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Abstract: Excavated soils and rocks are materials obtained in construction works that could represent
an ecological issue if a durable and efficient reuse process is not set. The radioactive waste disposal
planned by the French National Radioactive Waste Management Agency will generate large quantities
of excavated soil (mainly as Callovo-Oxfordian argillite). The re-use of excavated soils is a recent
question. There is a lack in the literature concerning the recycling of such materials. Therefore, this
paper aims to investigate the possibility of using Callovo-Oxfordian argillite (COx argillite from
the French URL) as a raw material for Portland cement clinker production. COx argillite was first
characterized by X-ray diffraction (XRD) and X-ray fluorescence (XRF) then a Portland cement clinker
was synthesized at laboratory scale. The produced clinker was characterized to verify the chemical
and mineralogical composition. After adding gypsum, the reactivity of the resulting cement was
assessed by setting time and isothermal calorimetry measurements. The compressive strength was
assessed on standard mortar prisms at 1, 14 and 28 days. The results show that a Portland cement
clinker containing 64% C3S, 14% C2S, 10% C4AF, 7% C3A and 1% CaO can be produced when 22.24%
of raw meal was substituted by the COx argillite. The setting time and isothermal calorimetry results
show that the produced cement shows an equivalent reactivity to conventional ordinary Portland
cement. The compressive strength at 28 days is 56 MPa, showing that the produced cement can be
considered as CEM I 52.5 N Portland cement.

Keywords: clinker; argillite; circular economy; hydration; recycling

1. Introduction

The management of excavated soils becomes one of the major issues that the environ-
ment and construction sector have to face. Excavated soils and rock are often obtained
through activities of mining, tunneling or foundation works. When these materials are not
beneficially reused, they are often stored or dumped and cause far-reaching environmental
harm [1,2]. Recent studies pointed out the interest in using excavated soil as secondary
building material, seeking therefore economic and environmental benefits [2–4].

Nowadays, the using of partial replacement of raw materials in the clinker raw meal
by wastes or by-products is gaining a lot of attention [5,6]. This action allows, on one
hand to preserve natural resources, which presents a challenge for the cement industry,
and on another hand to recover wastes and industrial by-products. Decades ago, it was
the case with blast furnace slag; today the use of by products is greater and comes not
only from the industry [7]. Waste recovery makes it possible to participate to the circular
economy and to meet the global requirements for reducing the carbon footprint as agreed
in the COP22, Kyoto, and according to the IEA/WBCSD Roadmap [8–12]. Different types
of wastes have been studied in the literature in order to produce cement, and mainly
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OPC cement. Aouad et al. used sediment from the north of France to produce OPC
cement [13]. Their results showed that 39% of sediment can be added to the raw meal,
and the compressive strength of sediment-based cement is equivalent to the reference
cement (without sediment) and exceeds it by 20% in the long term. Sediments, coming
from different French regions were also tested by Faure et al. [14] and their study showed
that 10–15 wt% of the raw meal can be replaced by various types of sediment without
significantly affecting the clinker characteristics. The recycled concrete aggregate and fine
fractions were used by Diliberto et al. [15] in order to produce OPC cement. Tsakiridis
et al. [16] added 10.5% of steel slag in the OPC clinker raw meal without affecting negatively
the quality of the cement.

The French National Radioactive Waste Management Agency, Andra, is responsible
for the long-term management of radioactive wastes produced in France. Cigeo (Industrial
Centre for Geological Disposal) is one of Andra’s projects for the disposal of high-level
(HLW) and intermediate level long-lived (IL-LLW) radioactive wastes. The Cigeo project
concerns the radioactive waste disposal planned at 500 m below ground level in the
geological layer formed by the Callovo-Oxfordian (COx) argillite [17,18].

The characterizations of this clay layer have shown that the argillite exhibits a homo-
geneity and a geological stability as well as physical properties (especially a low permeabil-
ity) that allow this layer to host radioactive waste disposal [19,20]. This disposal will lead
to the generation of millions of cubic meters of excavated COx argillite. The storage of such
a volume during the operating period and the remaining volume after closure is a key issue.
Therefore, the re-use of the excavated COx clay has become a goal in order to fix the in situ
storage problem. Gharzouni et al. investigated the possibility of producing alkali-activated
materials/geopolymers based on COx argillite [19]. Different thermal treatments were
applied to COx argillite such as traditional calcination at different temperatures and flash
calcination. Dupuy et al. [21], used also COx argillite to produce alkali-activated materials
with a pH close to 11 and presenting a wide range of setting time up to 24 h.

