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Abstract: Air‑handling units have been widely used in indoor air conditioning and circulation in
modern buildings. The data‑driven FDD method has been widely used in the field of industrial
roads, and has been widely welcomed because of its extensiveness and flexibility in practical ap‑
plications. Under the condition of sufficient labeled data, previous studies have verified the utility
and value of various supervised learning algorithms in FDD tasks. However, in practice, obtaining
sufficient labeled data can be very challenging, expensive, and will consume a lot of time and man‑
power, making it difficult or even impractical to fully explore the potential of supervised learning
algorithms. To solve this problem, this study proposes a semi‑supervised FDDmethod based on ran‑
dom forest. This method adopts a self‑training strategy for semi‑supervised learning and has been
verified in two practical applications: fault diagnosis and fault detection. Through a large number
of data experiments, the influence of key learning parameters is statistically represented, including
the availability of marked data, the number of iterations of maximum half‑supervised learning, and
the threshold of utilization of pseudo‑label data. The results show that the proposed method can
effectively utilize a large number of unlabeled data, improve the generalization performance of the
model, and improve the diagnostic accuracy of different column categories by about 10%. The re‑
sults are helpful for the development of advanced data‑driven fault detection and diagnosis tools for
intelligent building systems.

Keywords: building; air handling units; fault detection and diagnosis; integrated learning;
self‑training

1. Introduction
The construction sector accounts for 36% of total global energy consumption [1]. It is

estimated that this consumption will increase by more than 1.5% annually over the next
20 years [2,3]. As one of the most important building mechanical systems, the heating,
ventilation and air‑conditioning (HVAC) system consumes more than 40% of building en‑
ergy consumption [4]. The operation of a malfunctioning HVAC system not only causes
indoor environmental problems that affect the health and productivity of occupants, but
also causes significant energy waste that affects building energy efficiency. The air han‑
dling unit (AHU) is a key component of the air conditioning (HVAC) system and is a
functional guarantee to achieve the sustainability of heating, ventilation and propulsion
buildings. Therefore, air handling units (AHU) have an important impact on building
energy efficiency and indoor comfort [5,6]. Common AHU failures can be divided into
three categories, namely, device failure, actuator failure and sensor failure [7,8]. Device
failure refers to the failure in system operation. Actuator failure usually leads to system
output deviation, and sensor failure may lead to drift and deviation in data measurement,
thus negatively affecting system feedback control [9]. AHU Fault Detection and Diagno‑
sis (FDD) plays an important role in ensuring the comfort, stability and sustainability of
the built environment. By eliminating equipment, actuator and sensor failures during the
operation of AHU, 15–30% of energy can be saved [10–12]. It is important to develop ac‑
curate and reliable real‑time fault detection and diagnosis tools in order to ensure that
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AHUmaintains the function of the indoor environment and improves energy efficiency to
reduce energy waste caused by unhealthy operation.

Current AHU fault detection and diagnosis methods can bemainly divided into three
categories: the knowledge‑driven method, data‑driven method, and knowledge‑driven
and data‑driven hybrid method [13]. Knowledge‑driven methods are developed based on
physical mechanisms. The adopted physical principles or engineering knowledge of AHU
form the basis of FDD analysis, which can be further divided into model‑based methods
and rule‑based methods. The model‑based approach compares the measured HVAC oper‑
ating status with these established normal operating baselines described by physics‑based
and engineering‑based models. For large systems where the mathematical model‑related
information is unavailable or too costly and time‑consuming, a rules‑based approach is
an alternative to addressing these fault diagnosis problems. The rules‑based approach
mainly relies on engineering experience to define a set of rules or thresholds for the appli‑
cation, and a diagnostic rule set is developed by domain experts to detect and diagnose
faults by using residual differences between the monitoring data and the modeling pro‑
cess. These techniques are based on qualitative models, which can usually be obtained
through causal modeling or detailed descriptions of systems, expert knowledge, or typical
failure symptoms [14]. Rule‑based methods can explain the dynamic behavior of the sys‑
tem with high transparency and understandability. However, in practice, because expert
rules are often simplified and not convenient for real‑time calculation, the applicability has
great limitations.

