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Abstract: Lead–zinc tailings are the typical solid wastes in mines with high yield and low utilization
rates in some countries at present. They are mainly stockpiled in tailings reservoirs, occupying
massive land resources and threatening the health of the environment. One of the advantages of
building material production in sustainability is the ability to utilize large amounts of industrial solid
wastes, and the use of lead–zinc tailings in building materials is an effective way to meet the dual
needs of environmental protection and economic development. This paper reviews the progress
of utilizing lead–zinc tailings as building materials and mainly summarizes the status of lead–zinc
tailings in cement, geopolymer, concrete, building brick, and foam ceramic. According to previous
research, lead–zinc tailings contain large amounts of silica–alumina oxide, which can be used in the
production of cement clinker. The addition of lead–zinc tailings to the sintered material can reduce
the sintering temperature. The active components contained in lead–zinc tailings can be used in
concrete instead of cement or in the preparation of geopolymers. Meanwhile, lead–zinc tailings
can also be used as a fine aggregate. However, there are few studies on the durability of building
materials with lead–zinc tailings. Additionally, most of the research results of building materials are
in the laboratory stage, which are difficult to be promoted. In view of these problems, corresponding
suggestions and prospects are given in the end in order to provide a reference for the research on the
utilization of lead–zinc tailings.
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1. Introduction

Lead–zinc tailings are the residual solid waste of lead–zinc ore after crushing and
flotation [1]. China has a wide distribution of Pb–Zn minerals, and the production of Pb and
Zn ranks first in the world [2]. However, with many lean ores, few rich ores, and complex
mineral composition, most lead–zinc ores are highly difficult to beneficiate [3,4]. Therefore,
with the continuous development of mineral resources, the number of tailings has increased
dramatically [5,6]. According to the latest data in the Annual Report on Comprehensive
Utilization of Resources in China, by the end of 2021, the total annual production of tailings
in China was 16.49 billion tons, while the total utilization of tailings was only 312 million
tons, with a comprehensive utilization rate of only 18.9% [7]. Western developed countries
have started the comprehensive development and utilization of mineral resources since
the first and middle of the 20th century and now have achieved waste-free and slag-free
production in some mines [8]. China, on the other hand, started late, and the comprehensive
utilization rate of tailings still has a big gap compared with European and American
countries. Such a large number of tailings has serious safety hazards [9,10], which will
not only pollute the environment and occupy land resources but also affect the healthy
development of human society [11–13].

In response to this problem, the National Development and Reform Commission of
China pointed out that it should make the best efforts to carry out the comprehensive
utilization of resources and promote the green, efficient, high quality, high value, and
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large-scale utilization of solid waste. At present, the utilization of lead–zinc tailings in
building materials provides the advantages of less pollution, high economic benefits, and
sustainable development, and it is a highly promising and valuable method for the resource
utilization of tailings [14]. Promoting the research and exploration of using lead–zinc
tailings in building materials is of great significance to carry out comprehensive utilization
of solid waste resources.

Thus, this paper summarizes the properties and hazards of lead–zinc tailings and
discusses the feasibility and necessity of utilizing lead–zinc tailings in building materials.
Then, the research progress of lead–zinc tailings in building materials is reviewed, focusing
on the research status of lead–zinc tailings applied to cement, geopolymers, concrete,
building bricks, and foam ceramics. Finally, the problems that lead–zinc tailings face in the
development of building materials industry are analyzed, and its development prospects
are forecasted, with a view to providing reference for the further utilization of lead–zinc
tailings in the field of building materials.

2. Characteristics and Hazards of Lead–Zinc Tailings
2.1. Characteristics of Lead–Zinc Tailings

Lead–zinc tailings are a kind of composite minerals with a complex chemical com-
position [15–17]. There are obvious differences in the composition of lead–zinc tailings
from different mines due to the differences in the beneficiation process, as shown in Table 1.
However, there are also some similarities among these lead–zinc tailings in terms of compo-
sition; that is, the metal content is generally low, and the main compositions are oxides of Si,
Al, Fe, Ca, and Mg [18,19]. The low content of valuable metals makes lead–zinc tailings lose
some recovery value, but the high content of silica–alumina oxides gives them reuse value.
By comparing the chemical composition of lead–zinc tailings with clay, it can be found
that the composition of both is very similar, and the content of SiO2, Fe2O3, and Al2O3 in
some lead–zinc tailings is close to that in clay. In addition, the main minerals of lead–zinc
tailings include quartz, feldspar, and clay, which are very close to natural sand minerals [3].
Therefore, lead–zinc tailings can be used as raw materials to produce cement or other
construction materials in place of clay or sand. In summary, although the composition of
lead–zinc tailings is complex and the valuable metals are difficult to recover, lead–zinc
tailings still have high potential value in the production of building materials [20].

