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Abstract: Indoor air quality is an important consideration for the health and well-being of building
occupants, and the SARS CoV-2 pandemic highlighted the importance of maintaining proper ventila-
tion in buildings. Air handling units (AHUs) are used to provide fresh air and maintain occupant
comfort. The objective of this work was to study the evolution of filtration efficiency in an AHU fitted
with bag filters, installed to treat office air in a low-energy building, over a 12-month period. The
particulate filtration efficiency (PFE) and the microbial filtration efficiency (MFE) were quantified by
measuring particle size distribution and bacterial and fungal concentration in the air circulating in the
AHU. The resulting microbial concentration measurements in the fresh air (between 102–103 CFU/m3

for fungi and around 103 CFU/m3 for bacteria) were higher than those in the extracted air from the
offices (between 101 and 102 CFU/m3 for fungi and around 102 CFU/m3 for bacteria). The PFE and
MFE measured were almost constant throughout the 12 months, with an increase of the filter pressure
drop from 70 to 90 Pa. The PFE and MFE were quite comparable for a particle diameter. Therefore,
the measurement of PFE is a reliable indicator of the MFE.

Keywords: indoor air quality; air handling units; filters; filtration efficiency; particle; bacteria; fungi;
real conditions; offices

1. Introduction

The ventilation of buildings and maintenance of facilities to maintain good indoor
air quality (IAQ) are topics that have come to the fore as a result of the SARS-CoV-2
pandemic [1–3]. The health authorities have notified us of many good practices to adopt on
a daily basis to prevent the spread of viral particles. Viral particles are one of a number
of pollutants to which we are exposed through direct contact and/or breathing indoor
air, and consist of biological pollutants classified as bioaerosols, which include airborne
bacteria, fungi, and viruses (living or fragments of), as well as plant particles (pollen, plant
fragments) and animal particles or debris.

To better understand exposure to the microbiological contaminants in indoor air, such
as viruses, bacteria, and fungi, sampling is essential to identify and quantify them. Numer-
ous studies focusing on exposure to microbial bioaerosols have been carried out on the air
quality in hospitals, waste treatment plants, housing, and agricultural environments [4–7].
Fewer studies have focused, however, on office spaces in terms of employee exposure to
these bioaerosols [8].

To maintain suitable air quality, offices are usually ventilated by an air handling unit
(AHU). AHUs filter the air entering the building, and thus reduce the airborne pollutants.
They also maintain a temperature and a relative humidity between threshold values to
ensure the comfort of the building’s occupants. A large variety of AHUs is available with
differing characteristics, depending on the specificities of the building.
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The construction of new buildings involves new standards and increasing amounts of
insulation are being used to optimize energy performance. Openings are also becoming
more limited and controlled, reducing the passive ventilation in new constructions. The
use of AHUs is therefore important for replacing the polluted air with fresh air [9].

During use, AHU filters become clogged with particles in the filter media. There are
three main particle collection mechanisms: impaction, interception, and diffusion [10,11].
Clogging leads to the formation of a particle cake which increases filter pressure drop. The
higher the pressure drop, the more energy the fan uses to maintain the air flow [12,13]. In
practice, when a certain filter pressure drop threshold is reached, the AHU filters have to
be replaced.

It may be possible to measure the particle filtration efficiency (PFE) of filters to dis-
cover the extent of clogging development during use. For this purpose, analyzers enable
quantification of particle size distribution (PSD) upstream and downstream of the filters to
determine their efficiency. The filters used are tested for their particle-filtering efficiency
but not for their efficiency in filtering microbial bioaerosols.

Many studies were conducted at the laboratory scale and/or under controlled conditions
to determine the filtration efficiency of filters towards microorganisms compared to parti-
cles [14–17]. In general, the filtration efficiencies of microorganisms were similar to those of
particles with same aerodynamic diameter due to particle capture mechanisms [14–18].

This study focuses on an AHU in a newly constructed building compliant with low-
energy building standards. Most new buildings comply with these standards, so it is
important to understand the issues in order to properly ventilate the various rooms inside
them. The objectives of this study are: (i) to evaluate the climatic conditions of the air circu-
lating through the AHU over a 12-month period, (ii) to study the evolution of pressure drop
in the filters, (iii) to quantify the development of particle and microbiological filtration effi-
ciencies, and (iv) to establish whether microbiological and particle filtration efficiencies are
related. These new results obtained under real-life conditions over 12 months are compared
with previous studies carried out under laboratory conditions with controlled aerosols.

2. Materials and Methods
2.1. Air Handling Unit Characteristics

The AHU studied is located in a building at IMT Atlantique in Nantes, France. The
building is approximately 50 km from the Atlantic Ocean and the climate is oceanic, with an
average temperature of 13.2 ◦C and rainfall of 801.7 mm/year (over the period 2011–2022).
The study started in February 2021 and continued for 12 months, until February 2022.

