 585,730, and 878,595, respectively.
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Figure 7. Steady aerodynamic coefficients at different wind speeds.

The predicted results of the aerodynamic coefficients in Figure 7a fit well with the
wind tunnel results, especially the drag coefficients at 90◦~180◦ predicting the change in the
wind tunnel results. In Figure 7b, the overall fit of the predicted results of the lift coefficients
and the moment coefficients is good, and the predicted results of the drag coefficients are
slightly higher than the wind tunnel results at 90◦~120◦, while the predicted results at
120◦~150◦ are lower than the wind tunnel results. Since the crescent-shaped iced conductor
is a non-circular segment, the drag coefficients will increase when the conductor is on the
windward side and fall when it is on the leeward side. In Figure 7c, the overall linear fit
of the aerodynamic coefficients is high, and the prediction results are good and meet the
expectations.

5.2. Unsteady Aerodynamic Coefficients Prediction

In the dynamic test, the conductor was placed in the wind tunnel, and the torsional
vibration of the conductor force test model was driven by the special drive mechanism.
From the unsteady data, at conductor frequencies of 0.1 Hz, 0.2 Hz, and 0.3 Hz, the
aerodynamic coefficients of the crescent-shaped iced conductor at a wind speed of 10 m/s
and an ice thickness of 14.5 mm were chosen.

At a wind speed of 10 m/s and an ice thickness of 21.5 mm, the aerodynamic coeffi-
cients of the sector-shaped iced conductor were chosen at conductor frequencies of 0.1 Hz,
0.2 Hz, and 0.3 Hz. The aerodynamic coefficients of the crescent-shaped iced conductor
with wind speeds of 10 m/s, 12 m/s, 14 m/s, and 18 m/s were selected at an ice thickness of
14.5 mm and a frequency of 0.1 Hz. At wind speeds of 10 m/s, 12 m/s, 14 m/s, and 18 m/s,
the aerodynamic coefficients of the sector-shaped conductor at an ice thickness of 21.5 mm
and a frequency of 0.1 Hz were chosen. With a wind speed of 10 m/s and a frequency of
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0.1 Hz, the aerodynamic coefficients of crescent-shaped conductors with ice thicknesses
of 14.5 mm, 24 mm, and 33 mm, were chosen, and sector-shaped iced conductors with ice
thicknesses of 21.5 mm and 30 mm.

5.2.1. Ice Thicknesses

Based on crescent-shaped and sector-shaped iced conductors with the same wind
speed and frequency, the aerodynamic coefficients of the conductors under various ice
thicknesses were estimated. The linear regression equation of the aerodynamic coefficients
of the various conductor thicknesses was essentially the same, as illustrated in Figure 8,
when the wind speed was 10 m/s and the frequency was 0.1 Hz. In general, the lift coeffi-
cients and moment coefficients of crescent-shaped iced conductors evolved similarly, with
an upward trend at −30◦~45◦ and a decreasing trend at −45◦~30◦. The drag coefficients
at −45◦~10◦ showed a downward trend and showed an upward trend at 10◦~45◦. The
lift coefficients of the sector-shaped iced conductor continued to decrease from −45◦ to
45◦. The drag coefficients showed an upward trend at −45◦~0◦ and a downward trend
at 0◦~45◦. The overall change in moment coefficients was gentle and slowly decreased at
20◦~45◦.
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Fig. 9 Aerodynamic coefficients under different ice thicknesses 302 
The aerodynamic coefficients of the test results change in a narrow range and are 303 
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As shown in Figure 9(e), the sudden change in data is large and the prediction error is 305 

Figure 8. Unsteady aerodynamic coefficients under different ice thicknesses.
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The aerodynamic coefficients from the test results changed in a narrow range and
were smooth, as shown in Figure 8a–e, with a good prediction result. The prediction data
fit well and met the expectations of the prediction results.

5.2.2. Wind Speeds

Using iced conductors in crescent and sector shapes that had the same ice thickness
and frequency as the research items, the aerodynamic coefficients at various wind speeds
were estimated. The linear regression law of the aerodynamic coefficients in the conductors
of various ice thicknesses was essentially the same, as illustrated in Figure 9. The lift
coefficients indicated a negative trend at −45◦~30◦ and 35◦~45◦ and an increasing trend
at −30◦~35◦. The moment coefficients generally increased. The drag coefficients showed
a downward trend at −45◦~10◦ and an upward trend at 10◦~45◦. The lift coefficients of
the sector-shaped iced conductors continued to decrease overall. The drag coefficients
showed an upward trend at −45◦~−10◦ and a downward trend at −10◦~45◦. The moment
coefficients fluctuated around zero overall. According to the Reynolds number calculation
formula, the Reynolds numbers at wind speeds of 10, 12, 14, and 18 m/s were 488,108,
585,730, 683,351, and 878,595, respectively.
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Figure 9. Unsteady aerodynamic coefficients at different wind speeds. 
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Figure 9. Unsteady aerodynamic coefficients at different wind speeds.