Data from system operation are a valuable potential resource to reflect the state of sys‑
tem operation. System faults usually leave features on the system operation data collected
by various types of sensors. Therefore, data‑driven approaches that directly analyze these
sensor data using techniques such as machine learning are also widely used to support
FDD. Data‑driven approaches differ from knowledge‑driven approaches in that they are
based on direct analysis of system sensing data and use the entire data to learn patterns
of fault performance. According to whether the sample set is labeled or not, data‑driven
methods can be classified into supervised learning and unsupervised learning in detail. A
supervised learning‑based classification method trains and builds a diagnostic classifica‑
tion model using a labeled data set, which is composed of model inputs (variables) and
outputs (results). The output results are also called classification labels, which can be bi‑
nary for fault detection (i.e., normal or faulty data samples), or multidimensional classifi‑
cation for different fault diagnosis (i.e., data samples corresponding to normal or specific
fault categories), such as support vector machines (SVM), decision trees and Bayesian clas‑
sifiers [14–17]. In practice, collecting enough marker data for reliable model development
can be time‑consuming and labor‑intensive, and the potential for powerful and complex
data‑driven classification models may be quite limited in reality due to the lack of suf‑
ficient marker data. In order to solve the problem of labeling data shortages, previous
studies mainly adopted two methods: to enrich labeled data by using the concept of data
enhancement, and to enhance model performance by using a large amount of unlabeled
data [18,19]. Based on the unsupervised learning method, the basic pattern of building
operation data can be directly analyzed, and the unlabeled data can support the algorithm
training. In unsupervised learning, no specific output value is provided. Instead, one tries
to infer some underlying structure from the input. Unlike supervised learning, unsuper‑
vised learning does not contain supervised information (such as data labels). A data set is
defined as having no prior knowledge to guide how to construct the relationship between
all samples [20]. A typical unsupervised learning task is the clustering task, whose goal is
to divide the data set containing N samples into several distinguishable groups. In effect,
the clustering task implementation groups similar samples into the same group; different
samples should come from different groups. Meanwhile, the number of clustering groups
is specified by the user in advance. As a result, unsupervised learning algorithms without
labeled information often fail to distinguish the expected output of given input data.
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In addition to separate data‑driven methods and knowledge‑driven methods,
researchers combine these methods to form a hybrid data‑driven method and a hybrid
knowledge‑driven and data‑driven method, thus improving the efficiency and
effectiveness of fault detection and diagnosis [21–26].

With communication technology, the continuous development of BIM technology and
intelligent building, and considering the rise of modern architecture data availability, the
data‑driven approach has become a convenient and flexible solution in order to realize ac‑
curate automation for all types of building services systems and real‑time control. This
method is suitable for modern engineering systems with a large‑scale domain. The ma‑
chine learning method has been widely used and developed in the industrial field. In or‑
der to make full use of the advantages of unsupervised learning and supervised learning
and avoid their defects as much as possible, semi‑supervised learning (SSL) is proposed.
SSL is a combination of supervised and unsupervised learning [27]. The data set consists
of a small number of labeled samples and a large number of unlabeled samples. The goal
of SSL is to learn the label prediction function of these unlabeled samples by using the
dependence information of labels and features reflected by the available label informa‑
tion. Semi‑supervised learning, which uses a large amount of unlabeled data to enhance
model performance, has been successfully applied in mechanical engineering, chemistry,
and other industries, involving fault diagnosis, image recognition and other fields [28];
however, there are still few relevant studies in the field of architecture. Semi‑supervised
learning can learn information from unlabeled data and enrich training data sets with less
data by using test data samples with high reliability.

Therefore, in order to find the value of unlabeled operation data and improve the ef‑
ficiency and effect of diagnosis, this study proposes a FDD detection and diagnosis frame‑
work based on semi‑supervised learning, which fully applies the operation data generated
during AHU operation for fault detection. In Section 2, we present the fundamentals of
the constructed semi‑supervised learning framework. In Section 3, we describe the ex‑
perimental data and data‑processing in detail. Then, Section 4 introduces the results of
data‑processing and discusses the experimental results. In Section 5, we summarize the
study and prospect future research.

2. Materials and Methods
2.1. Outline of the Proposed Method

In this study, we propose a data‑driven FDD approach for AHU fault detection and
diagnosis based on semi‑supervised learning. The main idea is to use pseudo‑label data
to amplify a limited marker data set, and then update or modify the prediction model to
obtain better generalization performance. By preprocessing the original data, including the
feature selection process, the original data set is converted into a subset containing fewer
feature variables to ensure accuracy and improve training efficiency. The predictionmodel
was developed using random forest and can be used for binary classification. Pseudo‑label
generation adopts a self‑training strategy. Firstly, an initial model is developed based on
labeled data and the model is used to assign unlabeled data as tags. Then, pseudo‑labeled
data and labeled data aremixed to expand a labeled data set. The expanded data set is used
for model training and evaluation. The overall flow chart of the designed FDD detection
and diagnosis framework is shown in Figure 1.
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Figure 1. The flowchart of the proposed semi‑supervised FDD approach for AHU faults.

