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Abstract: This study aims to develop the optimal artificial neural networks (ANNs) capable of
estimating the seismic damage of reinforced concrete (RC)-framed structures by considering several
seismic intensity parameters based on the Hilbert–Huang Transform (HHT) analysis. The selected
architecture of ANN is the multi-layer feedforward perceptron (MFP) network. The values of the
HHT-based parameters were calculated for a set of seismic excitations, and a combination of five to
twenty parameters was performed to develop input datasets. The output data were the structural
damage expressed by the Park and Ang overall damage index (DIPA,global). The potential contribution
of nine training algorithms to developing the most effective MFP was also investigated. The results
confirm that the evolved MFP networks, utilizing the employed parameters, provide an accurate
estimation of the target output of DIPA,global. As a result, the developed MFPs can constitute a reliable
computational intelligence approach for determining the seismic damage induced on structures and,
thus, a powerful tool for the scientific community for the performance-based design of buildings.

Keywords: seismic intensity parameters; Hilbert–Huang Transform (HHT); artificial neural networks;
Park and Ang damage index; damage index assessment

1. Introduction

The fast, comprehensive, and accurate coverage of existing and planned structures’
seismic hazards is a central task in earthquake engineering. The results of the seismic
hazard estimation serve as a basis for preparing disaster plans and as a tool for deter-
mining premiums in the insurance industry and the damage forecast. It is well known
that seismic intensity parameters have been widely used to express the damage potential
of earthquakes [1,2]. Furthermore, structural damage indices have been used to express
the postseismic damage status of buildings [1–11]. Several studies verified the correla-
tion between seismic intensity parameters and seismic damage [1,2,6–9]. However, no
explicit formula or algorithm exists for directly evaluating damage indices from seismic
intensity parameters. Therefore, knowing the seismic intensity parameters, statistical and
artificial intelligence techniques have been used to estimate the postseismic damage sta-
tus of buildings, expressed by structural damage indices. Such established techniques in
earthquake engineering are multilinear regression analysis and artificial intelligence proce-
dures, such as ANNs [3–6,9,12–16]. Additionally, damage indices are essential quantities in
performance-based design [17–21].

On the other hand, the HHT procedure is appropriate for processing nonlinear and
nonstationary signals such as seismic excitation records [22–26]. Thus, new HHT-based
seismic intensity parameters have been developed recently, considering the frequency-time
history of seismic accelerograms. This study uses the multi-layer feedforward perceptron
(MFP) ANN framework to evaluate the structural damage index used in recently developed
HHT-based seismic intensity quantities for the first time [10,11]. The result values of the
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used structural damage index provided by the ANNs are compared with the corresponding
results provided by nonlinear dynamic analyses, which have been considered exact results.
The quality of the ANNs’ results is confirmed by the performance evaluation parameters
mean squared error (MSE) and R correlation coefficient.

The seismic intensity measures can be classified into peak, spectral, and energy pa-
rameters. Generally, these conventional parameters ignore the frequency-time history of
the seismic excitation, which is their main disadvantage in this context. The HHT is a
procedure for processing nonlinear and nonstationary signals, such as seismic excitation
records, which provide the frequency-time history of the seismic time histories [22–26].
HHT-based parameters overcome the disadvantage of the conventional intensity param-
eters mentioned above. In contrast to a large number of conventional seismic intensity
parameters, only a relatively small number of HHT-based parameters have been defined
and applied in seismic engineering. The present study covers this gap; thus, 40 HHT-based
recently defined seismic intensity parameters have been considered [10,11].

The 40 HHT-based, recently developed seismic intensity parameters [10,11] used in
this study have not yet been investigated in combination with ANNs. However, these
parameters provided promising results in combination with statistical methods (correlation
studies, multilinear regression analysis) [10,11]. The 40 used seismic intensity parameters
are investigated in this study for the first time combined with ANNs procedures to deter-
mine their effectiveness in predicting the postseismic damage status of a building in terms
of a structural damage index.

2. Methods
2.1. Hilbert-Huang Transform (HHT) Analysis

The Hilbert–Huang transform (HHT) is an innovative signal processing technique
suitable for nonstationary and nonlinear signals [22]. HHT uses an adaptive basis derived
from the data collected as the natural phenomenon unfolds over time. In contrast to other
standard techniques for analyzing signals (e.g., wavelet analysis, Fourier transform), it
assumes that signals are stationary, within the time window of observation at least, and are
associated with no adaptive bases.

