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Abstract: Two unique approaches were proposed to strengthen the bond between the glass fiber
reinforcement polymer (GFRP) and the RC concrete surfaces. The two bonding materials are
epoxy (EP) and geopolymer (GPP) with different ratios of short glass fibers (SGF). The experi-
mental program includes seven reinforced concrete (RC) beams that have the same cross-section
(150 mm × 200 mm) and are 1500 mm in length. The first beam is the control beam (B0-Control).
The next three beams B1-0-GPP, B2-0.6-GPP, and B3-1.2-GPP have GPP with SGF ratios of 0%, 0.6%,
and 1.2%, respectively. The last three beams B4-0-EP, B5-0.6-EP, and B6-1.2-EP have EP with SGF
ratios of 0%, 0.6%, and 1.2%, respectively. The results show that the failure loads of beams B1-0-GPP,
B2-0.60-GPP, and B3-1.2-GPP are greater than the control beam B0-Control by approximately 20.80%,
25.60%, and 31.40%, respectively, whereas the failure loads of beams B4-0-EP, B5-0.6-EP, and B6-1.2-EP
are greater than the B0-Control by approximately 16.90%, 26.90%, and 26.10%, respectively; it is
also noted that debonding occurs. In addition to the adhesive material, GPP has a great effect on
increasing the beam’s failure load capacity due to the enhanced interfacial bond shear strength.
Additionally, a finite-element program ABAQUS is performed to verify the experimental results.

Keywords: geopolymer paste; flexural behavior; GFRP; epoxy; short glass fibers; strengthening

1. Introduction

Among the biggest problems that contemporary civil engineering is currently fac-
ing are the strengthening, updating, and retrofitting of old structures. One of the most
promising answers to these needs is the use of carbon fiber reinforcement polymer (CFRP)
laminates bonded to the tensile face of the member. In addition, the type of adhesive
material that is used is important to prevent CFRP debonding.

The need for reinforced concrete (RC) structures strengthening is becoming more
important, especially when there is an increase in ultimate load, degradation trouble,
and/or design construction shortcomings [1–3]. One of the more conventional approaches
to strengthening is using epoxy to bond structural elements with steel plates. There
are significant drawbacks to using steel plates as a strengthening material [4–6], such as
corrosion, the heavy weight of the steel plate, the difficulty of forming the steel plate, and
the good preparation of the RC beam surface.

A. Jahami et al. [7] studied numerically the effect of using CFRP as a strengthening
technique for RC beams subjected to blast loading. Three different configurations of CFRP
were considered: bottom CFRP strips for flexural strengthening, diagonal side strips for
shear strengthening, and U-shaped strips for both shear and flexural strengthening. Results
showed that using CFRP in the bottom tensile face of RC beams helped in absorbing blast
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energy. In addition, using CFRP has shown a reduction in the tensile strain of the beam
reinforcements.

To create a new technique that can replace steels and alloys with one that is dependable,
affordable, and easy to use, extensive research has been done in this area [8,9]. Therefore,
using externally bonded (EB) fiber-reinforced polymer (FRP) sheets in concrete structures
as a means of strengthening and retrofitting has received widespread acceptance in the
industries [10–12]. This method involves using epoxy to bond the glass fiber reinforcement
polymer (GFRP) laminates to the tension surface of RC beams. This EB technique, on the
other hand, results in greater ultimate flexural strength and stiffness [13].

According to several studies, FRP has many advantages including high tensile re-
sistance. Furthermore, when FRP is applied to RC members, it improves rehabilitation
performance, durability, and cost-effectiveness [14,15]. Glass-fiber-reinforced polymer
(GFRP) is the most suited FRP reinforcement for a variety of civil engineering applications
because glass fibers offer the highest temperature resistance, the highest strength, and
the lowest cost [16]. The process of debonding between GFRP laminates and RC concrete
surface due to the weak cohesion of the epoxy as an adhesive material is one of the prob-
lems that limit the development of the use of GFRP laminates as an effective system for
strengthening concrete structures [17]. Numerous types of FRP debonding failure have
been documented in prior studies [18–20], including concrete cover separation, interme-
diate crack debonding, and plate end debonding. The effectiveness of the strengthening
mechanism is greatly reduced when FRP debonding fails [21,22].