Table 1. Chemical composition of different lead–zinc tailings (wt.%).

References Types SiO2 Al2O3 Fe2O3 CaO MgO Na2O SO3 K2O LOI

Wang et al. (2017) [21]

Lead–zinc
tailings

66.23 7.67 2.45 8.51 1.78 0.54 - 0.65 3.83
Zhang et al. (2015) [22] 69.92 10.41 1.89 2.19 1.39 0.51 0.55 2.17 3.68
Argane et al. (2015) [23] 68.44 9.380 2.200 1.99 0.48 0.7 0.449 5.46 -

Jankovic et al. (2017) [24] 43.26 11.11 15.57 20.01 4.31 0.92 0.32 1.00 5.61
Shen et al. (2013) [25] 49.43 17.23 8.23 5.88 9.02 0.41 1.43 4.59 -
Shen et al. (2013) [25] 26.97 5.17 4.36 33.84 15.48 0.16 0.55 1.57 9.53

Wei et al. (2021) [26] Clay 61.37 14.32 4.74 12.40 2.36 1.03 0.03 2.59 -

2.2. Hazards of Lead–Zinc Tailings

Stockpiling in tailings reservoirs is currently the most direct disposal method for
lead–zinc tailings. According to the Work Plan for Preventing and Resolving Safety Risks
of Tailings Reservoirs in 2020, there are nearly 8000 tailings reservoirs in China, ranking
first in the world [27]. A total of 64 types of minerals are involved, of which the minerals
with the largest stockpile of tailings contain Zn and Pb [28]. These tailings reservoirs not
only occupy a large amount of national land area but also have certain security risks [29,30],
and they are also harmful to the environment [31–33], as shown in Figure 1. At present,
most tailings reservoirs are a dangerous source with high potential energy formed by the
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accumulation of tailings, which are easily disturbed to form disasters such as debris flow,
resulting in major casualties and property losses [34–36].
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Figure 1. Adverse effects of tailings reservoirs on environment and human society.

In addition, the problem of environmental pollution caused by the stockpiling of
lead–zinc tailings should not be underestimated [37–39]. Kan et al. [40] assessed the
pollution of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn by analyzing their concentration data in
lead–zinc tailings reservoirs in China and found that the average concentrations of all these
heavy metals in soil have exceeded the corresponding background values [41]. Under
the combined effect of internal and external factors, the lead–zinc tailings in the tailings
reservoirs will leach out a large amount of heavy metal liquid [42], which will seriously
pollute the water resources in the nearby area after infiltrating with rainwater. Mine soil
is also the major carrier of heavy metal pollution [16,17]. The contaminated soil not only
affects the growth of local plants and animals but also causes food safety and leads to the
entry of heavy metal elements such as Pb, Zn, and Cd into people’s bodies along the food
chain [43]. Moreover, the large number of fine particles in tailings reservoirs can also cause
serious dust pollution [44,45].

3. Utilization Ways of Lead–Zinc Tailings

In view of the fact that the various problems of tailings reservoirs are not conducive to
the development of the mining industry, many countries have taken measures to reduce the
impact of tailings stacking. The recycling of lead–zinc tailings has also been developed to a
certain extent, and a preliminary resource utilization system has been formed, as shown in
Figure 2. For tailings that still contain materials with recycling value, secondary recovery
can be carried out through tailings reselection. Although tailings are waste, they may still
contain some valuable metals and usable minerals due to the shortage of beneficiation
technology. The key to achieving secondary recovery is to select a reasonable reselection
process according to the characteristics of tailings, and the current development of new
equipment and new technology provides a strong guarantee for the secondary recovery
of tailings [46,47]. However, there are still technical difficulties in the recovery of some
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fractions in lead–zinc tailings [48]. Additionally, the secondary recovery still generates
tailings, so it is not suitable as an effective method to consume a large number of tailings.
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For tailings that no longer have reselection value, comprehensive utilization of them
should be considered. At present, the diversified utilization of tailings carried out in
western developed countries is mainly concentrated in mine filling material, road engineer-
ing paving material, concrete aggregate and mineral admixture, etc. [47]. However, the
main applications in China are only two categories of mine filling material and building
material [49]. However, the utilization of these two disposal methods of tailings accounts
for about 53% and 43% of the total amount of tailings utilization in China, which already
has a better application system. On the one hand, using tailings to fill mined-out areas
can solve the problem of land resources occupied by tailings and avoid the occurrence
of dangers such as ground collapse or landslides in mining areas [50,51]. On the other
hand, because the main compositions of tailings are similar to building materials and their
particle size distribution is suitable, making lead–zinc tailings into building materials is a
more promising utilization method. These methods are helpful in treating large volumes of
lead–zinc tailings. However, in order to prevent secondary pollution, it is necessary to make
reliable assessments and prevent the possible pollutants released from the tailings [52,53].