The HHT technique is a combination of two stages, namely, empirical mode decompo-
sition (EMD) and Hilbert analysis (HA):

The empirical mode decomposition (EMD) decomposes complex signal data assuming
that, at any given time, the signal consists of coexisting simple oscillatory modes of notably
different frequencies, one superimposed on the other. In the end, the EMD algorithm
manages to separate the data into locally non-overlapping time scale components, the
intrinsic mode functions (IMF) with physical meaning, which follow specific conditions.

Hence, the initial signal X(t) was decomposed into a sum of n IMFs cj(t) and a residual
rn which was either a monotonic function or a constant

X(t) =
n

∑
J=1

cj(t) + rn (t) (1)

After extracting the IMFs cj(t), j = 1, 2, . . . , n, of a signal, the Hilbert transform yj(t)
was applied to each of them, as described in the following equation

yj(t) =
1
π

P
∫ ∞

−∞

cj(τ)

t− τ
dτ, (2)

where P denotes the Cauchy principal value of the integral.
The IMF cj(t) and the Hilbert transform yj(t) form an analytical signal zj(t) as follows:

zj(t) = cj(t) + iyj(t) = aj(t)eiθ j(t) (3)

from which the amplitude aj(t) and the phase function θj(t) were defined.
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aj(t) =
√

c2
j (t) + y2

j (t) και θj(t) = arctan

(
yj(t)
cj(t)

)
(4)

Furthermore, the instantaneous frequency was calculated from the phase function’s
first derivative.

ωj(t) =
dθj(t)

dt
(5)

Knowing the instantaneous frequencies and amplitudes of the IMFs, a frequency-time
distribution of amplitude (energy) was designated as the “Hilbert Spectrum” (HS) and
defined below as:

H(ω, t) = Re

[
n

∑
j=1

aj(t)e
i
∫

ωj(t)dt

]
(6)

The calculation procedure of the two-step HHT algorithm is illustrated in Figure 1. The
left-hand side of Figure 1 shows the procedure for using the empirical mode decomposition
(sifting process) to define the IMFs, while the right-hand side shows the procedure to
construct the Hilbert spectrum.
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2.2. HHT-Based Seismic Parameters

The study, through Hilbert spectra, of the inherent features of signals and their dif-
ferences as the difference between their frequency content and the amplitude fluctuations
across the time range, has led to the development of a number of new seismic intensity
parameters, which have already been presented in the scientific literature [10,11].

After the evaluation of Hilbert spectra and their graphical representation, the connec-
tion between their geometrical features with the characteristics of the signals, the following
forty seismic parameters were extracted and calculated for this research.

The first parameter was the volume V1(HHT) occupied by each spectrum, which repre-
sents the released energy during a seismic excitation and was calculated as

V1(HHT) =
∫ fmax

0

∫ tmax

0
a( f , t) · d f · dt, (7)

where a(f,t) denotes the instantaneous amplitude, which corresponds to the instantaneous
frequency f at a time equal to t, while fmax and tmax are the maximum instantaneous fre-
quency calculated by the analytical signal and the total duration of the signal, respectively.

The upper surface of the defined volume V1(HHT) obtained from every Hilbert spectrum
was the second seismic parameter and was described as

S1(HHT) =

fmax∫
0

tmax∫
0

√
1 +

(
da( f , t)

d f

)2
+

(
da( f , t)

dt

)2
· d f · dt (8)

From the values of the instantaneous amplitude α(f,t) obtained from the analytical sig-
nal, the maximum, the mean values, and their difference were distinguished and considered
additional parameters, which were described as

A1(max,HHT) = max(α( f , t)), A1(mean,HHT) = mean(α( f , t)) και

A1(di f ,HHT) = A1(max,HHT)−A1(mean,HHT)
(9)

Identifying that the magnitude and quantity of the maximum amplitude values of
every signal are related to the destructive potential of excitation, a first limitation of the
Hilbert spectrum was realized. Therefore, a parallel layer to the time-frequency one, which
intersects the z-axis (axis of α amplitudes) of the Hilbert spectrum at the point of the
A1(mean,HHT) value, was set (Figure 2). For the bounded Hilbert spectrum, the new volume
V1(Pos,HHT), the volume over the parallel layer, and the new upper surface S1(Pos,HHT) of the
spectrum were defined as two more parameters.
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Figure 2. (a) Hilbert spectrum (HS) for a seismic excitation; (b) bounded HS with the layer that
crosses the amplitude-axis of HS at Amean,HHT.
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The volumes V1(HHT) and V1(Pos,HHT) were divided by the corresponding values of
surfaces S1(HHT) and S1(Pos,HHT), respectively, and so, the parameters A1(HHT) and A1(Pos,HHT)
were calculated.