Current and previous studies have developed various anchorage systems, such as
FRP anchors, FRP U-jacket anchors, and mechanical anchors to postpone the debonding
process between GFRP laminates and RC concrete surfaces [23,24]. The enhanced concrete
beam with anchorage had a bond strength that was eight times greater than the specimen
without an anchor, according to the experiment results. Additionally, it was shown that the
interfacial bond’s performance was dependent on the site of the anchorage. Anchoring FRP
laminates at their ends with anchor bolts can effectively prevent brittle debonding failure
while also improving bond shear resistance and ductility of the reinforced structures [25,26].
Such anchorage systems have the potential to significantly improve the interfacial bond
between FRP and RC concrete surfaces [27].

On the other hand, the preparation and installation of these anchors greatly increase
the difficulty of implementation and the demand for craftsmanship [28,29]. To increase inter-
facial shear resistance, several indirect anchorage techniques have been created [30,31]. By
expanding the adhesive area between the FRP and the concrete, the near-surface mounted
(NSM) approach increased the indirect anchoring of FRP composites [32,33]. The American
Code Institute (ACI) [34] has suggested the concrete grooving method (GM) as an easy ver-
sion of the NSM due to its important development in concrete surface roughness [35]. The
interfacial bond strength with the adhesive region between FRP and concrete can be greatly
enhanced by grooving the concrete before applying epoxy resin [36]. The preparation of
concrete surface grooves, on the other hand, would significantly increase construction
work [37]. As a result, a variety of substances and techniques have been researched to iden-
tify viable alternatives that might be utilized as a partial or full replacement for Portland
cement to create ecologically friendly concrete [38].

Geopolymer is typically synthesized by activating aluminosilicate source material
with an alkaline solution (such as NaOH or KOH) [39]. Metakaolin (MK) with a lower
calcination temperature or industrial waste products such as fly ash (FA), slag, and rice
husk ash are frequently employed as an aluminosilicate source material. Because of this,
producing geopolymer uses less energy and generates less carbon dioxide. Geopolymer is
regarded as a possible substitute for cement due to its exceptional qualities including low
shrinkage, fast concretion, high early compressive strength, and superior fire resistance [40].
The bond property of geopolymer has recently piqued the interest of researchers [41–43].

Composite materials produce a combination property of two or more materials that
neither fiber nor matrix can achieve when acting alone [44]. Short-fiber-reinforced polymer
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(SFRP) composites are particularly attractive due to their simplicity in manufacture, low
cost, and outstanding mechanical properties [45]. High fiber content is generally required
to achieve a high-performance SFRP composite. As a result, the effect of fiber content on
the mechanical properties of SFRP composites is of particular interest and significance [46].
Glass-fiber-reinforced polymeric composites were the most used materials in the production
of composite materials [47]. Finally, adequate bonding between the FRP laminates and the
RC concrete surfaces is critical for successful strengthening; failure to do so would result in
undesirable premature failure before the ultimate load.

The main objectives of this study are (1) to suggest two adhesive materials to improve
the bond between the GFRP laminates and the concrete surface and (2) to study the impact
of the adhesive materials on the tested beams’ structural behavior. The adhesive materials
used are Sikadur®−330 epoxy (EP) and geopolymer paste (GPP) with different short
glass fibers (SGF) ratios. In addition, an analytical examination using the non-linear finite
element computer software ABAQUS [48] has been performed to validate the experimental
consequences of the tested beams.

2. Experimental Program
2.1. Materials

All the tested beams were constructed using ordinary Portland cement (OPC)
42.5 grade, which has a specific gravity of 3.10 g/cm3 and an average particle size of
20.67 µm. The chemical composition of the OPC is shown in Table 1. In this investigation,
natural river sand was used as the fine aggregate. The sand had a specific gravity of
2.42 g/cm3, water absorption of 1.92%, and a fineness modulus of 2.25. As a coarse aggre-
gate, natural crushed stone with a nominal maximum size of 12.5 mm was employed. The
coarse aggregate had a specific gravity of 2.78 g/cm3 and water absorption of 1.56%.

Table 1. Chemical and physical properties: Composition, OPC, and FA.