The two-story building was constructed in 2014. It has a green roof and complies with
low-energy building standards and more specifically the “Bâtiment Basse Consommation”
French standard for newly constructed buildings. These buildings conform to the RT2012
standard by consuming less than 50 k Whpe/(m2 · year), meaning less than 50 kW of
primary energy per m2 and per year. It comprises classrooms, meeting rooms, offices,
practical rooms, and laboratories. The AHU investigated in this study handles the offices;
another AHU handles the other rooms. The AHU investigated handles air for 47 offices
spread over the two floors of the building. The total surface area of the offices supplied
with fresh air and extracted air is 802 m2, each office is 17 m2 on average. The offices
accommodate between 1 and 3 people. The air changes per hour (ACH) is 1.

The AHU operates at a constant flow rate of 2450 m3 per hour. There are two
compartments—one for fresh air and one for extracted air, with a rotating heat exchanger
between the two compartments (Figure 1). Each compartment contains two bag filters in
parallel. The filters are classified as ISO Epm1 60% under the ISO16890 standard. They
are composed of three layers: a high-efficiency glass microfiber filtration medium with a
carded polyester mesh and a synthetic pre-filter layer. The filtration area of each filter is
1.5 m2.
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Figure 1. Picture and simplified diagram of AHU components.

Figure 1 is a simplified diagram of the AHU, with the two compartments for air inlet
and air outlet, and the different components. Each compartment contains two four-bag
filters upstream of the rotary heat exchanger. A heating battery is located after the fresh
air compartment on the supply air duct to regulate the temperature of the air supply to
the office at 19 ◦C in winter. The dots numbered 1 to 4 in the figure represent the locations
for measuring the temperature and relative humidity parameters in the ducts. Two data
loggers provided continuous data acquisition from all temperature, relative humidity, and
pressure sensors, at a frequency of 1/60 Hz.

2.2. Characterization of Airborne Particle Size Distribution and Mass Concentration

Measurements of particle size distribution (PSD) upstream and downstream of the
AHU compartments (at measurement locations 1, 2, 3, and 4) were carried out with an
Aerodynamic Particle Sizer (APS™, TSI Incorporated, Shoreview, MI, USA) 3321. This
spectrometer provides high-resolution, real-time aerodynamic measurements of particles
between around 0.5 and 20 µm in diameter.

At location 1, the mass concentration of particulate matter in the outdoor air was
measured continuously during the campaign with a 1405 TEOM™ (Thermo Scientific™,
St. Louis, MO, USA), an ambient particulate monitor with an oscillating microbalance.

2.3. Quantification and Identification of Cultivable Bacterial and Fungal Aerosols

Two Andersen 6-stage cascade impactors (Tisch Environmental Inc., Cleves, OH,
USA) were used to quantify the airborne cultivable bacterial and fungal aerosols upstream
and downstream of the AHU compartments, at sampling locations 1, 2, 3, and 4. The
air sampling rate was 28.3 L/min. Air samples were collected at 10, 15, and 20 min
on Petri dishes filled with different solid media to promote bacterial or fungal growth.
The media selected for the sampling of bacteria and fungi were LB (Luria Bertani), a
non-selective medium for isolation of aerobic mesophilic bacteria; R2A (Reasoner’s 2A
agar), a non-selective medium for growth of inhibited bacteria on rich organic media;
MEA (Malt Extract Agar), a non-selective medium for enumeration of yeasts and fungi
typically used to determine fungal contamination of the air; DG18 (Dichloran-Glycerol), a
selective medium with low water activity for xerophilic fungi typically used to determine
fungal contamination of the air; and DRBC (Dichloran Rose-Bengal Chloramphenicol), a
selective medium for yeast and fungi growth (inhibits bacteria growth and prevents colony
spreading). The impactor was disinfected with 70% ethanol between each sampling.
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After air sampling, the Petri dishes were incubated at 25 ± 2 ◦C for three to seven
days. The bacteria or fungi growing on the media were enumerated to determine the
number of colony-forming units (CFU) per m3 of air sampled. Note that in accordance
with Andersen [19] stages 4, 5, and 6, a positive hole correction was applied for stages 4–6
where necessary.