The seismic parameters VA1(max,HHT), VA1(mean,HHT), and VA1(dif,HHT) were set by the
multiplication of the volume V1(HHT) with the maximum, minimum values of amplitude
and their difference correspondingly.

Moreover, comparing the frequency content of a seismic excitation with the funda-
mental frequency of a structure is helpful in identifying possible resonance phenomena
between the structure and soil vibration, which result in maximum values of the response
forces. For this reason, a new limitation of the Hilbert spectrum on the band of frequencies
encompassed in the zone limited by the following equation

0.90 · f0 ≤ f ≤ 1.10 · f0 (10)

as illustrated in Figure 3.
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All the above parameters were defined for the new limitation of the Hilbert spec-
trum and, correspondingly, were assigned as V2(HHT), S2(HHT), A2(max,HHT), A2(mean,HHT),
A2(dif,HHT), V2(Pos,HHT) and S2(Pos,HHT), VA2(max,HHT), VA2(mean,HHT), VA2(dif,HHT), A2(HHT), and
A2(Pos,HHT).

Additionally, the released energy from every excitation at the frequency equal to the
fundamental frequency (f0) value of a structure is presented by the calculation of the area
SEF(HHT) of the amplitude-time section that intersects the Hilbert spectrum frequency-axis
at the frequency value (f0) (Figure 3) and defined by Equation (9).

SEF(HHT) =
∫ tmax

0
a( f , t)dt where f = f0(constant value) (11)

This Hilbert spectrum section’s maximum and mean amplitude values were selected
and designated as A3(max,HHT) and A3(mean,HHT) parameters, respectively.

The following additional seismic intensity parameters were evaluated from the combi-
nation of the above parameters, as presented in Equation (12).

SEF A1(max) = SEF · A1(max,HHT) SEF A1(mean) = SEF · A1(mean,HHT)
SEF A2(max) = SEF · A2(max,HHT) SEF A2(mean) = SEF · A2(mean,HHT)
S1 A1(mean) = S1(HHT)A1(mean,HHT) S2 A2(mean) = S2(HHT) · A2(mean,HHT)
S1 A3(max) = S1(HHT) · A3(max,HHT) S1 A3(mean) = S1(HHT) · A3(mean,HHT)

(12)
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In the end, the ratio of A1(mean,HHT), A2(mean,HHT), and A3(mean,HHT) to A1(max,HHT), A2(max,HHT),
and A3(max,HHT) resulted in the A1(Ratio,HHT), A2(Ratio,HHT) and A3(Ratio,HHT) HHT-based seis-
mic intensity parameters respectively.

As is obvious, the computational effort for evaluating the HHT-based seismic intensity
parameters is generally more extensive than the conventional ones. However, the HHT
procedure provides an insight into the frequency-time history of the seismic accelerograms,
which is enclosed in the HHT-based quantities.

2.3. Global Damage Index of Park and Ang

Park and Ang is a cumulative damage model [27,28] reflecting the effects of repeated
cycling under seismic loading. It is the most utilized damage index (DIPA,global) to date,
mainly due to its general applicability and the precise definition of different damage states.
Its most used modification is the one proposed by Kunnath et al. [29,30], and it is described
by the equation

DIPA,global =
θm

θu
+

β

Myθu

∫
dEh (13)

where θm is the maximum rotation in loading history, θu is the ultimate rotation capacity,
My is the yield moment, dEh is the incremental absorbed hysteretic energy, and β is a
non-negative parameter representing the effect of cyclic loading on structural damage.

A value of DIPA,global over 0.80 signifies total damage or complete collapse of the
structure, while a value equal to zero signifies that the structure is under elastic response.
According to the values of DIPA,global, classification of the structural damage is presented in
Table 1.

Table 1. Structural damage grade classification according to DIPA,global.

Structural Structural Damage Degree
Damage Index Low Medium Large Total

DIPA,global ≤0.3 0.3 < DIPA,global ≤ 0.6 0.6 < DIPA,global ≤ 0.8 DIPA,global > 0.80

3. Application

A number of 100 earthquake excitations were employed for the needs of this paper.
The employed excitations were applied to a seven-story reinforced concrete (RC) frame
structure with a total height of 22 m, as shown in Figure 4. The structure was designed
in agreement with the rules of the recent Eurocodes EC8 [31] for antiseismic structures
and EC2 [32] for structural concrete. The cross-section of the beams were T-shapes with
60 cm total height, 30 cm width, and 20 cm plate thickness. The effective plate width was
1.15 m at the end bays and 1.80 m at the middle bay. The distance between frames in the
three-dimensional structure was 6 m. The building was considered an “importance class
II”, “subsoil of type B”, and “ductility class Medium”. The dead weight and the seismic
loading, snow, wind, and live loads were also considered. The fundamental period of the
frame was equal to 0.95 s.