Composition OPC FA

Chemical properties

SiO2 19.39 57.2
Al2O3 4.13 24.4
CaO 55.66 2.2

Fe2O3 4.70 7.1
MgO 1.70 2.4
K2O 0.28 3.4

Na2O 0.31 0.4
SO3 3.90 0.3

Physical properties

Specific gravity 3.10 2.8

Concrete was made using tap water, with a water-to-cement ratio of 0.42 in this inves-
tigation. It was necessary to utilize a superplasticizer to ensure the required workability. To
improve the workability of concrete, this superplasticizer, which complies with ASTM C494
type F [49,50], is made of synthetic resins and added at a dose of 1.5% by weight of cement.
The main bottom and top longitudinal deformed bars of all tested beams with a diameter of
12 mm and 10 mm, respectively, and stirrups with diameters of 8 mm. Sika Wrap®-430 G of
Sika Egypt, as shown in Figure 1a, was used as unidirectional GFRP laminates, which have
a density of 2.56 g/cm3, a thickness of 0.168 mm, a tensile strength of 2500 N/mm2, and
modulus of elasticity equal to 72,000 N/mm2, according to the manufacturing sheet.
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Figure 1. (a) Glass fiber sheets; (b) Short glass fiber.

The GFRP installation uses the wet hand-layup system as per ACI [51]. Short glass
fibers (SGF), acquired from Sika Egypt, as shown in Figure 1b, have a length of 6 mm, a
specific gravity of 0.91, a diameter of 13 microns, and tensile strength of 480 Mpa, according
to the manufacturing sheet.

The EP has two components of resin and hardener. The mixing ratio of resin to
hardener is 4:1 by weight. The mechanical properties of EP with and without SGF are
presented in Table 2. Two percentages of SGF, 0.6% and 1.20%, from the volume of the EP
were used. The second bonding material is GPP which includes fly ash (FA) and a mix of
sodium silicate (Na2SiO3) solution with sodium hydroxide (NaOH) solution as an alkaline
activator. The chemical composition of FA is illustrated in Table 1. The specific surface area
and the specific gravity of FA are 379 m2/kg and 2.25, respectively.

Table 2. The proportion of the beam’s concrete mix.

Cement
(kg/m3)

Water
(Liter)

Fine Aggregate
(kg/m3)

Coarse Aggregate
(kg/m3)

Super Plasticizer
(Liter)

350 147 870 1270 5.25

The utilized sodium hydroxide (NaOH) is available as flakes with a particle size of
approximately 3 mm and a specific gravity of 2.13, and a pH of 14. 40 g/mol was utilized
as the molar mass. By dissolving sodium hydroxide flakes in water, a sodium hydroxide
(NaOH) solution was created. The mass of NaOH solids in a solution disperses according to
the solution concentration expressed in terms of the molar. In this research, NaOH solution
with 12 M (480 g/L) was used. To provide this molarity, a volume-measured beaker was
used. Firstly, NaOH flakes were added, and then water was added until the volume was
completed to one liter. After the stirring process was completed, the solution was left to
cool down, and then the beaker was refilled to one liter.

From the market, a sodium silicate solution in a ready-to-use form was purchased. The
chemical formula for the sodium silicate solution is SiO2 = 29.4%, Na2O = 14.7%, and water
of approximately 55.9% by mass. The specific gravity of sodium hydroxide solution was
1.48 g/cc and the viscosity was 400 cp at 20 °C. Inappropriately mixed mortar may cause
failures such as not hardening, flash setting, or both, which cause inapplicability. To avoid
these drawbacks, the selection of mixture ingredients was made based on the previous
research that was summarized in previous works and the results of various trial mixtures
in the preliminary study. The selection steps are summarized as follows: FA was used as a
base material with 700 kg/m3, and a mixture of sodium hydroxide (NaOH) solution and
sodium silicate solution (Na2SiO3) was used as an alkaline liquid by a ratio of 1 to 2.5. The
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molarity of sodium hydroxide was 12 M, the ratio of alkaline solution to FA was 1:2 by
mass, and SGF was added with 0.6 and 1.2% of the total volume of the mixture.

Six direct shear tests were performed under pull static load to calculate the ultimate
shear strength between the concrete and examined adhesive materials [GPP without SGF
(0-GPP), GPP with 0.60% ratio of SGF (0.6-GPP), GPP with 1.20% ratio of SGF (1.2-GPP),
EP without SGF (0-EP), EP with 0.60% ratio of SGF (0.6-EP), and EP with 1.20% ratio of
SGF (1.2-EP)]. Six concrete blocks were cast with dimensions (length L = 300 mm, width
b = 125 mm, and thickness h = 125 mm). Using an abrasive dry grinder, the concrete block’s
surface was prepared by grinding down to a depth of roughly 0.50 mm. Six specimens of
GFRP laminates were prepared with dimensions of 152 mm bonded length and 35 mm
unbounded length. Each one of the GFRP laminates was pasted to one concrete block along
the centerline on one side of the concrete block. The tensile load was applied to the GFRP
laminate while the concrete block was restrained from the bottom. Figure 2 shows the
test setup. LVDTs that were installed on the concrete surface near the upper corners of
the bonded area were used to measure the initial slip and final slip. The typical applied
load-slip response is illustrated in Figure 3.
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2.2. Mix Proportioning and Details of Tested Beams