4. Utilization of Lead–Zinc Tailings as Building Materials

The composition of lead–zinc tailings is very similar to that of building materials, light
industrial materials, and inorganic chemical materials, and the elements such as Si and
Al contained in lead–zinc tailings are also essential to produce building materials [54,55].
In recent years, many scholars have made studies on the use of lead–zinc tailings as raw
materials to produce building materials and have achieved significant results in terms of
the preparation process and raw material ratio. At present, lead–zinc tailings building
materials research has been involved in the fields of cement, geopolymer, concrete, building
brick, and foam ceramic.

4.1. Utilization of Lead–Zinc Tailings in Cement Production

Existing studies show that the utilization of various solid wastes in the cement industry
is a very effective means. The main compositions of lead–zinc tailings are SiO2, Al2O3, and
Fe2O3, which can partially or totally replace the clay, iron, and aluminum raw materials
in traditional cement raw materials. On the one hand, the addition of lead–zinc tailings
can promote the production of tricalcium silicate (C3S) in cement clinker. Additionally,
the increased content of Pb and Zn is also conducive to the conversion of C3S’s crystal



Buildings 2023, 13, 150 5 of 20

form from M3 to M1, which effectively improves the strength of the mixture [56]. The
compressive strength of silicate cement clinker prepared by Chen et al. [57] using raw
materials mixed with lead–zinc tailings reached 60.4 MPa after 28 days of curing, and the
soundness met relevant standards. On the other hand, the addition of lead–zinc tailings can
also improve the sinterability of the raw meal, decrease the heat absorption, and promote
the burning of the clinker because of its mineralizer compositions and trace elements [58,59].
In the calcination of cement clinker, CaO reacts with acidic oxides to form minerals such
as C3S, C2S, C3A, and C4AF. However, under the influence of the sinterability of the raw
meal, there is still unreacted CaO in the clinker that exists in the free state (f-CaO), which
has a direct negative impact on the quality and stability of cement [60]. However, mixing
with lead–zinc tailings could effectively reduce the content of f-CaO in the clinker. As
shown in Table 2, at a certain calcination temperature, the f-CaO mass fraction of the
clinker with lead–zinc tailings was significantly reduced, while the flexural strength and
the compressive strength were also improved to a certain extent, reaching the requirement
of 42.5 ordinary portland cement. He et al. [61] also found the optimum mixing amount
of lead–zinc tailings through the study of the sinterability of raw meal; when the amount
of mixing was 12.25%, the content of f-CaO was the lowest, only 0.07%, and the state of
minerals formation in clinker was good. However, the excessive mixing amount did not
help to improve the sinterability of the raw meal and could not promote the formation of
C3S and the reduction of f-CaO in the clinker effectively.

Table 2. Performance comparison of cement clinker with different tailings content [60].

Sample Mixing Amount
of Tailings/% f-CaO/%

Flexural Strength/MPa Compressive
Strength/MPa

3 d 28 d 3 d 28 d

S1 0 0.37 5.70 7.99 29.57 54.67
S2 15 0.10 6.51 8.21 27.08 47.90
S3 16 0.24 6.82 9.18 18.09 53.99

P.O 42.5 - ≥3.5 ≥6.5 ≥17.0 ≥42.5

The utilization of lead–zinc tailings for cement preparation is beneficial in reducing
tailings retention and saving resources, but there are still some limitations. The quality of
the finished cement is determined by the chemical composition of the raw meal, which
inevitably leads to strict requirements for the incorporation of lead–zinc tailings. Due to
the differences in the composition of lead–zinc tailings from different sources, it is difficult
to control the mechanical strength and workability of the finished cement to be stable and
unchanged in the same production process. Additionally, it is necessary to pay attention
to the potential pollution of lead–zinc tailings, where volatile heavy metals in lead–zinc
tailings could pollute the environment along with flue gas emissions during the calcination
process [62,63]. These have severely limited the application of lead–zinc tailings in cement
production [64,65].

