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Abstract: Wind speed in urban areas is influenced by the interaction between wind flow and building
geometry; at the pedestrian level, the interaction is more complex, particularly with high building
density. This study investigated the wind velocity distribution and the mean velocity ratio at the
pedestrian level using the large-eddy simulation (LES) database based on random building arrays of
several plan area densities, λp. The heights of random buildings are between 0.36 h and 3.76 h where
h = 0.025 m. Mean streamwise velocity profiles were obtained at the pedestrian level for all arrays
and were found to decrease as λp increased. Wind flow patterns at the pedestrian level were highly
influenced by adjacent buildings, especially in denser conditions, λp > 0.17. The pedestrian-level
mean velocity was obtained around each building, and the relationship between the local mean
velocity ratio, Vp(t) and the local frontal area density, λf(t) was analyzed. Subsequently, a prediction
model was formulated based on the building’s aspect ratio, αp; the correlation for high-rise buildings
with 2.64 h ≤ αp ≤ 3.76 h was high at 0.8, while a lower correlation was obtained for lower buildings
due to random positioning and surrounding geometric effects. Therefore, the impact of high-rise
buildings on pedestrian wind velocity can be estimated more accurately using the formulated model.

Keywords: pedestrian wind; random building array; large-eddy simulation; plan area density;
prediction model

1. Introduction

Natural wind in urban environments can improve the quality of air as it facilitates the
removal of pollutants and greenhouse gasses. A well-ventilated urban environment can
also help alleviate pedestrian discomfort which is linked to the urban heat island (UHI)
phenomenon, wherein the temperature in the urban area is higher than in the surrounding
area [1]. This is a common phenomenon occurring in urban areas around the world [2,3];
urban areas are generally made up of concrete buildings and asphalt roads that absorb heat
from sunlight radiation, thereby increasing the air temperature. Moreover, this is worsened
due to minimal ventilation in the urban area since the flow of natural wind is inhibited by
the presence of buildings and other impeding structures [2].

The geometry of an urban area can be described by various geometrical factors,
including building height variation, building arrangement, and density of the area. Hence,
various wind flow studies conceptualize these structures into “idealized urban models”,
where all forms of parameters are incorporated to assess their influence on urban wind
flows using either wind tunnel experiments [4,5] or computational fluid dynamics (CFD)
simulations [6–9]. Several geometrical parameters of an urban area are investigated with
relation to changes in wind flows. The plan area density, λp, which is defined as the ratio
of the total planar area of buildings over the total floor area, has been associated with the
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changes in the wind flow velocity; the wind flow velocity tends to decrease with an increase
in λp due to surface friction [4,9]. The vertical profile of mean wind velocity over rough
surfaces typically shows a decreasing pattern when λp increases [4–6].

In addition, the variation in building heights which is parameterized by the aspect
ratio, αp, also affects the wind flow behaviour or pattern in urban areas [7,10]. There are
generally three types of wind flow regimes formed between two adjacent buildings, as
introduced by Oke [11]; isolated roughness flow, wake interference flow, and skimming
flow. The different flow regimes have been extensively studied in relation to wind-induced
ventilation, pedestrian-level wind, and pollutant dispersion, amongst others. A study
by Hang et al. [7] used uniform and non-uniform height arrays with λp = 0.25 and 0.4 in
WTE and CFD simulations and demonstrated the occurrences of different flow regimes.
They concluded that the ventilation rate decreases due to the skimming flow behaviour in
denser conditions.

Furthermore, the configuration of buildings in an urban area is influential on the wind
flow behaviour. For example, it was discovered that a staggered array imposes less obstruction
to wind flows than a square array of the same λp. For example, Cheung and Liu [12] found
that in a staggered array, an increase in the ventilation rate was observed, relative to the square
array of the same λp. Furthermore, Hagishima et al. [5] and Kanda et al. [9] found that the
drag coefficient is highly related to λp for staggered arrays rather than with square arrays.