The experimental program included seven simply supported RC beams. All the beams
had an equal section of 200 mm depth, 150 mm width, and 1500 mm length. The reinforce-
ment bars, dimensions, and geometry information of the tested beams are illustrated in
Figure 4. The main bottom reinforcement was two bars of 12 mm diameter with a design
yield stress of 410 MPa, and the top reinforcement bars were two bars of 10 mm diameter
with the same yield strength. Vertical stirrups were constructed using 125 mm-spaced,
8 mm-diameter bars with a yield strength of 240 Mpa to ensure that all tested beams failed
in the flexural mode according to ACI-19 [52].
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Figure 4. GFRP externally strengthened RC beam under two-point loads.

The proportioning of the concrete mix of the tested beams is given in Table 2. Table 3
provides a summary of the information and the tested beams’ designation. The beams’
designation is arranged as follows: the beam number, numbers 0, 0.6, and 1.2 referring to
the SGF ratio, and GPP and EP referring to the geopolymer and Sikadur®-330 epoxy paste
of Sika Egypt, respectively. Three groups of beams were used. The first group included the
beam B0-control, which referred to the control beam without strengthening. The second
group included three tested beams, which were marked as B1-0-GPP, B2-0.6-GPP, and
B3-1.2-GPP, and had bonding material GPP with SGF by the percentages of 0%, 0.6%,
and 1.2%, respectively. The third group included three beams, which were marked as
B4-0-EP, B5-0.6-EP, and B6-1.2-EP, and had EP with SGF percentages of 0%, 0.6%, and 1.2%,
respectively.
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Table 3. The names and specifics of different beams.

Group Bonding Material Beam ID SGF %

A - B0-Control 0

B GPP
B1-0-GPP 0

B2-0.6-GPP 0.6
B3-1.2-GPP 1.2

C EP
B4-0-EP 0

B5-0.6-EP 0.6
B6-1.2-EP 1.2

2.3. Beam Preparation and GFRP Strengthening
2.3.1. Beam Preparation

Seven plywood forms were prepared for fabricated RC beams, and then steel rein-
forcement cages were prepared as shown in Figure 5. The concrete was mixed until the
mixture became homogenous, then fresh mixtures were cast in forms at 23 ± 2 ◦C using an
electrical poker vibrator for two minutes; specimens were then covered with polyethylene
sheets started immediately after casting and were cured with pure water after 24 h from
casting until the test. Three concrete cylinders (φ 150 × 300 mm) and three concrete cubes
(150 mm × 150 mm ×150 mm) were taken to determine the average cylinder compressive
strength (fc’) and the average cube compressive strength (fcu), respectively. The average
cylinder compressive strength (fc’) and the cube compressive strength (fcu) were equal to
26.3 Mpa, and 32.60 Mpa, respectively. The average experimental compressive stress–strain
curve of the tested beams concrete is shown in Figure 6. The average experimental tensile
strength was equal to 2.1 Mpa.
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2.3.2. GFRP Strengthening

All the beams were cast and cured for 28 days, and then ACI 440.2R-2017’s “wet
layup” technology was used to enhance the tension surface of the RC beams [50]. Before
the laminates were bonded, all the beams’ tension surfaces were cleaned, dried, and
greased, and contaminates, if any, removed. The International Concrete Repair Institute’s
recommended minimum rough profile (CSP3) was used to prepare the tension side of the
beams (ICRI 03730) [34]. Any loose cement paste layer was removed using an abrasion
wheel so that the exposed aggregate particles could be seen. Figure 7 displays the various
surface preparation phases. When using epoxy, the resin and hardener were mixed in
the predetermined ratio of 4:1, and the GPP was prepared by the method mentioned in
Section 2.1. The GFRP was then cleaned to eliminate contaminants and cut to the required
size. The prepared surface was uniformly coated with EP and GPP, and the GFRP was
then pressed onto the top surface while employing light pressure and a rubber roller. To
ensure that the GFRP adhered well to the surface, released any trapped air, and removed
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any excess epoxy that might have been present between the GFRP and concrete surface,
these steps were taken. Thusly produced laminated beams were cured for a week before
being tested. Figure 7a,b illustrate the process for strengthening beams.
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2.4. Test Setup and Instrumentation