4.2. Utilization of Lead–Zinc Tailings in Geopolymer Production

Geopolymer is a kind of cementitious material similar to cement, and due to the special
three-dimensional oxide network structure of inorganic polycondensation, geopolymer
has better working properties, and the research on it has received attention from many
scholars [66,67]. Compared with traditional silicate material, geopolymer has properties
such as high-temperature resistance, high strength, high toughness, and corrosion resis-
tance [68,69], and the production process is simpler and more environmentally friendly. It
has great applications in the production of concrete, brick for building, backfill material,
and porous material [70,71]. With the progress of studies, the silica–alumina raw materials
for the preparation of geopolymers have been expanded to various industrial solid wastes
containing active silica–alumina compositions [72,73]. Additionally, the application of
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lead–zinc tailings with high silica–alumina content for the preparation of geopolymers is
also one of the research hotspots.

The properties of geopolymer are mainly determined by the reactivity of the precursor,
which depends on the alkali solubility of silicon and aluminum in the raw material [74,75].
Some of the lead–zinc tailings are mainly composed of aluminates, silicates, and calcare-
ous minerals, which are very similar to the raw materials needed for the preparation of
geopolymer. Meanwhile, lead–zinc tailings also have a certain degree of alkali activity.
The geopolymer prepared from lead–zinc tailings with high silica–alumina content and
lead–zinc smelting slags had a dense microstructure and an excellent strength property [76],
and the compressive strength at 28 days was up to 32.81 MPa. Therefore, this type of
lead–zinc tailings can be directly used for the preparation of geopolymer materials [77].
As for lead–zinc tailings with low reactivity, they can be activated by mechanical milling
or high-temperature treatment. Generally, the strength of the geopolymer prepared by
using single lead–zinc tailings as raw materials is lower, and it is hard to meet the require-
ment for building materials. That is mostly attributed to the fact that the low activity
components in lead–zinc tailings are not easily eroded by the alkalis, and it is difficult to
form a more hydrated gel. However, this problem can be effectively avoided by mixing
tailings and auxiliary materials such as metakaolin and mineral powder before preparing
the geopolymer [78]. The addition of these active substances helps to increase the tailings
reactivity, promote the geological polymerization reaction, and facilitate the development
of geopolymer strength [79]. For example, the admixture of mineral powder could improve
the activity of lead–zinc tailings and thus enhance the structural strength of the geopolymer,
especially when the admixture is in the range of 5% to 20% with the best effect [80].

Furthermore, the geopolymer can also solidify heavy metal ions in lead–zinc tailings
and reduce their threat to the environment [81,82]. The geopolymer solidifies heavy
metal ions primarily by physical and chemical adsorption. The heavy metal ions not
only physically adsorb with the geopolymer gel but also form chemical bonds with the
aluminosilicate skeleton in it [83,84], and the solidification effect is remarkable. As shown in
Figure 3, the curing rates of Zn2+, Pb2+, and Cd2+ in the geopolymer doped with lead–zinc
tailings were all higher than 97.80%, and their leaching concentrations all fluctuated only
within the limits, which were no longer at risk of contamination [85,86]. In addition, the
heavy metals in the lead–zinc tailings have some optimization effect on the strength of the
geopolymer; for example, the increase in Pb ion content in the geopolymer precursor can
enhance its strength after molding [83,87].

Buildings 2023, 13, x FOR PEER REVIEW 7 of 21 
 

 

Figure 3. Solidification rate and leaching concentration of Zn2+ (a), Pb2+ (b), and Cd2+ (c) in geo-

polymers with different tailings contents [85]. 

However, most of the research on the geopolymer prepared from lead–zinc tailings 

is still at a primary stage, and the study of its polymerization mechanism is not clear and 

thorough enough, especially in the area of solidifying heavy metal ions and strength op-

timization, which needs to be studied thoroughly. 

4.3. Utilization of Lead–Zinc Tailings as Concrete Admixture 

In the field of construction, concrete is in great demand, and its production requires 

a large amount of sand and gravel minerals [88]. Uncontrolled mining of these minerals 

will undoubtedly cause disorders in the ecosystem. Fortunately, the silicate substances 

contained in lead–zinc tailings are necessary for the preparation of concrete. So, it is fea-

sible to use lead–zinc tailings as admixtures for the preparation of concrete, which can 

not only improve the environment but also reduce the series of hazards generated by 

tailings accumulation [89,90]. There are two main studies on the utilization of lead–zinc 

tailings as concrete admixtures, one involves using them as cementitious materials in 

concrete [91], and the other involves using them as fine aggregates [92]. 