With the available findings of how building arrangements can affect wind flows, more
work has been devoted to assessing wind flow behaviour at a pedestrian level. Razak et al. [10]
used both uniform and non-uniform building heights in their arrays to investigate the pedes-
trian wind velocity in relation to the frontal area density, λf, which is the ratio of the frontal
area to the plan are of the building; their findings demonstrated the suitability of using λf
in relation to the mean velocity at the pedestrian level. This is further supported by the
findings of a residential study in Tianjin where the pedestrian level wind was found to be
correlated to λf as the area consists of buildings of various heights [13]. Moreover, Xie et al. [8]
demonstrated that velocity increases more profoundly around taller buildings due to the
channelling effect. A study of high-rise buildings demonstrated that the decrease or increase
in pedestrian-level wind speed is mainly altered by the surrounding buildings [14].

Several studies proposed prediction models using urban geometric parameters to
estimate the wind velocity at the pedestrian level. Hereby, the prediction models are
consistently evaluated using the mean velocity ratio taken at numerous points around the
respective modelled arrays. Formerly, a study by Kubota et al. [15] conducted wind tunnel
tests on several residential areas in Japan where the data of the wind velocity were obtained
for all cases. Then, the results of the mean velocity ratio were plotted by normalizing the
wind speed taken at pedestrian height (Vp) with those at the same height but with no
models in (Vno). Therefore, λf was found to strongly influence the mean velocity ratio
in the majority of the cases. This was also obtained in the study by Razak et al. [10], in
which several idealized cases of arrays exhibiting a variety of geometrical parameters using
cubical and rectangular blocks with different plan area densities were used. Here, the wind
speed at the pedestrian level (Vp) is normalized with those taken at a height twice the
highest building height (V2hmax) where the data displays the same condition with the case
without building models. The trend was found to be exponential and able to fit a wide
range of plan area densities and various building heights.

The database of Razak et al. [10] was utilized by Ikegaya et al. [16] to be further
evaluated, as it is believed the prediction model of the mean velocity ratio would be more
conclusive if it accounts for the λp ranging from zero to one. Accordingly, a new geometrical
parameter (ς) was derived empirically to represent the function of λp and αp, which leads
to improvement in the prediction of the mean velocity ratio. A prediction model was
constructed based on the parameter and is targeted to fit the λp range sufficiently but it
is currently only applicable to arrays consisting of uniform-height buildings only. The
overview of the studies on the prediction model of the mean velocity ratio reviewed is
summarized in Table 1.
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Table 1. Overview of studies on the prediction model of mean velocity ratio at pedestrian level.

Author Prediction Model Findings Layout λp λf λf(t) αp UH N-UH Method

Kubota et al. [15] Vp
Vno

= −Aλ f + B
For : 0.2 < λ f < 0.7
A = 0.4 and B = 0.55 Real urban case 7 3 7 3 7 3 WTE

Yoshie et al. [17] Vp
VBL

= −Aλp + B
Wind speed at boundary layer (VBL )

A = 0.2 and B = 0.273 Real urban case 3 7 7 3 7 3 WTE

Tahbaz et al. [18] Vz
Vz10

=
[

Z
Z10

]α Mean wind speed at height z, (Vz), Height 10 m (Z10),
Surface roughness (α) Isolated building 7 7 7 3 7 7 Graphical method

Razak et al. [10] Vp
V2hmax

= Aλ−B
f

For : 0.15 < λ f < 0.67
A = 0.025 and B = 0.8 Staggered array 3 3 7 3 3 3 CFD

Ikeda et al. [19] Vp
V2hmax

= Aα−b
p λ−c

p For regions: Front, behind and sides of a building Staggered array 3 7 7 3 3 7
Database evaluation,

mathematical derivations
Yuan et al. [20] VR = −3.9λ fpoint + 0.41 Wind velocity ratio (VR), Point specific λ f (λf_point) Real urban case 3 3 3 7 7 3 Modelling-mapping

Ikegaya et al. [16] Vp
V2hmax

= A(1− ς)B
For : λ f < 1;

ς
(
λp, αp, z

)
= 1−

(
1− λp

)αa
p

Staggered array 3 3 7 3 3 7
Database evaluation,

mathematical derivations

Ikegaya et al. [21] ϕn
F = pσϕ + ϕ

Pedestrian exceeding wind speed
(

ϕ f
)
, Peak factor (p),

Std dev of wind speed
(
σϕ

) Isolated building 7 7 7 3 7 7
Database evaluation,

mathematical derivations
Weerasuriya et al. [22] Gaussian-process emulator Lift-up building, for indoor & outdoor wind Isolated building 7 7 7 3 7 7 CFD