The characterization of COx argillite realized in different studies shows the presence
of three main components: clay, calcite and quartz [17,22–25]. These phases are essential
to produce clinker in the cement industry [13,26,27]. The main objective of this paper is
to investigate the possibility of using COx argillite as part of the meal blend to produce
ordinary Portland cement. Therefore, COx argillite is incorporated to the raw meal. The
produced clinker is characterized by X-ray diffraction and X-ray fluorescence to verify its
chemical and mineralogical composition. The compressive strength and reactivity of the
cement made with COx argillite are investigated on mortar and cement paste, respectively.

2. Materials and Methods
2.1. Materials

The raw materials used in this study are pure CaCO3, Fe2O3 and SiO2, in addition to
the Callovo-Oxfordian argillite. Prior to characterization and use, the COx argillite is dried,
crushed and ground with a cross beater mill SK300, down to a fineness of less than 200 µm.

The reference cement used is the ordinary Portland cement CEM I 52.5 N produced at
industrial scale by EQIOM. It is a cement specified in European standard NF EN 196-1 [28]
for general construction use. The physical, mineralogical and chemical characteristics of
this cement are presented in Tables 1–3, respectively.

Table 1. Physical properties of CEM I 52.5 N cement.

Material Density (g/cm3)
Blaine Specific
Surface (cm2/g)

BET Specific Surface
(cm2/g) LOI 950 ◦C (wt%) D10 (µm)

OPC 3.15 3720 9800 1.91 1.31
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Table 2. Mineral phases of CEM I 52.5 N cement.

Method Clinker C3S (wt%) C2S (wt%) C3A (wt%) C4AF (wt%) CaO Free
(wt%)

Schlafer–Bukolowki
method—Bogue formula OPC 61.63 15.76 9.14 9.18 1.60

Rietveld method OPC 64.87 12.47 8.83 9.04 1.19

Table 3. Chemical composition of CEM I 52.5 N cement.

Composition
(%) CaO SiO2 Al2O3 Fe2O3 SO3 Na2O K2O MgO ZnO P2O5

LOI
(950 ◦C) Total

OPC 63.75 19.95 5.31 2.98 3.03 0.55 0.93 0.86 - - 1.9 99.99

2.2. Clinker Synthesis at Laboratory Scale

The theoretical composition of the targeted clinker (COx clinker) is represented in
Table 4.

Table 4. Theoretical mineralogical composition for the COx clinker.

Phases C3S C2S C4AF C3A CaO

Percentages 64 18 10 7 1

In order to reach the targeted composition in Table 4, a theoretical oxide composition
was calculated (see Table 5).

Table 5. Theoretical oxide composition for the COx clinker.

Oxide CaO SiO2 Al2O3 Fe2O3

Percentages 68.86 23.12 4.74 3.29

To reach such a composition, a backward calculation is performed to calculate the
weight ratio of each raw material in the meal. The raw materials, CaCO3, Fe2O3, SiO2 and
COx argillite are mixed together through a wet process to facilitate the homogenization of
the raw meal. Then the raw meal is dried at 105 ◦C. Pellets are made and fired up to 1450 ◦C
in a static furnace. After 15 min at the clinkering temperature, the clinker is cooled in the
furnace to room temperature (Figure 1). The obtained clinker is ground using a vibratory
disc mill RS 200 Retsch to a specific area of about 4300 cm2/g (in accordance to the Blaine
air permeability method mentioned in the European standard NF EN 196-6 [29]).

To produce cement, gypsum is added with an SO3/Al2O3 ratio of 0.6 using the
Equation (1) [30]:

Amount of gypsum used = Al2O3 content × [0.6/101.96] × [80.06/0.461] (1)

where 101.96 = molar mass of Al2O3; 80.06 = molar mass of SO3; 0.461 = molar mass ratio
of SO3/natural gypsum used (for pure gypsum 80.06/172.16 is 0.461).
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Figure 1. Clinker preparation procedure.

2.3. Characterization Methods

The particle size distributions were determined using a COULTER laser granulometry
type LS 13320.

Thermogravimetric analysis (TG/DTG) was performed using Netzsch STA 409. The
thermal analysis was performed in a nitrogen gas atmosphere, within a temperature range
from 40 ◦C to 1100 ◦C. The program was divided into 3 segments: a linear of 2 ◦C/min
between 40 and 105 ◦C, an isothermal of 30 min at 105 ◦C and a linear of 3 ◦C/min between
105 and 1100 ◦C.