4.3.1. As Cementitious Materials 

The chemical composition of lead–zinc tailings is composed mainly of oxides such as 

Al2O3, SiO2, CaO, Fe2O3, and MgO, of which the content of SiO2 can be up to 60%. Addi-

tionally, the fineness of the tailings is greatly improved by the secondary reselection, so 

there is a volcanic ash activity of lead–zinc tailings, which can be used as cementitious 

materials. However, the volcanic ash activity of lead–zinc tailings is much lower than 

that of cement, and mixing too much tailings in cement will make the strength too low. In 

order to meet the strength requirements, the admixture of lead–zinc tailings should not 

exceed 20% in general [20,93]. Therefore, it is necessary to improve the activity of lead–

zinc tailings in order to increase their admixture as cementitious materials. Currently, 

mechanical activation is the most basic means to increase the activity of lead–zinc tailings 

[94]. Mechanical activation macroscopically increases the specific surface area of lead–

zinc tailings and microscopically decreases their crystallinity. So, the contact area be-

tween the activated lead–zinc tailings and water is expanded, and the internal unstable 

structure is increased, which makes it easier for the volcanic ash reaction to occur. As 

shown in Figure 4, there is a significant increase stage in the compressive strength of the 

mortar test block prepared by mixing lead–zinc tailings after mechanical grinding [95,96]. 

Figure 3. Solidification rate and leaching concentration of Zn2+ (a), Pb2+ (b), and Cd2+ (c) in geopoly-
mers with different tailings contents [85].



Buildings 2023, 13, 150 7 of 20

However, most of the research on the geopolymer prepared from lead–zinc tailings
is still at a primary stage, and the study of its polymerization mechanism is not clear
and thorough enough, especially in the area of solidifying heavy metal ions and strength
optimization, which needs to be studied thoroughly.

4.3. Utilization of Lead–Zinc Tailings as Concrete Admixture

In the field of construction, concrete is in great demand, and its production requires
a large amount of sand and gravel minerals [88]. Uncontrolled mining of these minerals
will undoubtedly cause disorders in the ecosystem. Fortunately, the silicate substances
contained in lead–zinc tailings are necessary for the preparation of concrete. So, it is feasible
to use lead–zinc tailings as admixtures for the preparation of concrete, which can not
only improve the environment but also reduce the series of hazards generated by tailings
accumulation [89,90]. There are two main studies on the utilization of lead–zinc tailings as
concrete admixtures, one involves using them as cementitious materials in concrete [91],
and the other involves using them as fine aggregates [92].

4.3.1. As Cementitious Materials

The chemical composition of lead–zinc tailings is composed mainly of oxides such
as Al2O3, SiO2, CaO, Fe2O3, and MgO, of which the content of SiO2 can be up to 60%.
Additionally, the fineness of the tailings is greatly improved by the secondary reselection,
so there is a volcanic ash activity of lead–zinc tailings, which can be used as cementitious
materials. However, the volcanic ash activity of lead–zinc tailings is much lower than that
of cement, and mixing too much tailings in cement will make the strength too low. In
order to meet the strength requirements, the admixture of lead–zinc tailings should not
exceed 20% in general [20,93]. Therefore, it is necessary to improve the activity of lead–zinc
tailings in order to increase their admixture as cementitious materials. Currently, mechan-
ical activation is the most basic means to increase the activity of lead–zinc tailings [94].
Mechanical activation macroscopically increases the specific surface area of lead–zinc tail-
ings and microscopically decreases their crystallinity. So, the contact area between the
activated lead–zinc tailings and water is expanded, and the internal unstable structure
is increased, which makes it easier for the volcanic ash reaction to occur. As shown in
Figure 4, there is a significant increase stage in the compressive strength of the mortar test
block prepared by mixing lead–zinc tailings after mechanical grinding [95,96]. However,
with the increase in grinding time, the strength of the mortar test block showed a tendency
to decrease instead [97,98]. It is because the grinding will make the individual particle size
of lead–zinc tailings smaller and smaller, resulting in the adsorption of lead–zinc tailings
particles into clusters with each other, and the particle size will be increased instead [95],
as shown in Figure 5. At the same time, the lead–zinc tailings particles also adsorb highly
active admixtures such as cement and fly ash, which ultimately leads to a reduction in the
overall activity of the cementitious material [99]. Therefore, the grinding time of lead–zinc
tailings should be reasonably controlled in the mechanical activation. The mixed grinding
of various admixtures and the step grinding method can also be considered. Furthermore,
thermal activation can also obviously improve the activity of lead–zinc tailings [100]. High
temperatures can decompose carbonaceous minerals such as dolomite and calcite in the tail-
ings and reduce their negative effect on the development of strength. As shown in Figure 6,
due to the decomposition of the carbonaceous components, the structure of the particles
is no longer compact but presents a loose and porous structure. That could promote the
leaching of free [SiO4]− and [AlO4]− from the tailings, and thus the cementation activity of
lead–zinc tailings could be improved [101]. However, the thermal activation treatment of
lead–zinc tailings requires a large amount of heat consumption and has a low efficiency,
which still needs more in-depth research.
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The active mineral components in lead–zinc tailings make dense cementitious struc-
tures inside the concrete through the “volcanic ash effect”, while the microparticles not
involved in the hydration reaction can also promote the improvement of concrete strength
through the “micro-aggregate filling effect”. During the hydration reaction, the excess
microparticles are filled in the pore space between the cementitious particles and the ag-
gregate. It can make the microstructure of concrete denser [102] and improve the skeleton
strength. However, the “volcanic ash effect” of lead–zinc tailings is stronger than the
“micro-aggregate filling effect”. Mixing too much lead–zinc tailings may block the reaction
pathway of active minerals, which in turn affects the generation and crystallization of hy-
dration products [103], leading to the weakening of concrete strength. So, it is necessary to
reasonably control the number of lead–zinc tailings incorporated as cementitious materials.