Every RC beam underwent testing with two points of loading. The distance between
two-point loads is 400 mm and the distance between two beams supports is 1200 mm.
On the right and left ends of the examined beams, roller and hinged supports were em-
ployed, respectively. Flexural testing was carried out using load-controlled mode loading at
0.02 KN/s until failure. A steel I-section spreader beam was used to transfer the load from
the load cell to the beam. This load from the spreader beam got transferred onto the two
loading points on the beam. A linear voltage displacement transducer (LVDT) with an
accuracy of 0.01 mm was used to measure the defections at the mid-span of beams. Electri-
cal resistance was used to measure the strains at the midpoint of the bottom longitudinal
reinforcing bars. Strain gauges 6 mm long were used. Figure 8 displays an image of the test
setup and the associated equipment. Each load interval produced a record of the load and
the greatest defection.
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3. Results and Discussion

At each loading increment up to failure, deflections and crack pattern propagation
were observed. The impact of material paste type on the tested beams’ structural behavior
was assessed. Results from beams with stronger ones were compared with those from
the control beam. Compared with the control beam, all beams had higher load-carrying
capacities.

3.1. Failure Loads

The loads at first crack Pcr, beam longitudinal reinforcement bars yield Py, and the
failure load Pu are summarized for all the examined RC beams in Table 4. To assess the
effectiveness of the different types of the adhesive material paste, the maximum loads
for the tested beams were recorded and compared, as shown in Figure 9. The failure
loads of beams B1-0-GPP, B2-0.60-GPP, and B3-1.2-GPP were greater than control beam
B0-Control by approximately 20.80%, 25.60%, and 31.40%, respectively. The results showed
that increasing the SGF ratio in the GPP had a clear effect on raising the capacity of the
beam due to the enhanced interfacial bond shear strength, as illustrated in Figure 3.

The failure loads of beams B4-0-EP, B5-0.6-EP, and B6-1.2-EP were greater than the
control beam B0-Control by approximately 16.90%, 26.90%, and 26.10%, respectively. The
results showed that the GPP as the adhesive material paste had a great effect on increasing
the failure load capacity of the tested beams. Compared with the costs of the bonding
materials EP and GPP, we found that bonding material GPP is much less expensive than
EP. The GPP is a novel material to increase the bond between the GFRP laminates and the
concrete surface. The results showed that the use of GFRP laminates increases the flexural
capacity of RC beams [53].

3.2. Failure Behavior and Crack Patterns

Figures 10–16 depict the crack patterns of the tested beams that were tested until they
failed. For beam B0-Control, the first crack was noticed at a load of approximately 31.20%
of the ultimate load. The first crack appeared at a load of approximately 26.90%, 26.90%,
25.70%, 28.90%, 27.70%, and 25.30% of the ultimate load for beams B1-0-GPP, B2-0.60-GPP,
B3-1.20-GPP, B4-0-EP, B5-0.6-EP, and B6-1.20-EP, respectively. Most cracks appeared initially
under the loads on the bottom surface of all tested beams. Based on the outcomes of the
experiment, no debonding occurred for laminates when using GPP with different SGF
ratios. On the contrary, there was a debonding when using EP for beams B5-0.6-EP and
B6-1.2-EP; however, for the beam B4-0-EP, the failure mode was laminate debonding and
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concrete cover separation. GFRP reduced the tensile damage that occurred in concrete due
to the increase in energy absorption [54,55].

Table 4. Test results synopsis.