Key—λp: Plan area density, λf: Frontal area density, λf(t): Local frontal area density, αp: Building’s aspect ratio, UH: Uniform building height, N-UH: Non-uniform building height, WTE:
Wind tunnel experiment, CFD: Computational Fluid Dynamics, ‘7’: Not related or discussed in the listed study, ‘3’: Related and discussed in the listed study.
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Although various prediction models have been proposed to meet various urban
conditions, there has not been a credible model that can predict the mean velocity ratio in
an urban area exclusively around a target building. Existing prediction models of the mean
velocity ratio are generally applied on the spatial basis of an urban array but not exclusively
around individual buildings which should be highlighted considering the configuration of
urban arrays are typically random.

In addition, numerical simulations were performed by Mohammad et al. [23] on
random staggered arrays, which are the idealized urban form. The usage of the simulation
database of Mohammad et al. [23] has been put into interest for the evaluation of the
pedestrian wind environment. The use of the random staggered arrays highlights the
variation in building heights on a larger scale. This brings us to the aims of this study, which
are: (1) to examine the pedestrian wind velocity distribution in the random staggered arrays
and (2) to propose a prediction model of the mean velocity ratio locally at the pedestrian
level using the building’s frontal area density. It is important to note the wind velocity at
the pedestrian level within an urban array tends to vary with location, as it is bounded
by buildings of different heights. The rest of this paper is structured as follows; Section 2
describes the main configurations and settings of the random staggered array; Section 3
discusses the effect of the random staggered array, including the proposed prediction model
to evaluate the local mean velocity ratio; lastly, Section 4 summarizes the outcome of the
study from the results obtained.

2. Methodology

This study uses the large-eddy simulation (LES) results obtained by Mohammad et al. [23]
on the random staggered building arrays. The database of their simulation results contained
wind velocity data of six random staggered building arrays. In the work of Mohammad
et al. [23], the LES results of mean wind velocity and pressure were validated and compared
for accuracy with respect to experimental and numerical results. The accuracy of their LES
results was thoroughly demonstrated, and this makes the work of Mohammad et al. [23]
feasible and suitable to be extended and applied in this study.

2.1. Building Type and Geometry

Referring to Mohammad et al. [23], all six arrays consisted of nine types of buildings,
denoted as B1 to B9, where each has a different height, as provided in Table 2; h is the
height unit equivalent to 0.025 m and the aspect ratio of a building, αp is defined as the
ratio of the building’s frontal area to its planar area. The plan area of all buildings is the
same, each having a square base (h × h). The inclusion of nine building types is feasible for
this study to universally represent real urban conditions for the analysis of pedestrian-level
wind environment.

Table 2. Height of building blocks where h = 0.025 m.

Building Height Aspect Ratio, αp Remark

B1 0.36 h 0.36 Low-rise
B2 0.84 h 0.84

B3 1.32 h 1.32 Medium-rise
B4 1.50 h 1.50
B5 2.00 h 2.00

B6 2.64 h 2.64 High-rise
B7 3.00 h 3.00
B8 3.32 h 3.32
B9 3.76 h 3.76

Figure 1 shows the schematic of a random staggered array, which has 25 buildings in
total. In relation to real urban buildings, low-rise buildings are commonly classified as those
with less than five storeys, medium-rise buildings are in the range of five to ten storeys,
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whereas high-rise buildings have generally more than ten storeys [24]. The buildings are
arranged in a staggered manner, whereby the tallest building, B9 is positioned at the centre
of the array. Notably, low-rise and medium-rise buildings are positioned to surround the
centre, whereas the rest of the tall-rise buildings are placed in close proximity to the tallest
building, replicating a typical urban condition [25].

Figure 1. Plan view of the configuration of the random staggered array with wind flow in the x
direction for λp = 0.25 [24].