The chemical composition was determined by X-ray fluorescence (XRF) using a S4-
Pioneer equipped with 4 KW generator and Rh anode.

The mineralogical analysis of argillite and the produced clinker was determined by X-
ray diffraction (XRD) using a Bruker D2 apparatus with Cu Kα radiation. The X-ray patterns
were acquired in the 2θ (10–80◦) with a step size of 0.02◦ and 1 s per step. TOPAS software
was used to conduct the Rietveld analysis in order to quantify the crystalline phases.

The reactivity of COx cement paste was followed by isothermal heat flow calorimetry
measurements performed at 20 ◦C using a home-made calorimeter with flowmeters that
allowed the calorimeter to equilibrate in less than 5 min [31]. A water/cement ratio of 0.5
was applied, and all the materials were kept at 20 ◦C before mixing in order to eliminate
errors related to the temperature variation during testing.

The compressive strength tests were carried out at 1, 14 and 28 days on mortar prisms
40*40*160 mm, according to the European standard AFNOR NF EN 196-1 using a standard
sand [28]. These tests were carried out using an Instron 5500R-4206-006 press with a loading
capacity of 1500 KN. The strain rate applied was 144 KN/min, as required by the European
standard AFNOR NF EN 196-1 [28].

The VICATRONIC I06 091 device was used to determine the initial setting time in
conformity with the NF EN 196-3 standard.

3. Results and Discussions
3.1. COx Argillite Characterization

Figure 2 represents the particle size distribution of the COx argillite after grinding.
The results show that 90% of the particles have a diameter < 60 µm. Therefore, the particle
size of COx is adapted to be used as raw material for cement production that should be
less than 200 µm according to the literature [32].
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Figure 2. Particle size distribution of COx argillite.

The COx argillite XRD result (Figure 3) shows the presence mainly of calcite and
quartz in addition to muscovite, kaolinite and pyrite as crystalline phases. These results
are in accordance with older studies conducted on COx argillite in the literature [17,22–25].
This mineralogical composition confirms that COx argillite is a candidate raw material to
produce Portland cement clinker equivalent to many other raw materials in use [5].
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Figure 3. X-ray pattern of COx argillite.

The TG/DTG analysis of the COx argillite represented in Figure 4 shows the formation
of three main peaks at:

- 100 ◦C corresponding to free water evaporation,
- 300–500 ◦C corresponding to decomposition of the organic matter in addition to

muscovite, kaolinite and pyrite,
- 750 ◦C corresponding to the decarbonation of calcite.



Buildings 2022, 12, 1421 6 of 12Buildings 2022, 12, x FOR PEER REVIEW 6 of 12 
 

 
Figure 4. TG/DTG analysis of COx argillite.  

Table 6 presents the results of the chemical characterization conducted by XRF of 
COx argillite. These results show that the four main elements needed for Portland clinker 
manufacturing (Ca, Si, Al and Fe) are present in the COx argillite. Therefore, COx argillite 
could act as an alternative to limestone and clay in the manufacturing of Portland clinker. 

Table 6. Chemical composition of COx argillite. 

Oxide LOI 950 °C CaO Al2O3 Fe2O3 SiO2 MgO P2O5 SO3 K2O TiO2 
Percentage 16.2 12.0 12.9 4.7 46.8 2.3 0.2 0.2 3.4 0.7 

The results also showed that argillite, unlike another secondary raw material such as 
sediment [33], does not contain trace elements. Otherwise, the presence of some trace ele-
ments, such as zinc, will disadvantage the synthesis of Portland cement and orient the use 
towards more specific cement [31]. 

3.2. Raw Meal Design and Characterization 
To calculate the appropriate amount of COx argillite that could be incorporated in 

the meal to substitute the raw materials and to reach the mineralogical composition pre-
sented in Table 4, the solver option in Excel is used [15]. The calculation reveals that a 
maximum of 22.24% of COx argillite can be incorporated in the raw meal. If less than this 
maximum amount is used, an additional amount of Al2O3 must be used, in the aim of 
reaching the raw meal composition. 

The theoretical raw meal composition for the COx clinker is represented in Table 7. 

Table 7. Theoretical composition for the raw meal. 