During the study, isolated colonies after incubation were transferred to new Petri
dishes and identified using two different methodologies. The selection of colonies was
done in such a way that well-isolated colonies were uncontaminated subcultures. These
colonies were selected randomly, but with the intention of creating a representative sam-
ple of the colonies most frequently observed. These samples were not exhaustive but
gave an idea of the diversity of cultivable microbial aerosols. The fungal colonies were
observed under light microscope (Olympus, model CX43, Rungis, France) after stain-
ing the mycelium with cotton blue. The specific patterns of hyphae and spores were
used to determine the genus of these fungi. Where determination of the genus was
not possible this way, DNA was extracted from the colony, amplified by PCR using
iProof™ High-Fidelity PCR Kit (BioRAD, Hercules, CA, USA) with the primers 26F 5′-
AGAGTTTGATCCTGGCTCA and 1492R 5′-GGTTACCTTGTTACGACTT for bacterial iden-
tification; and ITS5 5′-GGAAGTAAAAGTCTAACAAGG and ITS4 5′-TCCTCCGCTTATTGA
TATGC for fungi identification; and sequenced with Sanger sequencing by Eurofins ge-
nomics (Germany).

The various parameters measured in the study are summarized in Table 1. Note
that the samples were taken from the center of the ducts using sampling probes. For
particles and microorganisms, sampling was carried out in isokinetic conditions. The
methodology implemented is based on particle and bacterial sampling in the AHU one
time by month. Thus, the particle and bacterial concentrations and collection efficiencies
are not representative of the variations that can be observed over a whole month.

Table 1. Methodology and strategy deployed.

Parameter Device Sampling Frequency
Sampling Area

1 2 3 4

Mass concentration of
particulate matter

1405 TEOM™
Less than 5 µg/m3 to several g/m3 Continuous measurement ×

Temperature Resistance temperature sensor Continuous measurement × × × ×
Relative Humidity Capacitive sensor Continuous measurement × × ×

Particle size distribution
Aerodynamic Particle Sizer®

(APS™) 3321
0.5 to 20 µm diameter

Monthly 5 min per sampling area × × × ×

Cultivable bacterial and
fungal aerosols

Andersen 6-stage Cascade Impactor
0.65 to >7 µm diameter Monthly between 10 and 20 min × × × ×

2.4. Calculation of Particle and Microbial Efficiencies

Concentrations of cultivable microbial aerosols (CMA) upstream and downstream of
the filters were determined from two parallel samplings with the two Andersen impactors
and then by enumerating the colonies on the 6-stage impactors.

The cultivable microbial concentrations sampled upstream and downstream of the
filters relating to stage i of the impactors, CCMAup,i and CCMAdown,i (CFU/m3), are expressed
by Equation (1).

CCMAup or down,i =
Nbcolony,i

Vair
(1)

With Vair the volume of air sampled (m3) and Nbcolony,i the number of colonies enu-
merated at impactor stage i.

The total microbial concentrations sampled upstream and downstream of filters
CCMAup,tot and CCMAd (CFU/m3) were calculated using the six stages of the impactor,
using Equation (2).

CCMAup or down,tot =
∑6

i=1 Nbcolony,i

Vair
(2)
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The total microbial filtration efficiency MFEtot and fractional microbial filtration effi-
ciency MFEi, i.e., the MFE related to the stage i, were calculated using Equation (3).

MFEtot or i = 1−
CCMAdown,tot or i

CCMAup,tot or i
(3)

Equation (4) was used to calculate the relative uncertainties of fractional microbial
efficiency ∆MFEi

|MFEi |
.

∆MFEi
|MFEi|

=

∣∣∣∣∣ 1
CCMAup, i

∣∣∣∣∣× ∆CCMAdown,i +

∣∣∣∣∣ CCMAdown,i(
CCMAup, i

)2

∣∣∣∣∣× ∆CCMAup,i (4)

With ∆CCMAup or down,i the absolute uncertainty related to the microbial concentration
from stage i. According to Macher [20], a relative uncertainty of x = 7% can be applied for
a microbial concentration with this type of six-stage impactor. We therefore considered
the relative uncertainty of the fractional microbial concentrations sampled upstream and
downstream of the filters to be determined by Equation (5).

∆CCMAup,i

CCMAup,i
=

∆CCMAdown, i

CCMAdown,i
= x = 7% (5)

The absolute uncertainties of fractional microbial concentration were expressed using
Equation (6) where the number of colonies counted downstream of the compartment was
greater than 0.

∆MFEi
|MFEi|

= 2×
CCMAdown, i

CCMAup,i
× x (6)

The relative uncertainties of total microbial concentrations sampled upstream and
downstream of the filters and total microbial filtration efficiency (MFE) were calculated
using Equations (7) and (8).

∆CCMAup,tot

CCMAup,tot
=

∆CCMAdown,tot

CCMAdown,tot
= 6× x (7)

∆MFEtot

|MFEtot|
= 2×

CCMAdown,tot

CCMAup,tot
× 6× x (8)

Total particulate filtration efficiency (PFEtot) was calculated using Equation (9), taking
into account the sum of the particles counted upstream and downstream of the filters over
the j = 52 channels of the APS, related to particle diameters from <0.523 µm to 19.81 µm.