Beam Pcr
(kN)

Py
(kN)

Pu
(kN)

∆y
(mm)

∆u
(mm) ∆u/∆y Failure Mode

B0-Control 24.0 70.14 76.90 5.50 17.70 3.21 Concrete crushing
B1-0-GPP 25.0 76.98 92.90 4.97 13.60 2.74 Concrete crushing

B2-0.6-GPP 26.0 78.68 96.58 4.64 15.93 3.43 Concrete crushing
B3-1.2-GPP 26.0 79.71 101.03 4.37 15.30 3.23 Concrete crushing

B4-0-EP 26.0 75.6 89.87 4.77 12.36 2.59 Debonding-C.C. S *
B5-0.6-EP 27.0 76.1 97.58 4.65 14.06 3.02 GFRP rupture
B6-1.2-EP 26.0 76.9 102.96 4.55 12.10 2.66 GFRP rupture

* C.C. S: Concrete Cover Separation.
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Figure 17 illustrates the load–deflection relationship for tested beams with GPP and
EP as adhesive material. All beams displayed linear behavior up to the cracking load. The
maximum deflection of tested beams B1-0-GPP, B2-0.6-GPP, B3-1.2-GPP, B4-0-EP, B5-0.6-EP,
and B6-1.2-EP was less than the control beam by approximately 14.60%, 6.90%, 6.20%,
19.30%, 5.92%, and 17.10%, respectively. The results showed that GPP as adhesive material
paste enhanced the maximum beam’s deflections better than EP. Also, it was found that
using GFRP with EP reduced the mid-span displacement of the tested beams [56–58].
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3.4. Ductility of Specimens

The ductility factor can be determined as the ratio of the maximum displacement at
failure load (∆u) to the maximum displacement at yield load (∆y). The ductility factor
of beams B1-0-GPP, B2-0.6-GPP, and B3-1.2-GPP was larger than corresponding beams
B4-0-EP, B5-0.6-EP, and B6-1.2-EP by approximately 5.80%, 13.60%, and 21.40%, respectively.
Table 4 shows that the beam B3-1.2-GPP had a similar ductility factor to the control beam
due to the large ratio of SGF. In addition, the results showed that the ductility factors of
beams B2-0.6-GPP and B3-1.2-GPP had a little more ductility than the control beam.

4. Finite Element Analysis

In this section, finite element analysis (FE) was carried out using the ABAQUS soft-
ware [47]. The FE program can accurately simulate the GFRP/concrete interface, taking into
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consideration both geometric and material nonlinearity. A series of vertical displacement
increments were applied until the maximum experimental deflection value was reached
for each beam. The Newton–Raphson technique was utilized in the nonlinear analysis
to allow convergence within tolerance limits at the end of each deflection increment. To
further prevent a divergent solution, automatic stabilization and short time increments
were applied.

4.1. Modeling of Material Properties
4.1.1. Concrete

The concrete was modeled using concrete damage plasticity (CDP). Due to the model’s
combination of compressive plasticity and isotropic tensile plasticity, it can simulate the
concrete in the inelastic zone. The elastic modulus values, the Poisson’s ratio, characteriza-
tion of compressive and tensile behavior, and the plastic damage parameters, are necessary
for the plastic damage model. In the concrete damage plasticity model (CDP), the plastic
damage parameters are the dilation angle, the flow potential eccentricity, the ratio of initial
biaxial compressive yield stress to initial uniaxial compressive yield stress, the ratio of the
second stress invariant on the tensile meridian to that on the compressive meridian, and the
viscosity parameter which defines viscoplastic regularization. The final four parameters for
defining concrete material damage are described in Table 5.

Table 5. Concrete damage parameters (CDP).

Dilation Angle (Ψ) 35◦

Eccentricity (e) 0.10
f bo/f co 1.16

K 0.66
Viscosity Parameter 0.00005

The experimental compressive stress–strain curve for concrete as illustrated in Figure 4
was used in the FE program. The concrete tensile strength was equal to 2.1 MPa. The
modulus of elasticity of concrete (Ec) was 26,985 MPa according to the compressive stress–
strain curve (See Figure 4, Section 2.3.1). Two primary failure modes are considered for
concrete according to (CDP): compressive crushing and tensile cracking. The stress–strain
response under uniaxial tension followed a linear elastic relationship up until a value of
the failure stress was attained.

The initiation of microcracking in the concrete material is correlated with failure stress.
A softening stress–strain response was used to illustrate the propagation of microcracks
beyond the failure stress. Therefore, elastic modulus, Ec, and tensile strength, f t, are
required to define the first part of the relationship. For descending branch, the fracture
energy Gf approach was used to define the post-peak tension failure behavior of concrete,
as shown in Figure 18. The area beneath the concrete’s tensile curve following the peak
value was the fracture energy Gf.
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4.1.2. Steel Reinforcement Bars and GFRP Laminate

Figure 19 illustrates a bilinear elastic–plastic stress–strain curve for reinforcement bars.
The embedded region was modeled for the reinforcement in this investigation. Table 6
illustrates the mechanical properties of reinforcement bars. The interaction surface between
reinforcement bars and concrete was assumed to be a perfect bond. In the current study, the
GFRP was assumed to be a linear elastic isotropic material. Table 7 illustrates the properties
of CFRP laminates as specified by the manufacturer.
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Table 6. The mechanical properties of reinforcement bars.