2.2. Feature Selection Based on XGboost
As a nonparametric model of supervised learning, the XGBoost algorithm is a kind

of very effective machine learning algorithm, where the basic idea is to do a second‑order
Taylor expansion of the target function, using the function of the second derivative infor‑
mation to train a tree model, and the tree model complexity, as a regular item, is added
to the optimization goal, making the model generalization ability higher learning [29–31].
The choice of the XGboost parameter depends on the training data used in the model, and
its objective function is:

O(t) =
n

∑
i=1

l(yi, ŷ(i−1)
i ) +

K

∑
k=1

Ω( fi) (1)

where yi is the true value of the ith target; ŷi is the predicted value of the ith target; l(yi, ŷi)
describes the difference between yi and ŷi n is the number of samples; Ω(ƒk) is the tree
model complexity of the kth sample characteristic parameter ƒk. K is the total amount of
sample characteristic parameters.

Through optimization in the gradient direction, the model obtained before each iter‑
ation will be retained, and a new function will be added each time to improve the perfor‑
mance of thewholemodel, and themodel residual of theweak learnerwill be continuously
reduced to obtain a new tree model.

ŷ(0)i = 0ŷ(1)i = f1(xi) = ŷ(0)i + f1(xi)ŷ
(2)
i = f1(xi) + f2(xi) = ŷ(0)i + f2(xi) . . . ŷ(t)i =

K

∑
k=1

fK(xi) = ŷ(T−1)
i + ft(xi) (2)

Therefore, in the t iteration step calculation, the training objective function O is trans‑
formed as follows:

O(t) ≈
n

∑
i=1

[l(yi, ŷ(i−1)
i ) + ft(xi)] + Ω( fi) + C (3)

where ft(xi) is the tree structure value of input variable xi in the tth iteration step calcula‑
tion, and C is a constant.
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At this point, when the target function is approximated by the second‑order Taylor
expansion, then:

O(t) ≈
n

∑
i=1

[l(yi, ŷ(i−1)
i ) + gi ft(xi) + 0.5hi f 2

t (xi)] + Ω( fi) (4)

where gi and hi are the first and second derivatives of the prediction error to the current
model, respectively.

gi = ∂ŷi
(t−1) l

(
yi, ŷ(i−1)

i

)
(5)

hi = ∂2
ŷi

(t−1) l
(

yi, ŷ(i−1)
i

)
(6)

The constant term is removed and Equation (4) is expanded so that the objective func‑
tion only depends on the first and second derivatives of each data point on the error func‑
tion. At the same time, considering the decision tree model and defining the complexity of
the tree, the objective function is further rewritten into the following form:

O(t) =
T

∑
j=1

[Gωi +
1
2
(H + λ)ω2

i ] + γTG = ∑
i∈I

gi H = ∑
i∈I

hi (7)

where ωi is the output fraction of each leaf node; I is the set for each leaf above sample
collection; T is the number of leaf nodes in the split tree; λ and γ are weighting factors
used to control the specific gravity of the corresponding part.

As the model iterates, it optimizes itself based on residuals. At the same time, be‑
cause the objective function of node‑splitting is considered fully in the error term and reg‑
ularization term, the model has high precision and good performance against over‑fitting.
Figure 2 shows how XGboost works.

Figure 2. How the XGboost algorithm works.

XGBoost effectively processes more distributed and irregular data, resulting in good
overall model performance. The XGBoost algorithm optimizes CPU memory operations
through parallel computing, making XGBoost a more versatile model for data, classifica‑
tion, and feature recognition. XGBoost utilizes the principles of enhanced ensemble learn‑
ing algorithms to better predict performance. It increases the weight of misclassified train‑
ing samples (the error rate is very high) and decreases the weight of correctly classified
training samples. Previous misclassified training samples have a heavier weight, which
can be processed several times to improve accuracy and reduce the error rate [30,31].

2.3. Random Forest Algorithm
Random forest (RF) has the advantages of processing large‑scale data, preventing

over‑fitting and directly predicting new samples, and can provide good generalization per‑
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formance for many fault diagnosis cases [30–33]. Random forest is a combinatorial learn‑
ing algorithm containing multiple classifiers, including k independent classifiers h1(T),
h2(T)..., hk(T), which can be expressed as:

H = {h1(T), h2(T), . . . hk(T)} (8)

where T is the input factor set, namely the characteristic data set, hi(T) (i = 1,2... K) is
the ith base classifier, and each classifier is a decision tree following the classification and
regression tree (CART) method. The type that received the most votes was RF, which is
the result of whether the corresponding AHU running state is faulty or not. The principle
of RF is shown in Figure 3.