2.2. Plan Area Density

The six random staggered arrays were differed by the plan area density, λp, as shown
in Table 3. The building densities of the arrays ranged from a sparse condition (λp= 0.04) to
a dense condition (λp = 0.39). The arrangement of buildings remains fixed for all arrays.
For clarity, the name of each simulation case is standardized in the same format; as an
example, for “R4A”, the letter “R” denotes “random staggered array”, which is followed by
the value of λp (i.e., 0.04), and “A” represents the wind direction, which is along the x-axis.
Because all buildings have the same plan area, the λp of each random staggered array is
the same as a building’s local plan area density of that particular array; this is a similar
geometric configuration set up for non-uniform building arrays in previous studies [4,10].

Table 3. List of simulation cases and the computational domain size [23].

Case λp Computational Domain Size (Lx × Ly × Lz)

R4A 0.04 24 h × 24 h × 15 h
R8A 0.08 17.5 h × 17.5 h × 15 h

R17A 0.17 12 h × 12 h × 15 h
R25A 0.25 10 h × 10 h × 15 h
R31A 0.31 9 h × 9 h × 15 h
R39A 0.39 8 h × 8 h × 15 h

Figure 2 shows the schematic of the computational domain used for all six arrays,
adapted from Mohammad et al. [23]. The vertical height of the computational domain, Lz
is 4 hc where hc is the height of the tallest building, i.e., B9(3.76 h), while the horizontal
domain size (streamwise length, Lx and spanwise length, Ly) is adjusted to each λp, as
shown in Table 3. The boundary conditions of the computational domain are as follows: a
cyclic condition is applied in the streamwise direction to simulate a continuous wind flow;
a symmetry condition in the lateral direction; a free-slip condition on the top boundary; the
no-slip condition on wall surfaces of the buildings and the domain’s floor. The minimum
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near-wall grid size is h/14. This was considered adequate for estimating the average wind
velocity inside the canopy.

Figure 2. Schematic diagram of the computational domain for λp = 0.25. [23]. Different colors indicate
different building types: B1 (purple), B2 (red), B3 (light blue), B4 (magenta), B5 (green), B6 (dark
blue), B7 (brown), B8 (orange), and B9 (yellow).

2.3. Frontal Area Density

The frontal area density, λf, is an important parameter characterizing the building
density of vertically random building arrays. It is defined as the ratio between the total
frontal area of all buildings, AF, to the total ground surface area of an array, AS [10,16]:

λ f = AF/AS (1)

Since a random staggered building array contains 25 buildings of nine varying heights,
a more specific geometric parameter characterizing each building is needed for analysis.
Therefore, the local frontal area density, λ f (t), is defined as the product of the aspect ratio
of the respective building, αp, with the value of λp of an array, given by Equation (2):

λ f (t) = αp × λp (2)

The local mean velocity ratio taken at the pedestrian level around each building, Vp(t),
is also introduced; this is needed to establish a correlation with λ f (t), which is elaborated
in Section 3. Figure 3 illustrates an example of the mean velocity ratio taken around B4
(yellow) in a random staggered array. Vp(t) is obtained by averaging the mean streamwise
velocity at the pedestrian level, Vp, at locations marked with “x” within the shaded region.
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Figure 3. Example of how the local mean velocity ratio is determined around B4 for R25A (λp = 0.25).
The arrow indicates the wind flow direction, ‘×’ indicates the location where the mean pedestrian-
level wind velocity around a building is extracted, and building labels ‘B1′ to ‘B9′ represent different
building types: B1 (αp = 0.36), B2 (αp = 0.84), B3 (αp = 1.32), B4 (αp = 1.5), B5 (αp = 2.0), B6 (αp = 2.64),
B7 (αp = 3.0), B8 (αp = 3.32), and B9 (αp = 3.76).

3. Results
3.1. Mean Velocity Field at Pedestrian Level

The mean wind velocity is analysed at the pedestrian level, which is a region within
the height of less than 2 m on the real scale [15]. Since the random staggered arrays were
used, the pedestrian level at 1.5 m was chosen following Razak et al. [10], which also
adopted LES and staggered building arrays in their work. From the LES database, the mean
wind velocity was extracted as point data at the selected pedestrian height throughout the
computational domain for all six cases.