PFEtot = 1−
∑52

j=1 Cpdown, j

∑52
j=1 Cpup, j

(9)

with Cpup, j and Cpdown,j (particle/cm3) the particle concentrations upstream and down-
stream of the filters, measured with the APS for particle diameter/channel dp j. The relative
uncertainties associated with PFEtot were considered as being 5%.

Fractional particulate filtration efficiencies PFE j, related to particles with a diameter
dp j, were calculated using Equation (10).

PFE j = 1−
Cpdown,j

Cpup,j
(10)

Average fractional particle filtration efficiencies PFE i were calculated for several
particle diameter ranges corresponding to Andersen impactor stages 7 µm and above,
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4.7–7.0 µm, 3.3–4.7 µm, 2.1–3.3 µm, 1.1–2.1 µm, and 0.65–1.1 µm, corresponding respec-
tively to stages 1 to 6.

In practice, the PFE i were calculated for stages 2 to 6, and when the number of
particles counted upstream of the filter was high enough to calculate an efficiency. PFE i
was calculated by averaging the PFE j between 5.05 and 6.73 µm (5 channels), between 3.52
and 4.7 µm (5 channels), between 2.29 and 3.28 µm (6 channels), between 1.2 and 2.13 µm
(9 channels), and between 0.67 and 1.11 µm (8 channels).

The absolute uncertainties ∆PFE i were the standard deviation of PFE i (Equation (11)),

∆PFE i =

√
∑

maxdp stage i
min dpstage i

(
PFEj − PFE iµPFEi

)2

N
(11)

With N the number of APS channels taken into account for the calculation of PFE i for
particle diameter range/impactor stage i.

3. Results and Discussion
3.1. Climatic Conditions

Figure 2 shows the changes in temperature and relative humidity measured during
the study for fresh air and extracted air (measurement locations 1 and 3).
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average of data over 24 h.

The temperature of the fresh air (25% 9.0 ◦C; mean 13.2 ◦C; 75% 18.3 ◦C) was lower
than that of the extracted air from the offices (25% 20.1 ◦C; mean 20.6 ◦C; 75% 21.1 ◦C),
and the relative humidity was higher than in the extracted air (fresh air 25% 63.6(%);
mean 75.6(%); 75% 83.2(%) and extracted air 25% 28.9(%); mean 32.3(%); 75% 37.3(%))
(Figure 2). In the summer, there was less difference between fresh air and extracted air.
The relative humidity of the extracted air from the offices was higher between June and
November. The temperature changed according to the season, the temperature of the
outside air showing greater amplitude. The filters in the two compartments were exposed
to two different environments in terms of temperature and humidity. The temperature and
relative humidity of the extracted air followed a logical pattern, as the heating battery and
the rotary heat exchanger were providing thermal comfort for the building occupants (RH
between 30% and 60%).

3.2. Measurements of Particle Concentration and Distribution

Table 2 shows the results obtained from TEOM measurement of fresh air.
The mass concentration of particles in the fresh air entering the AHU fluctuated

around 12.5 µg/m3 over the 12 months. Isolated peaks were also observed, with an average
increase in value of up to 150 µg/m3 over 24 h. Table 2 shows that 50% of particle mass
concentrations ranged between 7.2 and 16.6 µg/m3.

Table 3 gives the data on particle size distribution and number concentration in
fresh air and extracted air upstream and downstream of the compartments, obtained with
APS measurements.
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Table 2. Particle mass concentration statistics (mean, standard deviation, percentiles).

Particle Mass Concentration (µg/m3)

Mean 12.5

Standard deviation 9.7

25% 7.2

50% 11.3

75% 16.6

Table 3. Median particle diameter, geometric standard deviation of particles, and number concentra-
tion in fresh air and extracted air.

Date of Measurement
Median Diameter in µm (Geometric Standard Deviation)/Particle Number Concentration (Particle/cm3)