Figure 3. Random forest operation principle.

When the air conditioning system fails, the collected characteristic information will
change. The operating status of the air conditioning system can be judged by comparing
the difference between the actual operating data and the preset baseline [34–38].

The main steps of RF fault diagnosis are briefly summarized as follows:
Step 1: Extract features from the original data set to form a feature set. Feature subsets

are formed by randomdrawing. The feature subset is the key factor in the growing process
of each decision tree.

Step 2: Select each bootstrap sample subset from the original fault sample set and
replace it. The number of samples in the bootstrap sample subset is the same as in the
original sample set. For each bootstrap sample set, approximately one‑third of the samples
from the original sample set, whichmake up the out‑of‑pocket (OOB) data set, are omitted.

Step 3: Each decision tree is grown with a subset of bootstrap samples and a subset
of features, following the CART approach.

Step 4: The classification result of RF is provided by voting, and the fault diagnosis
result is obtained based on it.

From the above flow chart, it can be seen that the construction of RF fault diagnosis
model needs the data of the fault air conditioning system to train themodel. The formation
process mainly includes signal acquisition, feature selection and feature vector construc‑
tion [39]. The random forest operation flow used in this research is shown in Figure 4.
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Figure 4. Random forest operation flow.

2.4. Self‑Training Methods
Self‑training, also known as self‑study or self‑labeling [40–42], is a simple

semi‑supervised learning method which has been widely used in many fields, such as im‑
age recognition and natural language processing. Self‑trainingmethods do not require any
specific pre‑assumptions, and self‑training enables learning tasks to be trained on limited
labeled training data, which shows impressive results in semi‑supervised learning. The
basic idea of self‑training is to use the existing marked data to mark the unmarked data,
so as to obtain more reliable training data. Specifically, the method first trains the model
with labeled data, and then uses the model to predict unlabeled data. Finally, the unla‑
beled data with false labels are added to the training set to participate in further training,
and the above process is repeated until the algorithm reaches the predetermined condition.
The whole process can be summarized into the following steps:
• All labeled and unlabeled numbers are collected, and the labeled data (initial training

set) are used to train the first supervised model, namely the basic classifier, which is
used to predict the category of unlabeled data during training.

• The initial model is used to predict the categories of unlabeled data, observations that
meet predefined criteria are selected (usually consisting of several unlabeled exam‑
ples with high confidence predictions), and the initial training set is combined with
its predicted labels to train the new classifier (selection step).

• The classifier is then retrained on a new set of token examples, and the process (the
retraining step) is repeated until the stop condition is reached.
On this basis, the self‑training model framework based on random forest proposed in

this study is shown in Figure 5.
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Figure 5. A semi‑supervised learning framework based on random forest.

3. Data Experiment
3.1. Data Description

In this study, the AHU operational data collected by the American Society of Heating,
Refrigerating and Air‑Conditioning Engineers (ASHRAE) research project RP‑1312 were
adopted for data experiments [43]. The raw data consisted of operation data, which were
collected in three test periods: summer 2007, spring 2008, and winter 2008, each lasting
two to three weeks. In the experiment, a number of operating faults were manually intro‑
duced to simulate the failure of the damper, fan and water coil, and detailed data records
of the AHU operating status were collected at 1 min intervals. In this study, three main
fault types were considered, each of which had three sub‑types for data experiments. Con‑
sidering the possible differences in data characteristics between different faults and the
characteristics of random forest, the fault diagnosis task was set as three independent ran‑
dom forest classification problems. Table 1 summarizes the amount of data for different
data labels. Considering the impact of data imbalance and randomness, different types of
AHU failure data were mixed and randomly selected 2160 data and non‑failure data were
mixed to prepare for subsequent data processing.

Table 1. A summary on data selected for analysis.

Fault Type Fault Subtype Data Sample Numbers

EA Damper Stuck
Fully open 720
40% open 720
Fully closed 720

OA Damper Stuck
Fully closed 720
45% open 720
55% open 720

Cooling Coil Valve Stuck
15% open 720
65% open 720
Fully closed 720

No Fault NA 5760

The experimental data were divided into training data and testing data, accounting
for 75% and 25%, respectively. The training data were used to establish a semi‑supervised
random forest, and the testing data were used to evaluate the generalization performance.
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Secondly, 5%, 15%, 20%, 25% and 30% of the training data were extracted, respectively,
and their original labels were retained while removing the labels of the remaining data.
The labels were changed to 0 (normal operation state) or 1 (fault operation state) before
data sampling. The different thresholds (i.e., 0.65, 0.75, 0.85 and 0.95) and the proportion
of reserved marker data are shown in Table 2 to quantify their impact on semi‑supervised
fault detection and diagnosis. The maximum number of iterations of tag training was set
to 100.