Component CaCO3 SiO2 Al2O3 Fe2O3 COx argillite 
COx Clinker 72.97 3.79 0.00 1.00 22.24 

Before sintering, the particle size distribution (Figure 5) was verified. As shown in 
Figure 5 the maximal particle size is 69 µm, indicating that the raw meal fineness is in the 
appropriate range (< 200µm) [32]. 

Figure 4. TG/DTG analysis of COx argillite.

Table 6 presents the results of the chemical characterization conducted by XRF of
COx argillite. These results show that the four main elements needed for Portland clinker
manufacturing (Ca, Si, Al and Fe) are present in the COx argillite. Therefore, COx argillite
could act as an alternative to limestone and clay in the manufacturing of Portland clinker.

Table 6. Chemical composition of COx argillite.

Oxide LOI 950 ◦C CaO Al2O3 Fe2O3 SiO2 MgO P2O5 SO3 K2O TiO2

Percentage 16.2 12.0 12.9 4.7 46.8 2.3 0.2 0.2 3.4 0.7

The results also showed that argillite, unlike another secondary raw material such
as sediment [33], does not contain trace elements. Otherwise, the presence of some trace
elements, such as zinc, will disadvantage the synthesis of Portland cement and orient the
use towards more specific cement [31].

3.2. Raw Meal Design and Characterization

To calculate the appropriate amount of COx argillite that could be incorporated in the
meal to substitute the raw materials and to reach the mineralogical composition presented
in Table 4, the solver option in Excel is used [15]. The calculation reveals that a maximum
of 22.24% of COx argillite can be incorporated in the raw meal. If less than this maximum
amount is used, an additional amount of Al2O3 must be used, in the aim of reaching the
raw meal composition.

The theoretical raw meal composition for the COx clinker is represented in Table 7.

Table 7. Theoretical composition for the raw meal.

Component CaCO3 SiO2 Al2O3 Fe2O3 COx Argillite

COx Clinker 72.97 3.79 0.00 1.00 22.24

Before sintering, the particle size distribution (Figure 5) was verified. As shown in
Figure 5 the maximal particle size is 69 µm, indicating that the raw meal fineness is in the
appropriate range (<200 µm) [32].
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In addition, the three moduli used in the cement industry which corresponds to
the ratio between the main oxides are calculated. These moduli correspond to the lime
saturation factor (LSF), silica modulus (SM) and alumina modulus (AM). The three moduli
are given in the equations (Equations (2)–(4)) below:

LSF =
%CaO

2.8 × %SiO2 + 1.20 × %Al2O3 + 0.65 × %Fe2O3
(2)

SM =
%SiO2

%Al2O3 + %Fe2O3
(3)

AM =
%Al2O3

%Fe2O3
(4)

The value of LSF is usually between 92 and 102, 2 and 3 for SM and 1 and 4 for AM [34].
Table 8 shows that the experimental and theoretical moduli for COx clinker are

equivalent.

Table 8. Experimental and theoretical cementitious modulus for COx clinker.

LSF SM AM

Experimental values 0.97 2.95 1.44
Theoretical values 0.95 2.88 1.44

3.3. Clinker Characterization

After burning, the mineralogical analysis of the produced clinker was verified by
XRD analysis (Figure 6). The results show that the main phases of Portland clinker—C3S,
C2S, C4AF and C3A—are obtained in addition to free lime CaO. No secondary phases
are detected, indicating that the raw meal composition as well as the clinkering process
are adapted.
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In order to quantify the crystalline phases in the COx clinker, Rietveld analysis was
conducted using TOPAS software (Table 9). Regarding the mineralogical composition, the
Rietveld results show that COx clinker could be used to produce a sulfate resisting Portland
cement (C3A content less than 3 wt%.) [35].

Table 9. Rietveld quantification for COx clinker.

Crystalline Phases C3S C2S C4AF C3A C

COx clinker 61.5 21.2 10.9 2.9 2.9

3.4. Isothermal Heat-Flow Calorimetry of COx Cement Paste

The hydration of the cement paste is an exothermic process, thus the heat release
during hydration can be correlated with hydration kinetics. Figure 7 shows the calorimetric
curve for COx cement paste. The shape of the curve is similar for an ordinary Portland
cement presented in previous studies [13,36–38]. A first peak in phase I is formed after
water addition and the anhydrous grain dissolution. In phase II, an induction period of
2 h with low thermal activity is observed. Then acceleration in the calcium silicates and
aluminates hydration occurs in phase III and a second exothermic peak is formed after 8 h
45 min. In phase IV, the sulfate is depleted and a slow in the hydration kinetics of calcium
silicates and aluminates is observed. In phase IV, a shoulder appears corresponding to
the gypsum depletion (at 11 h 30 min). Figure 7 also includes the total heat release in
J/g. COx cement paste shows a total heat release of 186 J/g after 24 h of hydration, which
correspond to a low heat release cement (<270 J/g) according to the European standard NF
EN 197-1 [35], that could be used for massive structures.
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3.5. Setting Time of the COx Cement Mortar