Inlet Fresh Air Outlet Fresh Air Inlet Extracted Air Outlet Extracted Air

17 March 2021 0.923 (1.474)/12.02 0.786 (1.303)/2.85 0.855 (1.377)/4.32 0.774 (1.316)/1.29

23 April 2021 0.764 (1.558)/12.55 0.650 (1.292)/3.39 0.746 (1.404)/2.31 0.656 (1.283)/1.01

17 June 2021 0.646 (1.510)/19.30 0.604 (1.265)/7.44 0.642 (1.440)/9.70 0.604 (1.246)/4.31

27 August 2021 0.801 (1.532)/16.83 0.704 (1.301)/7.51 0.766 (1.453)/9.88 0.689 (1.283)/4.42

23 September 2021 0.681 (1.234)/96.65 0.664 (1.192)/40.42 0.687 (1.341)/22.97 0.670 (1.200)/9.90

28 October 2021 0.685 (1.448)/16.01 0.653 (1.243)/7.59 0.654 (1.324)/7.98 0.640 (1.217)/3.36

11 February 2022 0.669 (1.374)/41.97 0.642 (1.211)/15.26 0.644 (1.287)/8.98 0.631 (1.228)/3.84

25 February 2022 0.770 (1.506)/27.29 0.717 (1.308)/6.59 0.812 (1.397)/5.73 0.727 (1.303)/2.48

The profiles for particle size distribution in the extracted air at the AHU inlet were
similar for the different samples across the study. There was a mono-modal polydispersed
distribution of particles; the average modal diameter ranged between 0.6 µm and 0.7 µm.
PSDs were more varied for fresh air at the AHU inlet, with modal diameters varying more
widely than for the extracted air compartment (Table 3). In both cases, the majority of
particles had a median diameter of less than 1 µm. It was difficult to determine the modal
diameter of the particles because it was close to the minimum diameter of the APS (0.5 µm).
Another sampler allowing broader analysis of the PSD might have allowed investigation of
particles with smaller diameters.

The APS measurements showed that particle concentration was higher in the air
entering the fresh air compartment than in the office air entering the AHU extracted air
compartment. The filters in the fresh air compartment reduced the amount of particulate
matter being blown into the offices.

A comparison of particle concentrations at the outlet of the fresh compartment and
the inlet of the extracted compartment revealed that occupancy of the offices and activities
taking place in them do not result in any significant increase in particulate matter.

3.3. Measurements of Microbial Concentration

Figures 3 and 4 and Table 4 show concentrations of cultivable microbial aerosols
(CMA) studied in the fresh and extracted air from counts with media that promote bacterial
or fungal growth. An example of a Petri dish after incubation is shown in Appendix A
Figure A1.
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Table 4. Average diameters of cultivable microbial aerosols (CMA) measured by impaction on the
five media.

LB R2A MEA DG18 DRBC

Average Diameter
CMA (µm)

Inlet
Fresh
Air

Inlet
Extracted

Air

Inlet
Fresh
Air

Inlet
Extracted

Air

Inlet Fresh
Air

Inlet
Extracted

Air

Inlet
Fresh
Air

Inlet
Extracted

Air

Inlet
Fresh
Air

Inlet
Extracted

Air

4 February 2021 2.74 2.68 2.24 2.69 2.70 2.66 3.34 2.73 2.72 2.15

13 April 2021 2.99 2.44 4.49 1.34 4.21 3.61 4.14 5.56 4.14 4.28

12 May 2021 3.98 2.49 4.24 1.94 4.64 2.36 2.21 2.62 4.23 3.16

28 June 2021 4.57 3.58 3.07 2.00 3.94 2.86 3.33 3.13 3.40 3.18

2 August 2021 3.04 2.52 4.08 2.38 3.69 3.66 4.45 2.68 4.02 2.70

7 October 2021 2.75 2.76 2.81 2.42 3.63 3.05 3.27 3.44 4.43 2.60

14 January 2022 3.39 1.99 4.62 3.36 3.02 2.29 3.56 2.52 3.36 1.60

4 February 2022 2.70 2.80 3.24 2.54 3.03 2.52 2.92 2.94 3.98 3.03

25 February 2022 2.68 3.14 2.95 2.63 3.12 2.22 3.28 3.05 N.d. N.d.

For bacteria, the concentrations of airborne cultivable microorganisms were higher in
the fresh air than in the extracted air (Figure 3). For fresh air, the concentrations ranged
between 102 and 103 CFU/m3. An increase in bacteria in aerosols was observed for the
months of May and June 2021 on LB medium, peaking at 104 CFU/m3. This was also
observed by Frankel [21].
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The concentrations of fungi were higher for all three media (MEA, DG18, and DRBC)
in fresh air (Figure 4); concentration levels were around 103 CFU/m3 for fresh air. The con-
centrations of cultivable fungal aerosols in the extracted air ranged from 101 to 102 CFU/m3;
these concentrations were stable throughout the sampling in different months. It appears that
the MEA medium led to a higher microbial concentration with slightly higher concentrations.