Modulus of Elasticity, Es (GPa) 202
Yield strength, fy (MPa) 410

Ultimate strength fu (Mpa) 520
Poisson’s ratio 0.20

Table 7. The properties of GFRP as specified by the manufacturer.

Modulus of Elasticity, E (GPa) 72

Tensile strength (GPa) 2.5
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4.1.3. GFRP Laminate–Concrete Interface

The GFRP laminate–concrete interface can be more effectively modeled using the cohe-
sive model in ABAQUS. When dealing with debonding issues of strengthening materials,
cohesive elements and surface-based cohesive behavior are preferable alternatives for this
type of modeling. Surface-based cohesive behavior requires a linear elastic traction separa-
tion as well as damage initiation and evolution laws, and it has very comparable formulas
and constitution laws to cohesive elements. A graphic representation of a standard bilinear
traction–separation rule expressed in terms of effective traction τ and effective opening
displacement (Interfacial slip) δ is shown in Figure 20. The initial stiffness K0 is specified
as [56] and is modeled as a rich zone of small thickness at the interface. The initial stiffness
can be expressed as follows:

K0 =
1

ti
Gi

+ tc
Gc

(1)

where ti and tc represent the thickness of adhesive and the concrete thickness, respectively.
Gi and Gc are the shear modulus of the adhesive and concrete, respectively. The values
of shear stress of each resin τmax according to the experimental results used for B1-0-GPP,
B2-0.6-GPP, B3-1.2-GPP, B4-0-EP, B5-0.6-EP, and B6-1.2-EP are 4.2 MPa, 4.26 MPa, 4.31 MPa,
3.95 MPa, 4.1 MPa, and 4.2 MPa, respectively (See Figure 3). The damage initiation criterion
was described by using the quadratic nominal stress function:{

σn

σ0
n

}
+

{
τn

τ0
s

}
+

{
τt

τ0
t

}
= 1 (2)

where σn is the cohesive tensile, τs and τt are the interface’s shear stresses, and n, s
and t denote the direction of the stress component. Damage was considered to initiate
when the traction function reached one. The maximum normal stress σ0

n in comparable
studies is equal to 2.1 MPa, while the maximum shear stresses τ0

s , τ0
t are taken according to

the experimental results (see Figure 3). Energy release was used to assess the development
of interface damage. The description of this model can be found in the ABAQUS material
library. Previous investigations have found values for the fracture energy, Gcr, ranging
from 300 J/m2 to 1500 J/m2 [57]; for this investigation, the values taken were calculated
based on experimental results.
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4.2. Boundary Conditions and Meshing

As shown in Figure 21, the geometry of the beams, loads, and boundary conditions
were all symmetrical, so just one-half of a beam was modelled using a standard finite
element mesh. This approach significantly decreased the amount of computing time and
the computer storage space, especially in the case of the GFRP/Concrete interface which is
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not modeled as a full bond. To choose an appropriate mesh with acceptable accuracy in
terms of ultimate load and ultimate deflection, three models with various mesh sizes—fine,
medium, and coarse of 15, 25, and 35 mm, respectively—were examined. Figure 21 depicts
the concrete volume medium meshes and reinforcing medium meshes for tested beams. The
solid three-dimensional eight-node bricks (C3D8R) were adopted in the FE study to model
the concrete. The main reinforcement bars were modeled using a bar truss element (T2D3)
with the same mesh size as the concrete. GFRP laminate was modeled as a four-nodded
doubly thin curved shell, reduced integration, and hourglass control (S4R). The applied
load and supports were taken as illustrated in Figure 21a to simulate the experimental
program.
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mesh of half of a typical beam; and (c) Reinforcement bars, stirrups, and GFRP laminate.