Table 2. The experiment setups for fault diagnosis.

Semi‑Supervised Learning Parameters Candidate Values

The number of labeled data (5%, 15%, 20%, 25%, 30%)

Thresholds for pseudo‑label selection (0.65, 0.75, 0.85, 0.95)

Maximum iteration 100

In this study, three main AHU fault types, each with three subtypes, were selected
for the experiments. As shown in Table 1, there were 12,960 samples in the experimental
data, including 10 unique labels, namely, where one was the normal operation state, and
the rest were different types of wrong operations. Considering different faults and data
characteristics, the importance of different variables may be different. Therefore, the statis‑
tical characteristics of variables under different fault types were determined after feature
selection, as detailed in Section 3.2.

3.2. Feature Importance Selection
The basic idea of feature selection is to delete the functions that have little impact

on the performance of the Machine Learning (ML) model, and only keep the functions
that have the greatest impact on the ML model. Therefore, in the case of a given high‑
dimensional data set, dimension reduction through feature selection can reduce the amount
of data, speed up the computation and improve the computational efficiency while ensur‑
ing the effect [41–43]. The characteristic space studied in this paper is 164‑dimensional.
There is one type of data in factor space, that is, the value. Numerical data are data with
quantitative values, which are divided into numerical data directly related to the running
state and numerical data that explain experimental attributes (e.g., the date, or time nodes).
Another important issue is dealing with lost data. Missing values often exist in data sets
for a variety of reasons, so it is important to propose solutions that can fill in such null val‑
ues if there are data missing before further modeling. None of the three fault types exist
in the existing experimental data.

The fault feature is extracted from the original data, whichmainly reflects the relation‑
ship between a feature and the fault label, that is, the importance of feature. It is generally
believed that the more important a feature is, the more influence it has on fault diagnosis.
By applying the XGboost method described in Section 2 to the data set described in Sec‑
tion 3.1, the immediate result will be a ranking of the importance of features. The ranking
of feature importance under different fault types is shown in Figures 6–8. For the fault
type EA Stuck, the data dimension reduced from 164 to 16. For the fault type OA Stuck,
the data dimension decreased from 164 to 13. For the fault type Cooling Coil Valve Stuck,
the data dimension decreased from 164 to 8. It can be seen from the above results that the
same feature data have different influences on different fault categories.
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Figure 6. The feature importance of EA Damper stuck.

Figure 7. The feature importance of OA Damper stuck.

Figure 8. The feature importance of Cooling Coil Valve Stuck.
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Based on feature selection results, 26 variableswere selected asmodel inputs variables
considering their importance in fault detection. The statistical characteristics of these vari‑
ables are summarized in Table 3.

Table 3. The statistical characteristics of model input variables.

Variable Mean Standard
Deviation (STD)