The concentrations of cultivable microorganisms in the outdoor air were higher than
those measured in the extracted air from offices (102 and 103 CFU/m3 vs. around 102

respectively). These results concur with those found in the literature for concentrations
in CFU/m3 in outdoor air and samples taken in offices or other buildings [5,6,22,23]. The
culture media used were LB and R2A to promote the growth of bacterial genera, and
MEA DG18 and DRBC for fungal genera, which may also give different readings. The
DRBC and DG18 fungal media are selective media; the compound inhibits the growth
of bacteria. Since bacteria cannot multiply, only fungal species were measured on these
media. The MEA medium does not contain any inhibitor for bacterial growth, but its
nutrients promote mainly the growth of yeasts and fungi. The selected bacterial media did
not contain inhibitors for fungal growth, but did contain nutrients to promote bacterial
growth. Bacterial and fungal colonies were counted on the plates containing these media.
The results are to be interpreted with caution, as higher concentrations of bacterial aerosols
were to be expected in the office intake air. This is because the occupation of offices by staff
generates bacterial aerosols from the occupant’s microbiome, as it is the case at home [24].

The mean CMA diameters measured by impaction on the five media varied between
1.35 and 5.56 µm depending on the culture medium and the day and location of sampling.
The average diameter (± standard deviation) was 3.13 ± 0.77 µm. These results are in
agreement with previous studies. The authors determined with 6-stage Andersen impactor
that average value for fungal aerosol diameters were between 2.1 µm and 4.7 µm [5] or
between 1.1 µm and 3.3 µm [25]. The cut-off diameter of bacterial aerosols were less than
2.1 µm [25].

For extracted air, the average diameters of CMA from the fungal media (2.95± 0.76 µm)
seemed to be higher than those from the bacterial media (2.54 ± 0.53 µm) with a confidence
level of 98%. For fresh air, the results indicate that the average diameters of CMA from the
fungal media (3.57 ± 0.62 µm) were not significantly higher (with a critical risk of 18%)
than those from the bacterial media (3.37 ± 0.76 µm). This result is consistent with the fact
that fungi can grow on bacterial media.

The average diameters of CMA in the fresh air were significantly higher than those in
the extracted air, with a confidence level of above 99% for both bacterial and fungal media.

The growth of fungal species on LB and R2A media interfered with the observation
of bacterial colonies. In addition, bacterial aerosols are more sensitive to desiccation than
fungal spores, and collection by direct impaction may generate stress, which could also
affect the results.

3.4. Filtration Performance
3.4.1. Filter Pressure Drops and Particle Filtration Efficiency

Figure 5 shows the pressure drops of the AHU filters measured during the study.
The curves representing the pressure drop for the two compartments have similar

profiles (Figure 5). From the beginning of the study until September, the pressure drops for
the two filters were stable, at between 65 and 70 Pa. In September, after about 6 months of
operation, the pressure drop showed a linear increase, reaching about 90 Pa for fresh air
and 80 Pa for extracted air. This pressure drop evolution followed a classic profile, with two
stages of clogging [26]. The first stage was consistent with clogging due to depth filtration,
where the glass fiber filter medium captures particles in its depth. In this period, the
pressure drop did not change and remained stable. Following this, there was an increase
in the pressure drop of the filters, related to clogging and the formation of a particulate
cake on the surface of the filter medium. The pressure drops in June and July are related to
maintenance operations and power cuts.
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Figure 6 shows the total particulate filtration efficiency (PFE) results and corresponding
median diameters upstream of the compartments. Figure 7 shows the fractional PFE for
diameters of 0.5 µm and 1 µm.
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Figure 6. Total particle filtration efficiency over 12 months.
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Figure 7. Total particle filtration efficiency and filtration efficiency for aerosol diameters 0.5 µm and
1 µm in the fresh air (left) and extracted air (right) compartments over 12 months.

The total particle filtration efficiencies of the two compartments varied between 50%
and 80% (Figure 6). The median particle diameter ranged between 0.7 and 0.9 µm. No
increase in PFEtot was observed during the study, despite the clogging of the filters and the
increase in pressure drop. Particle filtration efficiencies at 0.5 µm and 1 µm were also stable
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throughout the study. An increase in the particle filtration efficiency of a filter is usually
observed with filter clogging and the formation of a particle cake on the filter media [26].
It is possible that the filters were not sufficiently clogged for this to be observed, and that
sampling over a longer period of time would have highlighted the increase in efficiency.

Filtration efficiency for particles with a diameter close to 1 µm ranged between 70%
and 80%. The filtration efficiency of particles 1 µm in diameter was higher than for those
0.5 µm in diameter (Figure 7) in both the fresh air and extracted air compartments. In this
range of particle diameters, the particles are collected mainly by the impaction mechanism,
the efficiency of which increases with an increase in particle diameter or inertia [10,26]. The
filtration efficiency with extracted air for particles 0.5 µm in diameter was close to the total
particle filtration efficiency.

3.4.2. Comparison of Fractional Microbial Filtration Efficiency (MFE) and Particle Filtration
Efficiency (PFE)

Figure 8 shows the fractional PFE and MFE results with media promoting bacterial
growth in May 2021.