5. Comparison of the Experimental and Finite Element Results

To confirm the experimental findings, the ABAQUS program was used to mimic
each tested beam with the same information and the same material characteristics as the
experiment. It was found that the medium mesh gives the best results in the ultimate load
and deflection values, as shown in Table 8. Additionally, it had an acceptable computational
time compared to the other meshes. The load–deflection curves for both experimental and
numerical were presented for all tested beams, as illustrated in Figure 22. Compared with
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the experimental results, the load–deflection curves from numerical simulations behaved
more stiffly, which was likely caused by a sizable scatter in the tensile strength of the
concrete. The range of 0.95 to 0.98 is the FE forecast for the experimental ultimate load
ratio, as illustrated in Table 5. In addition, the range of 0.83 to 1.09 is the FE forecast for the
experimental maximum beam displacement ratio.

Table 8. Comparison of the experimental and finite element findings.

Failure Load, kN Maximum Beam Displacement at the Ultimate
Load (mm)

Finite Element EXP./Finite
Element (Medium)

Finite Element EXP./Finite
Element (Medium)Fine Medium Coarse Fine Medium Coarse

B0-Control 79.60 78.51 76.54 0.98 17.07 16.6 15.87 1.07
B1-0-GPP 97.11 95.85 93.53 0.97 16.86 16.4 15.67 0.83

B2-0.6-GPP 101.92 100.61 98.20 0.96 15.45 15.0 14.30 1.06
B3-1.2-GPP 104.43 103.1 100.64 0.98 14.64 14.2 13.52 1.07

B4-0-EP 95.85 94.6 92.31 0.95 13.43 13 12.34 0.95
B5-0.6-EP 103.42 102.1 99.66 0.95 13.33 12.9 12.24 1.09
B6-1.2-EP 106.45 105.1 102.60 0.98 12.93 12.5 11.85 0.97
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Figure 23 shows the final finite element cracks of the examined beams. All failure
modes obtained numerically were tension failures at the flexural zone. All cracks formed in
the middle third of the beams verified the experimental results. The experimental findings
and FE predictions can be seen to be in good agreement. Due to the complexity of using
the cohesive model in modeling the GFRP laminate–concrete interface, there was a slight
variation in the results.
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6. Conclusions

The subsequent conclusions may be taken from the findings of the experimental and
analytical investigations to suggest two novel ways to enhance the bond between the GFRP
laminates and the concrete’s surface.

1. The geopolymer paste with and without short glass fibers outperformed epoxy in
the strengthened beams. No debonding was observed between the GFRP laminate
and the concrete surface, which is the most significant issue that frequently limits
the strengthening of structures using GFRP laminate. On the other hand, compared
with epoxy, geopolymer paste with and without short glass fibers reduced adhesive
materials costs by more than 90%.

2. The failure loads of beams B1-0-GPP, B2-0.60-GPP, and B3-1.2-GPP were greater than
control beam B0-Control by approximately 20.80%, 25.60%, and 31.40%, respectively,
whereas the failure loads of beams B4-0-EP, B5-0.6-EP, and B6-1.2-EP were greater
than the control beam B0-Control by approximately 16.90%, 26.90%, and 26.10%,
respectively. The results showed that increasing the SGF ratio in the GPP had a clear
effect on raising the capacity of the beam due to the enhanced interfacial bond shear
strength. In addition, the GPP had a great effect on increasing the failure load capacity
of the tested beams.

3. Based on the experimental results, no debonding occurred for laminates when using
GPP as adhesive material with different SGF ratios. On the contrary, there was a
debonding when using EP as adhesive material.

4. The maximum deflection of the tested beams B1-0-GPP, B2-0.6-GPP, and B3-1.2-GPP
was less than the control beam by approximately 14.60%, 6.90%, and 6.20%, respec-
tively, whereas the maximum deflection of the tested beams B4-0-EP, B5-0.6-EP, and
B6-1.2-EP was less than the control beam by approximately 19.30%, 5.92%, and 17.10%,
respectively. This showed that the GPP as adhesive material pastes enhanced the
maximum beam’s deflections better than EP.

5. The ductility factor of beams B1-0-GPP, B2-0.6-GPP, and B3-1.2-GPP was larger than
corresponding beams B4-0-EP, B5-0.6-EP, and B6-1.2-EP by approximately 5.80%,
13.60%, and 21.40%, respectively. This showed that the GPP as adhesive material
pastes enhanced the beam’s ductility factor more than EP.

6. The experimental findings and FE predictions are shown to be in good agreement. Due
to the complexity of using the cohesive model in modeling the GFRP laminate–concrete
interface, there was a slight variation in the results.

7. Recommendations for Future Research

The study will be continued to examine the efficiency of using the GPP as an adhesive
material in strengthening beams in shear using GFRP and CFRP laminates.
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