Figure 4 illustrates the mean velocity distribution on the horizontal plane at the
pedestrian level for all cases (0.04 ≤ λp ≤ 0.39). By overall comparison, it can be seen that
the velocity distribution is affected by the presence of buildings and the mean velocity
decreases as λp increases. This can be explained in-depth from individual figures. In
Figure 4a where λp = 0.04, it can be seen that the mean velocity can reach 4 m/s or more in
the streamwise direction and remains high throughout the domain with the exception of
local downstream regions of the buildings where reverse flows form. The mean velocity
distribution around all buildings in the array is relatively similar, and this is also observed
in Figure 4b for λp = 0.08. For these two cases, wherein the buildings are sparsely positioned,
the relatively large size of the street canyon imposes minimal obstruction to the flow and
allows a continuous stream throughout the domain. In addition, a slight increase in velocity
is observed on the lateral sides of taller buildings (B5 to B9), for example in a region between
B4 and B9, due to the channelling effect.

In Figure 4c,d, the velocity is relatively lower than in sparse conditions, e.g., λp = 0.08.
This is due to the increased interaction between the wind flow and the buildings; the
separation distance between adjacent buildings is decreased, thereby limiting the movement
of the wind flow. Moreover, the mean velocity in vast regions of λp = 0.31 and λp = 0.39
shown in Figure 4e,f, respectively, is less than 1 m/s, which is relatively low due to the high
density of the built-up area. When λp increases to 0.39, the separation distance between
the buildings is reduced, hence the flow tends to skim over the buildings. For the random
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staggered arrays, the formation of flow becomes more complicated since the flow around
each building is altered by adjacent buildings. Meanwhile, the mean velocity between the
buildings in the fourth row is the highest in the arrays as a result of contraction flow [26].

Figure 4. Mean wind velocity distribution on the horizontal plane at the pedestrian level for (a) R4A
(λp = 0.04), (b) R8A (λp = 0.08), (c) R17A (λp = 0.17), (d) R25A (λp = 0.25), (e) R31A (λp = 0.31), and
(f) R39A (λp = 0.39). The arrow indicates the wind direction and the labels for building types (i.e., B1
to B9) are displayed for all buildings.

In Figure 5, the mean velocity distribution is shown for the densest array, i.e., R39A
(λp = 0.39), at a vertical cross-section along the y-axis (y = 0.12 m). The figure shows the
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occurrence of a skimming flow in front of B9 creating a large vortex behind the building
approximately at 0.06 m. Due to the staggered building arrangement, the vortex behind B9
does not attach to the flow around the downstream building, B2 due to a large difference
in building height. In addition, the observed skimming flow occurs because the wind
flow skims over B2 and is obstructed by B9, creating a downdraft. The figure shows
that the presence of a high-rise building can significantly alter the local flow near its
neighbouring buildings.

Figure 5. Mean wind velocity distribution along the vertical cross-section at y = 0.12 m for R39A
(λp = 0.39). The arrow indicates the wind direction and the targeted buildings shown are B2 (αp = 0.84)
and B9 (αp = 3.76).

3.2. Influence of Plan Area Density and Frontal Area Density on Mean Velocity Ratio

The mean wind velocity ratio, denoted by Vp/V2hmax, is the spatially averaged wind
speed taken at the pedestrian level (Vp), normalized by the wind speed at twice the maxi-
mum building height (V2hmax). Figure 6 shows the results of Vp/V2hmax plotted against λf.

Figure 6. Relationship between Vp/V2hmax and the frontal area density, λf for the random staggered
arrays from the LES database [23], compared with the results of Razak et al. [10].

In Figure 6, the predicted results obtained by the equation model proposed by
Razak et al. [10] are included. It is apparent that the mean velocity ratio obtained from the
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random staggered array of the current study (represented with black diamonds) has a large
discrepancy with the model of Razak et al. [10]. This highlights the incompatibility of the
model equation proposed by Razak et al. [10] with the random staggered arrays. Although
the random array used by Razak et al. [10], i.e., ST1.5-sq has similar characteristics with
those of the random staggered arrays used in this study, i.e., it is comprised of buildings
arranged in a staggered layout and has the average building height (have) of 1.5 h. Moreover,
ST1.5-sq is made up of buildings with only two different heights. The developed equation
model is therefore not suitable for the random staggered arrays that have more than two
building height variations. Nevertheless, it can be seen that the use of λf as the correlation
parameter yields a similar decreasing pattern of the mean velocity ratio with the other
random arrays shown.