After applying the employed seismic acceleration time histories, nonlinear dynamic
analysis of the RC frame was conducted to evaluate the structural seismic response. The
hysteretic behavior of beams and columns was specified at both ends using a three-
parameter Park model. Every dynamic analysis was realized using the computer software
IDARC2D [33].

This model incorporates strength deterioration, stiffness degradation, slip-lock, non-
symmetric response, and a trilinear monotonic envelope. The values of the above degrading
parameters have been chosen from the experimental results of cyclic force-deformation
characteristics of typical components of the studied structure [28,34].
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From the derived results of the response evaluation performing the nonlinear dynamic
analysis of the structure, this article concentrates on Park and Ang’s overall structural
damage index (DIPA,global). The evaluated overall structural damage indices of Park and
Ang for every seismic vibration cover a broad spectrum of damage (low, medium, large,
and total) for statistical reasons, as presented in Figure 5.
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4. Results
4.1. Evaluation of the HHT-Based Seismic Intensity Parameters

Using the velocity time histories generated by the earthquake accelerograms, all the
HHT-based seismic intensity parameters, as described above, were evaluated separately,
and their elementary statistical values are presented in Table 2.

Table 2. T Statistical results of HHT-based seismic parameters.

Parameters

Statistics

Min
Value

Max
Value Average Standard

Deviation

S1(HHT) (-) 153.5914 4946.3096 1350.4544 1077.2957
V1(HHT) (m/s) 0.2050 27.8891 5.1527 4.8203

V1(Pos,HHT) (m/s) 0.0597 7.4880 1.5228 1.5227
S1(Pos,HHT) (-) 5.8971 548.5377 86.5171 95.3434

A1(max,HHT) (m/s) 0.0114 0.8559 0.2363 0.1848
A1(mean,HHT) (m/s) 0.0005 0.1044 0.0212 0.0200
A1(dif,HHT) (m/s) 0.0104 0.7850 0.2151 0.1707
A1(Pos,HHT) (m/s) 0.0016 0.1115 0.0247 0.0196
VA1(mean) (m2/s2) 0.0002 1.1788 0.1243 0.1637
VA1(max) (m2/s2) 0.0054 7.5185 1.4392 1.6682

VA1(dif,HHT) (m2/s2) 0.0053 7.1969 1.3150 1.5428
V2(HHT) (m/s) 0.0000 2.1061 0.2515 0.3048

S2(HHT) (-) 0.0024 33.9103 12.8771 9.7173
V2(Pos,HHT) (m/s) 0.0000 0.5207 0.1024 0.1009

S2(Pos,HHT) (-) 0.0012 14.8652 4.0702 3.2751
A2(max,HHT) (m/s) 0.0074 0.7622 0.1567 0.1526
A2(mean,HHT) (m/s) 0.0006 0.2554 0.0287 0.0456

SEF(HHT) (-) 0.0237 10.0491 1.2100 1.4582
A3(max,HHT) (m/s) 0.0056 0.7422 0.1410 0.1380
A3(mean,HHT) (m/s) 0.0006 0.2559 0.0292 0.0460

A1(Ratio,HHT) (-) 0.0125 0.2241 0.0946 0.0483
A2(Ratio,HHT) (-) 0.0339 0.4424 0.1748 0.1040
A3(Ratio,HHT) (-) 0.0358 0.4957 0.1950 0.1119
A1(HHT) (m/s) 0.0001 0.0259 0.0055 0.0052
A2(HHT) (m/s) 0.0006 0.2157 0.0275 0.0407

A2(Pos,HHT) (m/s) 0.0009 0.1490 0.0295 0.0266
SEFA1(mean) (m/s) 0.0000 0.3947 0.0343 0.0614
SEFA2(mean) (m/s) 0.0000 2.5669 0.0862 0.3145
SEFA3(mean) (m/s) 0.0000 2.5718 0.0871 0.3149
SEFA1(max) (m/s) 0.0006 3.0521 0.3912 0.6208
SEFA2(max) (m/s) 0.0002 7.6594 0.3452 0.8981
SEFA3(max) (m/s) 0.0002 7.4580 0.3188 0.8620
S1A3(max) (m/s) 3.2803 1193.1771 172.0672 212.8759
S1A1(mean) (m/s) 0.5230 121.8580 21.4915 21.1580
S1A3(mean) (m/s) 0.7957 350.8138 27.3436 43.0174
S2A2(mean) (m/s) 0.0000 2.4942 0.2603 0.3402
A2(dif,HHT) (m/s) 0.0044 0.5721 0.1280 0.1208