Different wind speeds had less of an impact on the aerodynamic coefficients, as shown
in Figure 9. The predicted results (Figure 9f) and the wind tunnel test results diverged
marginally. However, the prediction errors were all within the range, and the overall
linearity was similar.

5.2.3. Frequencies

The aerodynamic coefficients of the conductors under different frequencies were
predicted using iced conductors with the same ice thickness and wind speed as the research
objects. As shown in Figure 10, the linear regression law of the aerodynamic coefficients at
various frequencies was essentially the same. The lift coefficients and moment coefficients
of the conductors generally increased. The drag coefficients showed a downward trend
at −45◦~0◦ and an upward trend at 0◦~45◦. The lift coefficients and moment coefficients
of the conductors showed an overall downward trend. The drag coefficients showed an
upward trend at −45◦~−10◦ and a downward trend at −10◦~45◦.
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Figure 9. Unsteady aerodynamic coefficients at different wind speeds. 
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Figure 10. Aerodynamic coefficients at different frequencies. 

Figure 10a,b,d,f show a good prediction effect and a high degree of fit. In Figure 10c,e, 

at the angle of wind attack of 25°~45°, the prediction results are quite different from the 

test data. Since the dynamic wind tunnel test will have different results at the same wind 

attack angle, it has a greater impact on the training of the prediction model. 

The results show that the change law of the prediction result and the data change 
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Figure 10a,b,d,f show a good prediction effect and a high degree of fit. In Figure 10c,e,
at the angle of wind attack of 25◦~45◦, the prediction results are quite different from the
test data. Since the dynamic wind tunnel test will have different results at the same wind
attack angle, it has a greater impact on the training of the prediction model.

The results show that the change law of the prediction result and the data change
curve obtained by the wind tunnel test have good consistency. In addition, factors such
as the span of input coefficients of the neural network, the amount of sample data, and
the amount of data value variation have a direct impact on the prediction effect. The
average square error of the prediction result was within 10%, which realizes the prediction
expectation.

5.3. Prediction Error Analysis

Mean square error (MSE) is a measure of the discrepancy of an estimator, and the
estimator is calculated in machine learning. An ideal model has a value of 0 when the
projected value and the actual value agree completely. The larger the inaccuracy is, the
higher the value is. The more accurate the machine learning network model is, the lower the
value will be. The mean squared error of the steady and unsteady aerodynamic coefficients
from the prediction experiment was calculated using Equation (5).

The prediction results of the crescent steady aerodynamic coefficients are shown in
Table 1, the prediction results of the crescent unsteady aerodynamic coefficients are shown
in Table 2, and the prediction results of the sector unsteady aerodynamic coefficients are
shown in Table 3.

Tables 1–3 show that the MSE values are close to 0, and the prediction model is more
accurate. The prediction results of the aerodynamic coefficients of the iced conductors meet
the prediction expectations.
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Table 1. Prediction results of the crescent steady aerodynamic coefficients.

Category 1 Category 2 MSE

V = 14 m/s H = 12 mm 0.0017
V = 14 m/s H = 20 mm 0.0019
V = 14 m/s H = 28 mm 0.0069
H = 12 mm V = 10 m/s 0.0054
H = 12 mm V = 12 m/s 0.0053
H = 12 mm V = 18 m/s 0.0074

Table 2. Prediction results of the crescent unsteady aerodynamic coefficients.

Category 1 Category 2 MSE

V = 10 m/s, F = 0.1 Hz H = 14.5 mm 0.0019
V = 10 m/s, F = 0.1 Hz H = 24 mm 0.0028
V = 10 m/s, F = 0.1 Hz H = 33 mm 0.0016

H = 14.5 mm, F = 0.1 Hz V = 10 m/s 0.0036
H = 14.5 mm, F = 0.1 Hz V = 12 m/s 0.0022
H = 14.5 mm, F = 0.1 Hz V = 14 m/s 0.0023
H = 14.5 mm, F = 0.1 Hz V = 18 m/s 0.0057

H = 14.5 mm, V = 10 m/s F = 0.1 Hz 0.0038
H = 14.5 mm, V = 10 m/s F = 0.2 Hz 0.0018
H = 14.5 mm, V = 10 m/s F = 0.3 Hz 0.0020

Table 3. Prediction results of the sector unsteady aerodynamic coefficients.