Buildings 2022, 12, x FOR PEER REVIEW 12 of 17 
 

 
Figure 8. Fractional filtration efficiency of particles and cultivable microbial aerosols with bacterial 
media in May 2021 for fresh (left) and extracted (right) compartments. 

Bacterial and particle efficiencies were lower with decreasing particle diameters be-
cause of the impaction collection mechanism. Lower concentrations upstream of the ex-
tracted air compartment produced more contrasting results. For cultivable bacterial aero-
sols larger than 1 µm in diameter, fractional filtration efficiencies were between 80% and 
100% for both compartments. Below 1 µm, the efficiencies were lower than 80%. 

Figure 9 shows the fractional PFE and MFE results with fungal media in May 2021. 

 
Figure 9. Fractional filtration efficiency of particles and cultivable microbial aerosols with fungal 
media in May 2021 for fresh (left) and extracted (right) compartments. 

The fractional MFE of fungal aerosols for MEA and DG18 media were between 80% 
and 100% for the fresh air compartment. In contrast to the results with bacterial aerosols, 
there was no decrease in fractional MFE for cultivable fungal aerosols with a diameter of 
less than 1 µm. 

The results for the extracted air compartment were similar for fractional PFE and 
MFE, in both DG18 and MEA media. There was also no decrease in fractional MFE for 
cultivable fungal aerosols analyzed in the MEA medium for diameters of less than 1 µm, 
but the low concentrations upstream of the extracted air compartment gave more conflict-
ing results. 

Figure 10 shows the fractional PFE and MFE results with media promoting bacterial 
growth in February 2022. 

0

0.2

0.4

0.6

0.8

1

1.2

0.1 1 10

Fi
ltr

at
io

n 
Ef

fic
ie

nc
y 

(-)

Diameter (µm)

LB fresh air R2A fresh air PFE i Fresh Air

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.1 1 10

Fi
ltr

at
io

n 
Ef

fic
ie

nc
y 

(-)

Diameter (µm)

LB extracted air R2A extracted air PFE i extracted air

0

0.2

0.4

0.6

0.8

1

1.2

0.1 1 10

Fi
ltr

at
io

n 
Ef

fic
ie

nc
y 

(-)

Diameter (µm)

MEA fresh air DG18 fresh air PFE i Fresh Air

0

0.2

0.4

0.6

0.8

1

1.2

0.1 1 10

Fi
ltr

at
io

n 
Ef

fic
ie

nc
y 

(-)

Diameter (µm)

MEA extracted air DG18 extracted air PFE i extract air

Figure 8. Fractional filtration efficiency of particles and cultivable microbial aerosols with bacterial
media in May 2021 for fresh (left) and extracted (right) compartments.

Bacterial and particle efficiencies were lower with decreasing particle diameters be-
cause of the impaction collection mechanism. Lower concentrations upstream of the
extracted air compartment produced more contrasting results. For cultivable bacterial
aerosols larger than 1 µm in diameter, fractional filtration efficiencies were between 80%
and 100% for both compartments. Below 1 µm, the efficiencies were lower than 80%.

Figure 9 shows the fractional PFE and MFE results with fungal media in May 2021.
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Figure 9. Fractional filtration efficiency of particles and cultivable microbial aerosols with fungal
media in May 2021 for fresh (left) and extracted (right) compartments.
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The fractional MFE of fungal aerosols for MEA and DG18 media were between 80%
and 100% for the fresh air compartment. In contrast to the results with bacterial aerosols,
there was no decrease in fractional MFE for cultivable fungal aerosols with a diameter of
less than 1 µm.

The results for the extracted air compartment were similar for fractional PFE and MFE,
in both DG18 and MEA media. There was also no decrease in fractional MFE for cultivable
fungal aerosols analyzed in the MEA medium for diameters of less than 1 µm, but the low
concentrations upstream of the extracted air compartment gave more conflicting results.

Figure 10 shows the fractional PFE and MFE results with media promoting bacterial
growth in February 2022.
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Figure 10. Fractional filtration efficiency for particles and cultivable microbial aerosols with bacterial
media in February 2022 for fresh (left) and extracted (right) compartments.

The fractional efficiencies calculated for cultivable bacterial aerosols in February 2022
were close to 100% for LB and R2A media. The profile for fractional PFE was similar to
those observed in May 2021. There were no data for extracted air relating to fractional MFE
with diameters under 1 µm because the number of colonies was below the quantification
limit for extracted air (LQ: limit of quantification less than 10 colonies). In comparison with
the data for the period May 2021 to February 2022, the MFE for particles smaller than 1 µm
was about 40% with LB medium in fresh air in May 2021, and about 100% in February
2022. Filter clogging therefore increased the MFE for particles smaller than 1 µm in the
LB medium.