Presently, lead–zinc tailings have been able to be used as a partial replacement for
cement in various concrete materials, especially in the field of ultra-high performance
concrete (UHPC). Although UHPC has high strength and good durability, the demand
for cement is huge, and this energy consumption can be effectively reduced by using
lead–zinc tailings instead of cement. Lead–zinc tailings are less active than cement, but
the use of lead–zinc tailings instead of 40% cement can still prepare UHPC with 28 days
strength over 130 MPa [104]. In terms of workability, the admixture of lead–zinc tailings
will reduce the fluidity of the concrete slurry. This is because the lead–zinc tailings particles
are coarser, which increases the friction within the matrix and limits the free flow within
the cementitious system [105]. However, it is found that the addition of lead–zinc tailings
can significantly reduce the early autogenous shrinkage of concrete, as shown in Figure 7.
On the one hand, this is because the crystal structure of lead–zinc tailings absorbs less
water and delays the initial hydration phase [106]. On the other hand, due to the fact that
the addition of lead–zinc tailings forms a stable skeleton structure, which can alleviate
dry shrinkage [106]. In terms of chloride penetration resistance, the incorporation of lead–
zinc tailings will weaken the chloride penetration resistance of concrete. The increased
admixture of lead–zinc tailings decreases the integral activity of the cementitious material,
leading to a decrease in the area distribution of C–S–H and the development of the concrete
pore structure, which leads to an increase in chloride penetration [106]. However, despite
this, the chloride permeability of the concrete prepared by replacing 40% of cement with
lead–zinc tailings remained low and negligible, as shown in Figure 8. In conclusion,
lead–zinc tailings do not seriously deplete the performance of concrete when used as
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cementitious materials, and heavy metal leaching tests have confirmed the environmental
soundness of lead–zinc tailings concrete [107]. However, the mechanism of its influence on
durability properties, such as anti-carbonation properties and frost resistance, still needs
further confirmation.
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4.3.2. As Fine Aggregate

Lead–zinc tailings contain a large number of quartz minerals with a similar particle size
to natural sand, so they can be used as fine aggregate instead of river sand or mechanism
sand in concrete. Lead–zinc tailings sand particles are poorly rounded, with a rougher
surface and higher friction between each other, thus causing the concrete to become weak
in fluidity and unfavorable to pumping. However, the angularity of lead–zinc tailings
sand is beneficial to the stability of the internal skeleton of concrete, which in turn can
inhibit shrinkage and promote the development of strength. As shown in Figure 9, the
incorporation of lead–zinc tailings sand does not interfere with the development of concrete
strength, and the compressive strength development trend of concrete mixed with lead–
zinc tailings sand is consistent with that of ordinary concrete [108]. Meanwhile, due to
the strong water absorption and water retention, the water inside the lead–zinc tailings
sand will not participate in the hydration reaction prematurely. That will lead to a small
actual water-cement ratio in the early stage of concrete and the phenomenon of high early
strength [109]. However, when the amount of lead–zinc tailings sand is too much, the
concrete strength will be significantly reduced because its particle strength is smaller than
that of quartz sand. So, the incorporation amount of lead–zinc tailings sand should be
reasonably controlled in practical application.
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Figure 9. Compressive strength comparison of C25 concrete with different contents of lead–zinc
tailings [108].