Category 1 Category 2 MSE

V = 10 m/s, F = 0.1 Hz H = 21.5 mm 0.0036
V = 10 m/s, F = 0.1 Hz H = 30 mm 0.0058

H = 21.5 mm, F = 0.1 Hz V = 10 m/s 0.0037
H = 21.5 mm, F = 0.1 Hz V = 12 m/s 0.0022
H = 21.5 mm, F = 0.1 Hz V = 14 m/s 0.0010
H = 21.5 mm, F = 0.1 Hz V = 18 m/s 0.0016

H = 21.5 mm, V = 10 m/s F = 0.1 Hz 0.0021
H = 21.5 mm, V = 10 m/s F = 0.2 Hz 0.0019
H = 21.5 mm, V = 10 m/s F = 0.3 Hz 0.0023

5.4. Den Hartog Coefficients and Nigol Coefficients

When the aerodynamic coefficients of the iced conductors meet Equations (9) and (10),
the Den Hartog vertical galloping and Nigol torsion galloping criteria are applied. Vertical
galloping or torsional self-excited galloping of the iced conductors may be caused.

∂CL/∂α + CD < 0 (9)

where CL represents the coefficients of lift, CD indicates drag coefficients, and α indicates
the angle of wind attack.

∂CM/∂α < 0 (10)

where CM represents the moment coefficients and α indicates the angle of wind attack.
The aerodynamic coefficients of the crescent-shaped iced conductor derived by the

neural network prediction approach and test are displayed in Figure 11 and were used to
calculate the Den Hartog and Nigol coefficients.

Figure 11a shows the Den Hartog vertical galloping mechanism and the Nigol torsion
galloping mechanism in the 160◦~180◦ wind attack angle range. The iced conductor may
face vertical galloping in the 65◦~160◦ angle of wind attack range. In Figure 11b, in the
120◦~180◦ range of angle of wind attack, the iced conductor may face vertical galloping,
and the 60◦~165◦ range of angle of wind attack may cause the iced conductor to face



Buildings 2023, 13, 64 15 of 17

torsion galloping. In Figure 11c, in the range of angle of wind attack of 160◦~180◦, the
iced conductor may face vertical galloping, and the range of 45◦~135◦ and near 150◦ may
cause the iced conductor to face torsion galloping. In Figure 11d, in the 160◦~180◦ range of
angle of wind attack, the iced conductor may face vertical galloping, and near the angle of
wind attack of 140◦, the iced conductor may face torsion galloping. In Figure 11e, in the
range of angle of wind attack of 160◦~180◦, the iced conductor may face vertical galloping,
and the 45◦~135◦ angle of wind attack range may cause the iced conductor to face torsion
galloping. In Figure 11f, in the range of angle of wind attack of 160◦~180◦, the conductor
may face vertical galloping, and the range of 85◦~135◦ may cause the iced conductor to face
torsion galloping. The thickness of the ice has a greater influence on the Nigol coefficients,
and the wind speed has a smaller influence on the Den Hartog and Nigol coefficients.
Both the neural network predictions and the wind tunnel test results show that when
the crescent-shaped iced conductor is in torsional motion, it may also undergo galloping
without satisfying the Den Hartog mechanism.
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Based on the machine learning method, in order to further demonstrate the viability of
the neural network prediction approach, the aerodynamic coefficients of the iced conductors
were anticipated. The findings of the test were then compared with the analysis of the Den
Hartog and Nigol coefficients. The following conclusions have been obtained: using the
neural network and wind tunnel test, crescent-shaped iced conductors were used to derive
the Den Hartog and Nigol coefficients. Galloping was brought on by the Den Hartog and
Nigol coefficients, which are also important in preventing it. Therefore, research on the
galloping of the conductors and technologies for prevention and control can make use of
neural network methods to anticipate the aerodynamic coefficients of iced conductors.

6. Conclusions

The steady and unsteady aerodynamic coefficients of iced conductors were acquired
from a wind tunnel test. Machine learning was used to build a prediction model. The results
of the wind tunnel test were contrasted with those predicted. The galloping characteristics
obtained by the two methods were further analyzed.

(1) The input parameter range, the volume of sample data, and the degree of data
numerical volatility all directly affect the prediction effect. The mean square error
of the prediction results obtained based on the neural network prediction method is
within 10%, which realizes the prediction expectation.

(2) The greater the thickness of the ice is at the same wind speed, the greater is the
fluctuation of the aerodynamic coefficients in the range of the angle of wind attack.
Different wind frequencies and speeds under the same ice thickness conditions have
little impact on the change in lift and drag coefficients of an iced conductor. It is also
important to note that they have little effect on the torque coefficients.

(3) Based on machine learning and the wind tunnel test, the aerodynamic coefficients
were calculated and analyzed. Additionally, the coefficients of Den Hartog and Nigol
were calculated and analyzed to change with the angle of wind attack, which verified
the feasibility of machine learning to predict the gallop characteristics.

In this paper, using the wind tunnel test, the steady and unsteady aerodynamic
coefficients under various conditions were derived. A prediction method of aerodynamic
coefficients under the wind load of iced wind of transmission lines is proposed. This study
successfully addresses the issue of expensive and prolonged wind tunnel tests. Additionally,
it helps avoid and manage iced transmission line galloping.
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