VA2(dif,HHT) (m2/s2) 0.0000 1.0673 0.0538 0.1251
VA2(mean) (m2/s2) 0.0000 0.5380 0.0180 0.0660
VA2(max) (m2/s2) 0.0000 1.6053 0.0719 0.1880

4.2. Problem Formulation and ANN Framework Selection

Artificial neural networks (ANNs) refer to complex algorithms capable of imitating
behaviors of biological neural systems, and they are able to learn the applied knowledge
gained from experience and solve new problems in new environments. Like the structure
of the human brain, they connect a number of neurons in a complex and nonlinear form.
Weighted links achieve the connection between the neurons. The multi-layer feedforward
perceptron (MFP) artificial neural networks have been chosen in this study. MFPs are based
on a supervised learning procedure, where a number of vectors are used as input data to
obtain the optimal combination of neurons’ connection weights with a backpropagation
algorithm for training. The ultimate target is the estimation of a set of predefined target
outputs. Once the network has fit the input-output data, it forms a generalization of their
relationship, and it can be used to generate output for input it was not trained on.
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Artificial neural networks have been utilized in civil engineering, and many re-
searchers have investigated their advantages in structural engineering [14–16]. In the
present research, the constructed MFPs aim to model the examined parameters’ ability to
estimate the structures’ damage potential after an earthquake. The problem in the study
was approached as a function approximation problem (FA). Thus, MFP artificial neural
networks were trained on a set of inputs in order to produce a set of target outputs. A
large number of ANNs have evolved by trying all the potential combinations of every data
set of the input HHT-based seismic parameters, and every one of them was trained with
nine deferent algorithms only one time. No retraining procedure was followed for every
configured ANN so that over-training models would be avoided. Over-trained models are
prone to memorization, and they present extremely limited ability for generalization. In
addition, all the structural damage grades (low, medium, large, and total) were considered
during the ANN training. Finally, the use of the “trial and error” approach confirms the
reliability of a large number of the developed MFPs, which are capable of perfectly serving
the estimation of the seismic vulnerability.

The proposed procedure is an open methodology. Thus, alternative conventional and
HHT-based seismic intensity parameters can be used. Additionally, alternative damage
indices can be used. Finally, the proposed procedure can be applied to other structural
materials and structural types (such as bridges, towers, and silos). In the latter case,
appropriate damage indices must be considered.

4.3. Configuration of ANNs

The development of the MFPs requires the determination of the input and the output
datasets, the choice of the optimal learning algorithm, the determination of the number
of hidden layers/neurons, and the selection of the activation functions. The schematic
diagram of the developed MFPs is displayed in Figure 6 and analysed below.
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The input data sets for the constructed MFP networks comprise the forty HHT-based
seismic parameters, separated into two groups of twenty parameters. The division of
parameters into two groups was implemented to make the calculations of ANNs with the
available computational systems feasible. A separate analysis was performed following the
“trial and error” approach to obtain the best network for each group. Hence, a huge number
of potential input datasets that emerged by combinations of every group’s parameters were
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tested. Each combination is comprised of at least 5 parameters. An input vector’s maximum
number of features was twenty as the maximum number of parameters in every group.

As target output of the formulated ANNs considered the structural damage as ex-
pressed by the overall damage index of Park and Ang (DIPA,global). The DIPA,global values
were derived from nonlinear dynamic analyses of the structure after applying every em-
ployed seismic accelerogram. Thus, the output layer of the MFPs consisted of one neuron
presenting the value of DIPA,global.

All the evolved MFP networks had one hidden layer to keep their architecture as simple
as possible. This choice was based on the ability of feedforward perceptron networks with
one hidden layer to precisely approach functions f(x): Rn→R1, as well as on their already
proven efficiency by numerous relevant investigations [12,13]. The number of neurons in
the hidden layer was also investigated. ANN models with 7 to 10 hidden neurons were
tested. This range was chosen based on the number of available excitations (100) in the
source data as training vectors. As a result, four additional networks were calculated for
every produced ANN by combining the examined seismic parameters of every group.

At last, as presented in Table 3, nine different training backpropagation algorithms
were utilized in the formulation of the multilinear feedforward networks. Moreover, a
sigmoid, precisely the tangent hyperbolic (TanH) transfer function fH, was employed for the
hidden layer, while the choice of linear activation function was made for the output layer.