50% of the
Median Value Max Min

EA‑DMPR 37.58 41.70 40.00 100.00 0.00

HWC‑EWT 80.74 12.63 75.23 139.635 66.07

CHWC‑EAH 60.74 12.91 54.72 87.38 38.06

HWC‑LWT 79.72 8.30 76.23 113.73 50.17

HWC‑MWT 81.27 12.21 76.80 139.51 65.96

VAVHCGPM.1 0.009 0.006 0.009 0.10 0.005

CHWC‑LAH 87.65 11.34 86.88 99.13 50.25

VAVHCGPM.3 −0.005 0.01 −0.004 0.22 −0.009
MA‑TEMP 70.51 4.62 71.42 76.51 56.46

VAVHCLWT.1 76.87 1.71 76.69 93.75 62.63

CHWC‑EWT 44.32 11.63 37.90 66.11 28.53

VAV‑DAT.3 66.33 8.46 70.25 79.75 55.50

VAV‑DAT.1 67.16 10.29 71.56 84.69 54.38

SA‑HUMD 79.50 11.44 81.11 93.37 52.51

RF‑DP 0.23 0.15 0.09 0.54 0.07

OA‑CFM 305.60 476.70 16.48 3363.96 −5.02
VAVHCGPM −0.41 0.06 −0.05 0.46 0.00

RA‑HUMD 48.72 2.26 48.34 62.21 41.87

VAVHCLWT.3 74.10 2.16 74.31 91.38 62.72

PLN‑TEMP.1 72.79 2.15 72.19 89.88 66.06

VAV‑
DMPR.3 50.58 22.61 36.59 100.00 0.00

VAVCFMDP 139.13 132.27 18.06 461.75 9.94

CHWC_GPM −0.03 2.25 0.00 2.14 −200.11
HWC‑DAT 69.57 4.92 70.41 76.43 56.67

HWC_GPM 0.57 3.83 0.00 28.09 −200.15
VAV‑DMPR 50.33 22.25 36.47 100.00 0.00

3.3. Random Forest Model Training
Random Forest (RF) is an ensemble learning algorithm with multiple classifiers. The

RF algorithm model is built by adding a certain number of decision trees, using a resam‑
pling data set from the original training data. The decision tree for each component is
grown by the classification and Regression Tree (CART) algorithm. In principle, two ran‑
dom attributes are introduced when building decision trees. The basic principle is that
there are a lot of training data inputs based on decision trees, among which the training
data in each tree are different, the features needed for each tree construction are randomly
selected from the overall features, and finally, votes are used to select the most likely clas‑
sification results.

In order to verify the influence of feature selection on the classification results of the
random forest model, the original data before and after dimension reduction were respec‑
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tively input as data on the basis of ensuring the consistency of model parameters, and
the performance differences of different training data under the random forest classifier
were compared.

3.4. Add Pseudo‑Labels by Self‑Training
On the basis of feature selection, the data were segmented to support the needs of

label training. First, the data were divided into test data and training data by 25% and
75%, respectively. The training data were used to train the model, and the test data were
used to evaluate the performance of themodel. As the experimental data used in this study
were all labeled data, we simulated the situation of unlabeled data by deleting some labels
with labeled data. The labeled data were retained in 5%, 15%, 20%, 25% and 30% of the
data set, respectively, and the labels of the remaining data were masked. The data set was
artificially divided into labeled data and unlabeled data.

The processed data were used as input data for model training and model perfor‑
mance evaluation, respectively, and the trained classifier was used to predict the labels of
all unlabeled data. Among these predicted labels, those whose accuracy reached the set
threshold were considered as “false labels” and were re‑assigned with labels. The “false
label” data were connected with the original labeled training data, and the classifier was
retrained on the combined “false label” and the original labeled training data. Consider‑
ing the influence of threshold‑setting on label prediction and final classification results, the
thresholds were set as 0.65, 0.75, 0.85, and 0.95, respectively, and the classification perfor‑
mance under different thresholds was evaluated.

4. Results and Discussion
4.1. Feature Importance and Feature Correlation Analysis

In order to further verify the impact of feature dimension reduction on the classifi‑
cation task, we input the original data and the dimension reduction data as data, respec‑
tively, and compared the classification results of the random forest model before and after
dimension reduction. There are many indicators which can be used to evaluate the perfor‑
mance of classification models, and the following four indicators are mainly considered in
this study:

• Precision: Precision refers to the correct prediction percentage of each class, the num‑
ber of evaluated samples in each class, and the proportion of positive samples in pos‑
itive examples judged by the classifier. Its expression can be expressed as:

Precisionk =
TP

TP+ FP
(9)

• Recall: Recall is the percentage of predicted positive examples in the total positive
examples, and it is the percentage of correctly predicted entities in a class. It is the
correlation between the number of correctly predicted instances and the sum of cor‑
rectly missed predictions of the class, and its expression is expressed as follows.

Recallk =
TP

TP+ FN
(10)

• F1‑score: The F1‑score is used in statistics to measure the accuracy of binary classifi‑
cation models. It takes into account both the accuracy and recall of the classification
model. The F1‑score can be regarded as a harmonic average of model accuracy and
recall, with a maximum value of 1 and a minimum value of 0. Its expression can be
expressed as:

F1k =
2 × precisionk × recallk
precisionk + recallk

(11)
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• Accuracy Score: Accuracy refers to the percentage of the overallmodel that is correctly
predicted among the total number of samples used to test the model, and represents
the proportion of the classifier that is correctly judged by the whole sample. Its ex‑
pression can be expressed as:

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(12)

Among them:
• Accuracy True Positive (TP): The predicted answer is correct, judged to be a positive

sample, and it is actually a positive sample.
• True Negative (TN): The predicted answer is correct, judged to be a negative sample,

and it is actually a negative sample.
• False Positive (FP): The predicted answer indicates that another class is incorrectly

predicted as this class.
• False Negative (FN): The label of the category is predicted to be of another category.