Besides, because of the high content of primary lead slag and barite, lead–zinc tailings
sand also has a certain radiation protection ability and can be used to prepare radiation-
proof concrete. It can be applied as a protective body in strong radiation fields such as
medical and nuclear industries [110]. As shown in Figure 10, the absorption effect of
lead–zinc tailings sand concrete on γ-rays is obvious, and the incorporation of lead–zinc
tailings significantly improve the shielding performance of concrete. Compared with
ordinary concrete, lead–zinc tailings sand concrete is thinner at the same shielding strength,
which can effectively reduce space occupation. In addition, it is found that the higher
the apparent density of lead–zinc tailings sand radiation-proof concrete, the stronger its
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shielding performance against γ-rays. Considering the shielding performance and strength
performance together, the optimal admixture of lead–zinc tailings sand is as high as 40% to
60% [111].

1 
 

 

Figure 10. Relationship between γ-ray absorption coefficient of concrete and different contents of
lead–zinc tailings [111].

4.4. Utilization of Lead–Zinc Tailings in Building Brick Production

As one of the most widely used building materials in the construction field, traditional
building bricks consume a large amount of silica and calcium minerals, causing certain
pressure on the natural environment. For this reason, the national policy of “no-clay” has
been issued, and under the promotion of this policy, research on the production of building
bricks from industrial solid waste such as tailings and slags has become more and more
popular [112]. Since the composition of lead–zinc tailings is similar to that of raw materials
for building bricks, the feasibility and effectiveness of brick-making from lead–zinc tailings
have been explored. Lead–zinc tailings can replace clay in the preparation of sintered bricks.
Additionally, the mineralizer component contained in lead–zinc tailings can widen the
firing temperature range of sintered bricks and improve production efficiency. It has been
shown that it is completely feasible to prepare sintered bricks by using lead–zinc tailings as
raw material. Moreover, all types of indexes of such sintered bricks can meet the quality
requirements of the building materials industry [113,114]. In addition, the effect of tailings
sintered bricks on the fixation of heavy metals is also considerable. The leaching of Zn,
Pb, Cd, and Cu from lead–zinc tailings can be effectively suppressed by controlling the
ratio of various types of oxides in the raw material [115]. However, in actual production,
sintered bricks have high energy consumption and require high equipment maintenance
costs, which limit their development.

Lead–zinc tailings can also be used for the preparation of unfired bricks. Feng et al. [116]
prepared lightweight unfired bricks using lead–zinc tailings as fine aggregate, and the
compressive strength of the unfired bricks reached 9.3 MPa, which could be used as
building filler blocks. Li et al. [117] also prepared unfired bricks with lead–zinc tailings
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as volcanic ash material, and the compressive strength of these unfired bricks could meet
the MU20 requirement; that is, the average strength reached 20 MPa. All these studies
obtained lead–zinc tailings unfired bricks with qualified properties. However, due to the
lack of plasticity and volcanic ash activity of the lead–zinc tailings, a large amount of
cement is still required in the preparation, which does not effectively increase the additive
value. Therefore, it is possible to prepare geopolymer unfired bricks with better properties
through geological polymerization. Moreover, the admixture of lead–zinc tailings in this
method is up to 80%, which greatly improves the utilization efficiency [118] and deserves
further study for promotion.

In summary, the utilization of lead–zinc tailings to prepare bricks for construction is
possible to reduce resource loss and develop reuse value, but a systematic production model
still must be created in order to reduce energy consumption and ensure that lead–zinc
tailings can be used efficiently.

4.5. Utilization of Lead–Zinc Tailings in Foam Ceramic Production

Foam ceramic is a kind of green and energy-saving thermal insulation material with
the advantages of light weight, sound insulation, high temperature resistance, corrosion
resistance, and good compatibility with concrete materials, which is widely used in such
industries as construction, national defense, and the chemical industry [119]. The point
is that foam ceramic is also able to consume a large amount of industrial solid waste. At
present, the use of lead–zinc tailings to prepare foam ceramics has achieved excellent
results, and related research has become a hot spot. Some scholars successfully prepared
foamed ceramic insulation panels with lead–zinc tailings and ceramic raw materials, in
which the lead–zinc tailings were mixed with more than 50% [120]. During the sintering
process of foamed ceramics, with the increase in sintering temperature, SiO2 reacts with
Na2O and CaO to generate a glassy phase, which makes the internal mesh structure of
foamed ceramics more developed and, thus, can enhance the mechanical properties of
foamed ceramics [121]. Additionally, due to the easy generation of crystalline phases such
as sodium feldspar with dense structure and good flexibility during the sintering process,
the foamed ceramics have good chemical resistance [122].