Table 3. Backpropagation training algorithms of the developed ANNs.

Backpropagation (BP) Training Algorithms

Levenberg–Marquardt (LM) Powell–Beale conjugate gradient (CGB)
BFGS quasi-Newton (BFG) Fletcher–Powell conjugate gradient (CGF)

Resilient backpropagation (RP) Polak–Ribiere conjugate gradient (CGP)
Scaled conjugate gradient (BP) One step secant (OSS)

Gradient descent with momentum and adaptive linear (GDX)

4.4. Calculation of ANNs

The MATLAB 2019a [35] software program was used to develop and evaluate the
formulated artificial networks according to the flowchart in Figure 7. Due to the extensive
number of developed networks with training algorithms that are not always GPU capable,
a parallelized environment of ten virtual instances of the program MATLAB was utilized.

Additionally, each instance was equipped with two MATLAB workers and had access
to 12 GB of memory and 8 i9-9900k threads.

An appropriate MATLAB script was developed so all the ANNs could be formulated
and trained with the employed training algorithms with the best use of the available
resources. The performance evaluation parameters R correlation coefficient and the mean
squared error (MSE) were adopted and calculated to compare the MFP networks. From the
total employed seismic excitations, a 70% was used as the training set, 15% was used as the
testing set, and 15% was used as the validation set.

In statistics, the R coefficient between two variables reflects the strength and the direc-
tion of a linear relationship and takes values between −1 (total negative linear correlation
and +1 (total positive linear correlation). The MSE is an average of the absolute difference
between the target values, calculated by nonlinear dynamic analysis values of DIPA,global,
and the corresponding ones evaluated by the constructed ANNs.

The basic statistics of R and MSE values and their classification for the constructed
ANNs are presented in the following Tables. Specifically, Tables 4–7 present the minimum
(min), maximum (max), mean, and standard deviation (st.dev.) of the evaluated R and MSE
values. The values are presented for every training algorithm and every investigated num-
ber of neurons in the hidden layer for both groups of input data. In addition, Tables 8–11
present the classification of MFPs according to an R absolute value equal to or greater than
0.90 and their classification according to MSE values. As displayed in Tables 8–11, the
calculated MFPs for both coefficients (R, MSE) are categorized into three classes.
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Table 4. Statistics of R—ANNs with input parameters of Group 1.

Group 1—R Statistics

Training
Algorithm

7-Neuron Hidden Layer 8-Neuron Hidden Layer

Min Max Mean st.dev. Min Max Mean st.dev.

trainlm −0.6317 0.9841 0.9042 0.0514 −0.5746 0.9882 0.9028 0.0528
trainbfg −0.7944 0.9642 0.8435 0.1083 −0.7071 0.9616 0.8459 0.1013
trainrp −0.7916 0.9601 0.8173 0.1193 −0.7038 0.9610 0.8182 0.1168
trainscg −0.8194 0.9618 0.8376 0.1149 −0.5916 0.9610 0.8391 0.1075
traincgb −0.6282 0.9700 0.8524 0.1051 −0.6858 0.9633 0.8530 0.1004
traincgf −0.7216 0.9626 0.8393 0.1123 −0.5956 0.9616 0.8432 0.1048
traincgp −0.6849 0.9681 0.8410 0.1111 −0.6858 0.9618 0.8416 0.1060
trainoss −0.6953 0.9551 0.8346 0.1127 −0.6866 0.9587 0.8366 0.1052
traingdx −0.8512 0.9529 0.5966 0.3801 −0.8566 0.9490 0.5958 0.3822

9-Neuron Hidden Layer 10-Neuron Hidden Layer

min max mean st.dev. min max mean st.dev.

trainlm −0.6315 0.9861 0.9017 0.0537 −0.5106 0.9838 0.9008 0.0548
trainbfg −0.6329 0.9622 0.8479 0.0956 −0.6748 0.9674 0.8495 0.0918
trainrp −0.6880 0.9571 0.8191 0.1150 −0.7202 0.9622 0.8191 0.1147
trainscg −0.7171 0.9721 0.8398 0.1032 −0.6387 0.9656 0.8403 0.1005
traincgb −0.6102 0.9661 0.8536 0.0963 −0.6650 0.9692 0.8538 0.0937
traincgf −0.7120 0.9618 0.8455 0.1000 −0.6384 0.9627 0.8470 0.0963
traincgp −0.6248 0.9616 0.8420 0.1017 −0.6650 0.9658 0.8423 0.0990
trainoss −0.7067 0.9607 0.8379 0.0994 −0.6939 0.9584 0.8386 0.0959
traingdx −0.8554 0.9524 0.5910 0.3853 −0.8609 0.9512 0.5829 0.3904
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Table 5. Statistics of MSE—ANNs with input parameters of Group 1.