The result of accuracy is shown in Figure 9. Accuracy is the ratio between the num‑
ber of correctly classified positive samples and the total number of correctly classified
positive samples (correct or incorrect). Accuracy measures how well a model classifies
a sample as positive.

Figure 9. The effect of feature selection on random forest classification.

The confusion matrix is a basic tool for model performance [44]. It summarizes the
classification results, mainly the number of correct predictions and the number of incorrect
predictions for each class. From the confusion matrix, accuracy, precision and recall can
be calculated. It is important to note that accuracy measures the performance of the entire
model, while precision and recall provide insight into specific classes. The original sample
data of different fault types and the sample data after feature selection were taken as input,
and the confusion matrix is shown in Figures 10 and 11.
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Figure 10. Confusion Matrix based on original data set.

Figure 11. Confusion Matrix based on feature‑selected data set.

The diagonal cells in Figures 10 and 11 are the correct predicted counts for each class.
The remaining cells are the counts of instances with all incorrect predictions.

According to the confusionmatrix results, Tables 4 and 5 summarize the performance
index results before and after the feature dimension reduction, which is convenient for us
to analyze and quickly detect the model with excellent performance.

Table 4. Classification models’ summary results before feature‑selection.

The Fault Types Labels Precision Recall F1‑Score Accuracy

EA Damper Stuck Fault 1.00 0.32 0.49
0.82Fault free 0.80 1.00 0.89

OA Damper Stuck Fault 0.99 0.29 0.44
0.81Fault free 0.79 1.00 0.89

Cooling Coil Valve
Stuck

Fault 1.00 0.30 0.46
0.81Fault free 0.80 1.00 0.89

Table 5. Classification models’ summary results after feature‑selection.

The Fault Types Labels Precision Recall F1‑Score Accuracy

EA Damper Stuck Fault 1.00 0.98 0.99
0.99Fault free 0.99 1.00 1.00

OA Damper Stuck Fault 0.98 0.71 0.82
0.92Fault free 0.90 0.99 0.95

Cooling Coil Valve
Stuck

Fault 0.94 0.66 0.78
0.90Fault free 0.89 0.98 0.93

From the above results, it can be clearly seen that the evaluation indexes of the RF
classification model after dimension reduction by the XGboost algorithm were improved,
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and better output was obtained in general. Although the improvement effect of different
fault types is different, the classification accuracy was improved by about 10%, which has
a significant impact on the fault diagnosis and operation performance evaluation of the air
conditioning system.

In order to further analyze the effectiveness of dimensionality reduction, correlation
analysis was carried out on the data features after dimensionality reduction. The heatmap,
also known as correlation coefficient map, can judge the correlation between variables
according to the size of the correlation coefficient corresponding to different square col‑
ors in the thermal map. In this study, the Pearson product‑moment correlation coeffi‑
cient (PPMCC) was mainly used to measure the correlation degree (linear correlation) be‑
tween two variables X and Y, and its value was between −1 and 1. The specific formula
is as follows:

ρXY =
CovX, Y√
DX, DY

=
EXY − EX × EY√

DX × DY
(13)

However, it should be noted that the correlation coefficient can only measure the lin‑
ear correlation between variables. In otherwords, the higher the correlation coefficient, the
stronger the degree of linear correlation between variables; the lower the correlation coef‑
ficient, the weaker the degree of linear correlation between variables, but it does not mean
that there is no other correlation between variables. Figures 12–14 show the feature corre‑
lation of different fault types. Considering the improvement of classification performance,
feature dimension reduction is still necessary and meaningful.

Figure 12. Feature correlation based on feature‑selected data set of EA Damper Stuck.
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Figure 13. Feature correlation based on feature‑selected data set of OA Damper Stuck.

Figure 14. Feature correlation based on feature‑selected data set of Cooling Coil Valve Stuck.

4.2. Self‑Training Parameters and Performance Evaluation
Figure 15 shows the fault diagnosis performance of semi‑supervised learning under

different parameter conditions. In general, there is an increasing trendbetween the number
of labeled data and the fault diagnosis accuracy. This is expected because the larger the
amount of labeled data, the more reliable the model generalization performance. In the
early stages, as the number of labeled data per class increases, a significant improvement
in fault diagnosis accuracy is generally observed, but there are also fluctuations. Through
reviewing relevant literature, the following two possible reasons are considered for the
occurrence of this situation:
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• Limitations of the self‑training label approach. The self‑training method uses trained
classifiers to predict the class labels of all unlabeled data instances. The predicted
labels that meet the threshold requirements can be used as “pseudo‑labels” at the
same time. The “pseudo‑labeled” data are combinedwith the original labeled training
data and the classifier is retrained on this basis. Considering the proportion of the
masked label data, the accuracy of “false label” prediction may have a great impact
on the classification results.