3.3. Mean Velocity Ratio around Various Buildings

Within the random staggered array, a total of nine building heights correspond to
nine different aspect ratios, αp. λ f is obtained by averaging the αp of all buildings in an
array; it is the main parameter in the equation model of Razak et al. [10]. It is expected
that the reliability of the prediction model is highly dependent on the number of buildings
in the array, thus affecting the value of λ f . The mean flow velocity tends to vary in local
regions around buildings of varying heights. Due to this, the local frontal area density,
λ f (t) introduced in Section 2.3 is used for correlation with the mean velocity ratio around
individual buildings.

Additionally, for a more accurate correlation, the local mean velocity is used and
normalized with V2hmax. This is carried out for all twenty-five buildings in the array and
repeated for each case of λp. Figure 7a shows the relationship between Vp(t) and λ f (t) for
all buildings in the random staggered arrays. The prediction models proposed in previous
studies by Razak et al. [10] and Kubota et al. [15] are also plotted together for comparison.
The coefficient of determination, R2 obtained is 0.45, suggesting a low correlation when all
the buildings are considered. It is clear that Vp(t) decreases when λ f (t) is increased, and
it can be seen that Vp(t) is influenced by the αp(t) of a building under the same λp. This is
explained as the equation obtained by Razak et al. [10], which shows a reasonable trend
with the current LES results, but the discrepancy is seen, especially in smaller values of
λ f (t) for each condition of λp.

The low regression obtained in the plot is partly due to the large range of building
heights of the random staggered array. Therefore, to improve the regression of the data, the
results are classified according to the height range, namely, low-rise buildings (0.36 h to
0.84 h), medium-rise buildings (1.32 h to 2.00 h) and tall-rise buildings (2.64 h to 3.76 h); the
results of all the building categories are plotted in Figure 7b–d, respectively.

The correlation is improved for these categories, whereby the highest regression ob-
tained through the power law equation is around high-rise buildings (R2 = 0.80). Although
the trend shown is typically similar for all three categories, the dispersion of Vp(t) data
around higher buildings in the random staggered array is more accounted for in all cases
of λp. In the case of sparse conditions (λp < 0.25), the Vp(t) around tall-rise buildings is
relatively large due to the isolated roughness flow; Vp(t) exponentially decreases due to the
change in the flow regime (from the isolated roughness flow to the wake interference and
skimming flows) when λp is increased.

Meanwhile, for the low-rise and medium-rise buildings, the correlation is considered
moderate, where R2 = 0.54 and R2 = 0.60, respectively. The dispersion of data is less
dependent on λ f (t) due to obstruction and change in flow induced by the taller buildings,
which causes either wake interference flow or skimming flow to happen around them.
The low-rise and medium-rise buildings that are located near high-rise buildings are more
likely to experience lower wind speeds [27]. This also applies strongly to buildings on the
front rows of the array and the effect becomes more significant when λp is increased. This
is due to the increase in drag at high λp [28,29]; the buildings are more closely spaced and
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the interaction between the wind flow and the buildings results in lower wind speed at the
pedestrian level.

Figure 7. (a) Relationship between Vp(t) and λf(t) for each building of all random staggered arrays,
(b) low-rise, (c) medium-rise, and (d) high-rise buildings.