Group 1—MSE Statistics

Training
Algorithm

7-Neuron Hidden Layer 8-Neuron Hidden Layer

Min Max Mean st.dev. Min Max Mean st.dev.

trainlm 0.0029 0.3214 0.0183 0.0103 0.0023 0.3745 0.0187 0.0107
trainbfg 0.0066 0.4275 0.0266 0.0154 0.0070 0.4322 0.0264 0.0149
trainrp 0.0072 0.5305 0.0309 0.0180 0.0071 0.5626 0.0309 0.0182
trainscg 0.0069 0.5355 0.0272 0.0156 0.0070 0.4774 0.0271 0.0151
traincgb 0.0054 0.3952 0.0249 0.0146 0.0067 0.4553 0.0249 0.0143
traincgf 0.0067 0.5486 0.0270 0.0155 0.0070 0.5340 0.0265 0.0149
traincgp 0.0058 0.4636 0.0267 0.0153 0.0070 0.4553 0.0267 0.0150
trainoss 0.0081 0.4828 0.0280 0.0158 0.0074 0.4388 0.0279 0.0153
traingdx 0.0084 0.7099 0.0595 0.0534 0.0091 1.0021 0.0618 0.0579

9-Neuron Hidden Layer 10-Neuron Hidden Layer

min max mean st.dev. min max mean st.dev.

trainlm 0.0026 0.4003 0.0190 0.0110 0.0030 0.4343 0.0192 0.0114
trainbfg 0.0069 0.4309 0.0262 0.0145 0.0059 0.4576 0.0260 0.0141
trainrp 0.0077 0.9272 0.0309 0.0183 0.0069 0.6747 0.0310 0.0187
trainscg 0.0050 0.6328 0.0271 0.0148 0.0062 0.7438 0.0271 0.0148
traincgb 0.0062 0.4318 0.0249 0.0141 0.0056 0.6200 0.0249 0.0140
traincgf 0.0069 0.4737 0.0262 0.0146 0.0068 0.5245 0.0260 0.0144
traincgp 0.0069 0.4597 0.0267 0.0147 0.0062 0.6200 0.0268 0.0147
trainoss 0.0071 0.5018 0.0278 0.0149 0.0075 0.6408 0.0277 0.0147
traingdx 0.0086 0.9054 0.0648 0.0626 0.0087 0.9933 0.0685 0.0677

Table 6. Statistics of R—ANNs with input parameters of Group 2.

Group 2—R Statistics

Training
Algorithm

7-Neuron Hidden Layer 8-Neuron Hidden Layer

Min Max Mean st.dev. Min Max Mean st.dev.

trainlm −0.7834 0.9730 0.8824 0.0494 −0.8028 0.9706 0.8818 0.0502
trainbfg −0.7816 0.9357 0.8439 0.0594 −0.7483 0.9396 0.8443 0.0590
trainrp −0.7842 0.9248 0.8305 0.0692 −0.7366 0.9312 0.8298 0.0709
trainscg −0.7808 0.9317 0.8399 0.0655 −0.7462 0.9397 0.8394 0.0657
traincgb −0.7319 0.9450 0.8475 0.0604 −0.8165 0.9441 0.8474 0.0607
traincgf −0.7618 0.9350 0.8431 0.0640 −0.7744 0.9364 0.8433 0.0640
traincgp −0.7618 0.9350 0.8420 0.0629 −0.7661 0.9327 0.8415 0.0636
trainoss −0.7750 0.9289 0.8397 0.0607 −0.8062 0.9312 0.8396 0.0598
traingdx −0.8783 0.9161 0.6750 0.3145 −0.8764 0.9184 0.6622 0.3236

9-Neuron Hidden Layer 10-Neuron Hidden Layer

min max mean st.dev. min max mean st.dev.

trainlm −0.7400 0.9698 0.8812 0.0513 −0.7718 0.9668 0.8807 0.0519
trainbfg −0.8010 0.9400 0.8444 0.0595 −0.6828 0.9406 0.8445 0.0595
trainrp −0.7421 0.9271 0.8286 0.0735 −0.7388 0.9299 0.8275 0.0756
trainscg −0.7310 0.9326 0.8387 0.0662 −0.7900 0.9337 0.8377 0.0680
traincgb −0.7702 0.9417 0.8469 0.0618 −0.7683 0.9428 0.8463 0.0626
traincgf −0.8038 0.9417 0.8429 0.0655 −0.7986 0.9383 0.8426 0.0663
traincgp −0.7792 0.9351 0.8409 0.0640 −0.7785 0.9394 0.8403 0.0649
trainoss −0.7717 0.9373 0.8391 0.0601 −0.7550 0.9388 0.8385 0.0602
traingdx −0.8769 0.9152 0.6483 0.3341 −0.8766 0.9224 0.6326 0.3464
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Table 7. T Statistics of MSE—ANNs with input parameters of Group 2.