• The label masking process may change the distribution of the original data. Since the
original experimental data are all labeled data, the unlabeled data are simulated by
masking a certain proportion of the original data labels. However, the label‑masking
process is random, and this randomness may change the data distribution. When the
proportion of the masked label data changes, the data distribution may also change.
The accuracy of fault diagnosis decreases as the proportion of data that retains the
original marker increases.

Figure 15. The accuracy of fault diagnosis using semi‑supervised RF.

At the same time, with an increase of the preset threshold, it can be observed that
the accuracy of fault diagnosis is generally significantly improved. The higher the preset
threshold, the higher the reliability of pseudo‑label prediction. At the same time, when the
number of each type of labeled data reaches a certain critical value, the accuracy of fault
diagnosis tends to be stable. In this case, it is difficult to further improve the generalization
performance by increasing the proportion of labeled data in the data set.

However, the effect of the pseudo‑labeleddata selection threshold on semi‑supervised
learning performance is contradictory in nature. On the one hand, a larger threshold can
improve the reliability of the selected pseudo‑labels, which is conducive to the stability
of the model training process and the reliability of the classification results. On the other
hand, a larger thresholdwill reduce the amount of pseudo‑labeled data in semi‑supervised
learning, thus reducing the utilization efficiency of non‑labeled data in semi‑supervised
learning. For example, when the faulty OA DAMPER STUCK’s faulty data label masking
rate is 0.1, 4195 new labels are added after one iteration when the threshold is 0.65, and
only three new labels are added after one iteration when the threshold is raised to 0.95
under the same conditions.

5. Conclusions
The development and application of building information technology provide a large

amount of monitoring data for the automation and intelligence of building operation man‑
agement [45]. It is very promising and practical to apply powerful machine learning tech‑
niques to develop reliable and accurate data‑driven models to establish system fault de‑
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tection and diagnosis. However, these building operation data are often unlabeled, which
limits the application of traditional machine learning on operation data. To solve this prob‑
lem, this paper proposed a semi‑supervised learning method for fault detection and the
diagnosis of air conditioning systems. In order to make effective use of building operation
data, a new method based on semi‑supervised neural network was proposed. Through
a real data experiment, the role and effect of the method in typical fault identification of
the air‑conditioning system are verified. The research method can be used to develop ad‑
vanced data‑driven tools to extract key features to analyze and utilize a large number of
building operation data. The results show that the proposed semi‑supervised learning
method can make full use of unlabeled data for fault detection and diagnosis of building
systems. First of all, in the case of limited labeled data, the random forest classification
method can obtain good fault diagnosis performance, and its original accuracy reached
about 0.81 on average before subsequent processing. Second, the XGboost method can ef‑
fectively reduce the dimensions of the data set, and the three kinds of different fault types
effectively reduced the feature dimension, reduced the feature dimension from three dig‑
its to double digits, the feature dimension reduction after different types of fault diagnosis
accuracy increased to 0.91 or so, and reduced the redundant features of the influence of the
fault diagnosis, which was helpful to improve the operation efficiency and effectiveness.
Meanwhile, parameter settings have different effects on diagnosis results of different fault
types, but overall, with the increase of the proportion of labeled data and threshold, the
fault diagnosis rate also increased. Only the EADamper Stuck had a large fluctuation. The
following two reasons are mainly considered:
• The compatibility of the fault feature with the proposed method was lower than that

of the other two types;
• Compared with the other two fault categories, the adaptability of the data collected

from the experiment and the proposed method was lower.
However, this study also has some shortcomings. For example, in feature dimension

reduction, there may have been some correlation between the extracted key features, and
the actual impact of this correlation on the classification results has not been verified. The
exact physical meaning of the features was not illustrated clearly. The data used in the pa‑
per and the applicability of the proposed method have not been verified in advance. Due
to the limitation of objective conditions, this study used the existing historical experimen‑
tal data to simulate the actual collection of unlabeled data by randomly masking existing
labels. However, the randomness of label masking may modify the actual distribution
of experimental data, thus affecting the classification performance. Therefore, in future
research, based on considering the applicability of the used data and the designed meth‑
ods, feature engineering can be used to comprehensively preprocess the data features, and
dimensionality reduction can be carried out on the basis of fully considering the existing
feature attributes and correlations. At the same time, relevant experiments can be set up
in practice to collect real‑time operation data of the air conditioning system, and further
demonstrate the role and significance of the semi‑supervised learning method in practical
fault diagnosis work.
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