3.4. Prediction Model for Local Mean Velocity Ratio

Overall, the parameterization of the local frontal area density, λ f (t) and the local mean
velocity ratio, Vp(t) contributes to the most ideal model to estimate the pedestrian wind
velocity in the random staggered array. The relationship between Vp(t) and λ f (t) can be
expressed in a power law equation based on a building’s aspect ratio in Equation (3), as
shown below:

Vp(t) =
Vp

V2hmax
= A(t)λ

−(B(t))

f (t) (3)

where, Vp(t) is the local mean velocity ratio of a respective building of interest, Vp is the
streamwise velocity around a targeted building, and V2hmax is the streamwise velocity at
two times the maximum building height of the array. The empirical constants, A(t) and
−B (t), are based on the building’s aspect ratio and varied for different building categories:
(a) the low-rise buildings (0.36h < αp < 0.84h), A(t) = 4.50× 10−3 and −B (t) = 1.07;
(b) the medium-rise buildings (1.32h < αp < 2.00h), A(t) = 4.90× 10−3 and −B (t) = 1.07;
and (c) the tall-rise buildings (2.64h < αp < 3.76h), A(t) = 0.02 and −B (t) = 1.60.

This model is suitable to estimate the pedestrian mean velocity ratio on buildings in
an urban array exhibiting non-uniform building heights. In relation to the real urban condi-
tions, it is deemed appropriate for the prediction model to be applied for 0.04 ≤ λp ≤ 0.4
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since the results of this study satisfy these conditions. The developed prediction model
can be potentially used in typical urban areas that are generally within 0.25 ≤ λp ≤ 0.5 [7].
The prediction model is still considered reasonable to be used in conditions with λp < 0.25
because the interference effects caused by the surrounding buildings are not significant in
sparse conditions [24,28].

The use of the local frontal area density of an individual building in developing the
prediction model implies that interference effects caused by surrounding buildings are
considered. This is important because the pedestrian-level wind is varied by location
within an urban array, especially in the upwind, downwind and lateral sides of a building.
In the case of a random staggered array, greater interference effects are caused by adjacent
buildings, especially when λp is high. Hence, by calculating the mean velocity ratio of
individual buildings, it can provide more reliable and more accurate estimations.

4. Conclusions

This study adopted the LES database of the previous study based on the random stag-
gered building arrays to analyse the pedestrian wind environment and develop a prediction
model. Firstly, it was found that the mean wind velocity obtained at the pedestrian level
was affected by the plan area density; the visualizations of the mean velocity distribution
indicated a gradual decrease in the pedestrian-level mean velocity among buildings with
the increase in the plan area density; for example, the maximum mean velocity which
was around 4 m/s in the most sparse array, i.e., R4A (λp = 0.04), was reduced to 1 m/s in
the most dense array, i.e., R39A (λp = 0.39). In addition, buildings with a higher aspect
ratio (e.g., αp = 3.76) significantly obstruct the wind flow, causing changes in the wind
flow direction and velocity in the respective windward and leeward regions; this impact
is especially significant in denser urban conditions (λp ≥ 0.25). This helps to determine
the importance of a building’s position in an array. The results showed that the wind
conditions surrounding low-rise buildings are greatly affected due to the flow interference
caused by taller adjacent buildings.

Next, the mean velocity ratio, Vp(t), at the pedestrian level was used for correlation
with the frontal area density. The comparison among the random staggered arrays and
non-uniform arrays from the previous study showed a similar tendency for mean velocity
to decrease with the increase in the frontal area density; however, the prediction model
developed in the previous study was shown to be less accurate and not suitable for the
random staggered arrays. Therefore, a new relationship, which is between Vp(t) and the
local frontal area density, λ f (t), was formulated. It was found that the prediction of the
mean velocity ratio which was evaluated locally for individual buildings provided more
accurate results by considering the individual buildings’ effects on the pedestrian wind
speed. Furthermore, the relationship of the mean velocity ratio around tall-rise buildings
(2.64 ≤ αp ≤ 3.76) resulted in the highest correlation with R2 = 0.80. Nevertheless, the
predictability of the formulated model is relatively low for medium-rise and low-rise
buildings. The lower buildings were shown to be more affected by the presence of taller
buildings, particularly in denser arrays (λp ≥ 0.25). However, the predictability of the
formulated model can perhaps be improved in future work by using more simulation data
supported by wind tunnel experimental data.

In summary, a prediction model for the pedestrian-level mean velocity ratio was for-
mulated with the empirical constants classified based on the aspect ratios of the buildings.
The model can be adequately utilized in predicting the mean velocity ratio at the pedes-
trian level around buildings in various urban arrays, particularly those with non-uniform
building heights.
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