Figure 11 gives the fractional PFE and MFE results with fungal media in February 2022.
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Figure 11. Fractional filtration efficiency of particles and cultivable microbial aerosols with fungal
media in February 2022 for fresh (left) and extracted (right) compartments.

The fractional MFEs for cultivable fungal aerosols for February 2022 were also close
to 100% for MEA and DG18 media in the fresh air compartment. The same observations
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were made for the extracted air compartment. However, there were significantly fewer
cultivable microbial aerosols collected in the impactor stages upstream of the filters. The
data presented are similar to those measured for cultivable bacterial aerosols.

Measurements of spectral filtration efficiencies for particulate matter and cultivable
microbial aerosols showed similar results. A comparison of these filtration efficiencies
for equivalent diameters of particulate and microbial aerosols appears to be consistent.
The efficiencies measured were very close for all diameters above 1 µm. Below 1 µm,
the efficiencies were lower for both types of aerosols. It would seem that the filtration
efficiencies of microbial aerosols can be investigated by direct measurement of the particles
under real operational AHU conditions. These results obtained under real-life conditions
are in agreement with those obtained in previous laboratory studies under controlled
conditions [14,15].

3.5. Bacterial and Fungal Identification

Tables 5 and 6 give the results after identification of isolated colonies using either
microscopy or colony-PCR. These results are to be interpreted as a qualitative result of the
colonies most often found on Petri dishes after impaction.

Table 5. Fungi identified by light microscopy or colony-PCR.

Upstream Fresh Air
Filters

Downstream Fresh
Air Filters

Upstream Extracted
Air Filters

Downstream
Extracted Air Filters

Cladosporium Cladosporium Aspergillus Aspergillus

Penicillium Penicillium - -

Aspergillus Aspergillus - -

Sarocladium
summerbellii - Sarocladium

summerbellii -

Nectria pseudotrichia - Nectria pseudotrichia -

Table 6. Bacteria identify by colony-PCR.

Upstream Fresh Air
Filters

Downstream Fresh
Air Filters

Upstream Extracted
Air Filters

Downstream
Extracted Air Filters

Tsukamurella spumae - Micrococcus luteus -

Kocuria rhizophila - Aeromonas sp. -

Arthrobacter flavus - Paracoccus marinus -

In terms of fungal genera, Cladosporium, Aspergillus, and Penicillium were most often
observed by light microscopy in both compartments (Tables 5 and 6). These fungi are
commonly identified in indoor air quality studies [27]. Other fungal species were identified
in the fresh air. These species were probably airborne from plants or plant debris since they
are commonly associated with plant-microorganism interactions.

Micrococcus luteus is a bacterial species present on the human skin microbiota [28]. This
result concurs with the literature as these bacteria are probably related to human activities
in offices. Tsukamurella spumae is an actinomycete isolated from the foam of activated sludge
plants [29]. Kocuria rhizophila are actinobacteria isolated from the rhizoplane of narrow-
leaved cattail [30]; the building was located close to the river Erdre and wetlands, where
this type of plant is often found. Arthrobacter flavus is a psychrophilic bacterium isolated
from a cyanobacterial mat sample from a pond in Antarctica [31]. Bacteria Aeromonas sp.
and Paracoccus marinus are frequently found in aquatic environments. Their presence can
also be explained by the proximity of the river Erdre [32,33].
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4. Conclusions

The measured climatic conditions (temperature and relative humidity) of the fresh air
follow a classical seasonal pattern. Those of the extracted air from the offices fluctuate less
because the AHU allows comfortable climatic conditions maintained for the occupants.

The pressure drops of the two bag filters installed in the fresh air and extracted air
compartments of the air handling unit follow a classical profile over the 12 months. During
the first months, the pressure drop is stable with deep clogging of the filter media, and then
it increases with clogging of the filter surface.

Particulate and microbiological total filtration efficiencies remained almost stable
during the study.

The fractional collection efficiencies of particles and microorganisms were also quanti-
fied over 12 months. Our study demonstrated that filtration efficiencies of particulate matter
and cultivable microbial aerosols bigger than 1 µm in aerodynamic diameter were compa-
rable. Direct measurement of particulate filtration efficiency could be a good indicator of
filtration efficiency for cultivable microbial aerosols. These results obtained under realistic
conditions are consistent with previous studies carried out under controlled conditions.

Further investigations may be carried out to establish a relationship between the
efficiencies for particle filtration (direct measurements that are easier to implement) and
microbial filtration (which require a more complex protocol). In addition, analyses using
molecular biology techniques could be carried out to investigate filtration efficiencies with
different microbial populations, in particular the viral diversity found on each side of the
filter, which has been inadequately studied and is of particular importance in the context of
the COVID-19 pandemic.
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