Lead–zinc tailings can be used not only as raw materials for foam ceramics but also
as foaming agents. The reaction of the internal composition of lead–zinc tailings has an
obvious foaming effect [123], which has a significant influence on the pore structure of
foam ceramics. The addition of lead–zinc tailings can change the ratio of reactants to
make the ratio between CaO, Al2O3, and SiO2 close to the composition of eutectic points
in the ternary diagram of the CaO–Al2O3–SiO2 system, thus accelerating the softening
degree of ceramic raw materials [124]. As the sintering temperature increases, the viscosity
of the liquid phase gradually decreases, and the bubble nuclei become larger and larger,
eventually forming a porous structure, as shown in Figure 11 [124]. However, excessive
lead–zinc tailings will lead to an increase in the softening temperature of the raw material,
thus reducing the liquid phase content of the reactants during the sintering process and
hindering the development of pores, as shown in Figure 11d. So, in the future, the impact
of lead–zinc tailings on the performance of foam ceramics should be further quantitatively
analyzed in order to provide some references for the reasonable control of the incorporation
of lead–zinc tailings.

Increasing the sintering temperature is possible to improve the closed porosity, thermal
conductivity, and mechanical properties of foam ceramics. However, too high a temperature
may make the micropores expand and crack, resulting in an increase in volume and a
decrease in density. That will lead to a decrease in the mechanical strength of the ceramics.
Therefore, only reasonable control of the sintering temperature can effectively promote the
formation of closed pores inside the foam ceramics. Liu et al. [125] found that the foam
ceramics sintered at 970 ◦C had the most excellent properties, with higher porosity (76.2%),
higher mechanical strength (5.3 MPa), and lower thermal conductivity (0.21 W/(m K)),
which is expected to be applied in building insulation materials. However, at present, the
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properties and functions of lead–zinc tailings foam ceramics still need further specification
to ensure that they can be promoted for applications in the construction field. Besides,
lead–zinc tailings can also be used to prepare high-value fired materials such as ceramic
granules [126] and microcrystalline glasses [127,128], which also have excellent properties.
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5. Conclusions

As a typical representative of mine solid waste, lead–zinc tailings not only occupy a lot
of land resources but also are not conducive to the protection of the natural environment. In
fact, lead–zinc tailings are also a valuable secondary resource. The application of lead–zinc
tailings as an admixture in the production of building materials can not only reduce the
hazards caused by the stockpiling of tailings but also bring economic benefits. It is in
line with the dual requirements of environmental protection and economic development.
According to the available studies, lead–zinc tailings are mostly used in the preparation of
traditional building materials such as cement, concrete, and construction bricks. Especially
in the field of concrete, studies on the preparation of ultra-high-performance concrete with
lead–zinc tailings are more popular. In addition, lead–zinc tailings can also be applied to
prepare high-value building materials such as geopolymers, foam ceramics, and micro-
crystalline glass. They can utilize the potential value of lead–zinc tailings well and have
great durability at the same time. However, it is still in the initial stage, and more in-depth
experimental and theoretical studies are needed.

Presently, scholars have produced a lot of research on the application of lead–zinc
tailings in building materials, but most of the substantial achievements are still in the
laboratory stage. There is still some resistance to the improvement of various materials.
The two main reasons are as follows:
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(1) Influenced by the properties of mineral deposits and processing technology, the
stability of lead–zinc tailings used as building materials in different regions is bound
to be affected. This, in turn, leads to differences in product performance.

(2) In terms of product performance, most of the studies on building materials doped
with lead–zinc tailings are still focused on the basic properties of materials, such as
mechanical strength, while the research on durability, security, and workability is not
thorough enough.

6. Prospects

As a result, it is necessary to continue future research deeply in order to accelerate the
development of the utilization of lead–zinc tailings as building materials. First of all, the
characteristics of lead–zinc tailings should be studied thoroughly. It is possible to construct
a database of lead–zinc tailings and classify them according to the difference in physical
and chemical properties. Secondly, the effect of lead–zinc tailings on the performance of
building materials needs to be further explored. On the one hand, reducing the complexity
of raw materials for building materials is necessary. On the other hand, the security and
workability of existing lead–zinc tailings building materials should be improved. Finally, it
is still important to explore new high-value utilization ways in order to expand the added
value of lead–zinc tailings. In conclusion, the utilization of lead–zinc tailings as building
materials has a broad development prospect and is a necessary direction for the future
development of new economical materials. It will provide enough application space for the
reuse of lead–zinc tailings.
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