The aim of setting time measurements was to determine the theoretical time needed for
the hydration and mechanical properties development. The principle consists in monitoring
the depth vs. time to sink the needle into the mixture to a depth of 34 ± 1 mm. The results
are presented in Figure 8. The formulations include reference mortar with the commercial
OPC (CEM I 52.5) and COx cement.
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Figure 8. Setting time of the COx cement mortar.

The initial setting time is 96 min for the COx cement and 216 min for the reference
CEM I 52.5. This difference is mainly due to the difference in the crystallinity of the
cement phases produced in a static kiln (for COx cement) compared to that produced in an
industrial rotary kiln (commercial cement CEM I 52.5 N), in addition to the difference in
the cooling rate applied [39] and/or the cement fineness.
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The same result was obtained by Faure et al. [14] when comparing CEM I 52.5 N
cement and a laboratory produced clinker containing 11.4% sediment from the Alps.

It is worth noting that, even though the initial setting time of COx cement is lower
than the reference cement CEM I 52.5 N, it is still satisfying the condition of a 52.5 strength
class according to the standard NF EN 197-1 (>45 min) [35].

3.6. Compressive Strength of the COx Cement Mortar

The compressive strengths of the produced clinker were tested by measuring the
compressive strength on COx cement mortar prisms at 1, 14 and 28 days (Figure 9) according
to the AFNOR NF EN 196-1 standard. The compressive strength measured on COx cement
mortars were compared to the one made with commercial Portland cement CEM I 52.5 N.
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Figure 9. Compressive strength of COx cement mortar.

The compressive strength of COx cement mortar is equal to 20.2, 43.3 and 56.4 MPa
at 1, 7 and 28 days, respectively. These values are almost the same as those of commercial
cement that has a compressive strength of (21.8, 52.0 and 56.1 MPa at 1, 7 and 28 days,
respectively). Only a difference can be noticed at 7 days between the two mortars however
the trends of the compressive strength curves are similar. The same result was obtained
by Her et al. [39] when comparing the reference cement paste to cement pastes made from
clinkers containing recycled pulverized oyster and scallop shell. The authors found that at
3 days, the strength values were lower than reference OPC cement paste but the trends of
the compressive strength curves were similar.

The results show that adding 22.4% of argillite in the raw meal could be accomplished
without affecting the compressive strength long term. The same results were obtained
by Tsakiridis et al. [16] showing that at 28 days, steel slagbased cement had the same
compressive strength as the reference cement.

4. Conclusions

Callovo-Oxfordian Argillite provided by Andra was used in this study to be used in
a raw meal for the production of an Ordinary Portland Cement clinker. Therefore, after
COx argillite characterization, Portland clinker was produced at laboratory scale with the
maximum substitution of raw materials by COx argillite. Then, the mineralogy, hydration
and mechanical performance of the produced clinker were studied. The main conclusions
of this work can be summarized as follow:
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• COx argillite contains the main oxides required for a Portland clinker production:
SiO2, Al2O3, CaO and Fe2O3.

• Up to 22.4% of COx argillite could be used in clinker raw meal, without any other
addition to adjust, especially, the Al content.

• The COx argillite-based clinker produced contains the main phases of an ordinary
Portland cement without having any secondary phase: C2S, C3S, C3A, C4AF.

• The hydration of COx cement presents a heat evolution comparable to that of Portland
cement, even if the setting seems faster.

• The compressive strength of COx cement mortar at 28 days is equivalent to the
one of CEM I 52.5 N commercial cement, with a compressive strength measured on
normalized mortar samples, close to 56 MPa after 28 days.

Finally, it can be concluded that Callovo-Oxfordian argillite can be used as a raw mate-
rial in the process of clinker production without affecting the cement properties. Moreover,
this recycling reduces the use of natural resources and contributes to the circular economy
and provides environmental benefits. Further studies should focus on the durability of the
COx argillite-based cement and on the sintering process to get closer to the real industrial
manufacturing.
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