Group 2—MSE Statistics

Training
Algorithm

7-Neuron Hidden Layer 8-Neuron Hidden Layer

Min Max Mean st.dev. Min Max Mean st.dev.

trainlm 0.0049 0.3890 0.0225 0.0113 0.0055 0.6813 0.0228 0.0119
trainbfg 0.0115 0.6292 0.0272 0.0097 0.0108 0.6749 0.0273 0.0100
trainrp 0.0134 0.4977 0.0298 0.0117 0.0122 0.4258 0.0300 0.0122
trainscg 0.0122 0.3255 0.0276 0.0100 0.0109 0.6220 0.0278 0.0104
traincgb 0.0099 0.3728 0.0263 0.0093 0.0100 0.4400 0.0264 0.0096
traincgf 0.0116 0.3831 0.0270 0.0098 0.0113 0.4416 0.0270 0.0100
traincgp 0.0119 0.3452 0.0272 0.0096 0.0119 0.4335 0.0274 0.0099
trainoss 0.0126 0.5109 0.0280 0.0099 0.0122 0.7328 0.0281 0.0100
traingdx 0.0149 1.0202 0.0500 0.0407 0.0144 1.3593 0.0529 0.0446

9-Neuron Hidden Layer 10-Neuron Hidden Layer

min max mean st.dev. min max mean st.dev.

trainlm 0.0055 0.4265 0.0230 0.0124 0.0060 0.5154 0.0233 0.0129
trainbfg 0.0107 0.4202 0.0273 0.0102 0.0106 6.7141 0.0274 0.0124
trainrp 0.0129 0.4869 0.0303 0.0129 0.0124 0.3849 0.0306 0.0135
trainscg 0.0119 0.3476 0.0280 0.0107 0.0119 0.4225 0.0282 0.0113
traincgb 0.0105 0.6390 0.0265 0.0100 0.0102 0.6842 0.0267 0.0104
traincgf 0.0105 0.4828 0.0272 0.0105 0.0110 0.7971 0.0273 0.0109
traincgp 0.0115 0.3930 0.0275 0.0103 0.0108 0.4685 0.0277 0.0107
trainoss 0.0111 0.3888 0.0283 0.0103 0.0112 0.6655 0.0285 0.0107
traingdx 0.0150 1.1226 0.0563 0.0494 0.0139 1.0971 0.0600 0.0541

Table 8. Classification of R—ANNs with input parameters of Group 1.

Group 1_ Classification of R

7 Neurons in the Hidden Layer
Training Function of ANNs

Train-lm Train-bfg Train-rp Train-scg Train-cgb Train-cgf Train-cgp Train-oss Train-gdx

R ≥ 0.95 (%) of ANNs 3.824 0.025 0.003 0.012 0.065 0.027 0.026 0.003 0.000
0.92 ≤ R < 0.95 (%) of ANNs 39.795 5.825 1.796 4.789 8.921 6.053 5.833 2.933 2.433
0.90 ≤ R < 0.92 (%) of ANNs 25.681 18.798 9.619 17.356 22.611 18.198 18.511 14.854 11.814

Total (%) 69.300 24.623 11.415 22.145 31.532 24.251 24.344 17.787 14.247

8 Neurons in the Hidden Layer
Training function of ANNs

train-lm train-bfg train-rp train-scg train-cgb train-cgf train-cgp train-oss train-gdx

R ≥ 0.95 (%) of ANNs 3.567 0.026 0.004 0.013 0.054 0.025 0.021 0.003 0.000
0.92 ≤ R < 0.95 (%) of ANNs 38.888 6.099 2.105 4.828 8.836 6.400 5.744 3.062 2.542
0.90 ≤ R < 0.92 (%) of ANNs 25.782 18.693 9.964 16.728 21.995 18.488 17.843 14.663 11.897

Total (%) 68.237 24.792 12.069 21.556 30.831 24.888 23.587 17.725 14.439

9 Neurons in the Hidden Layer
Training function of ANNs

train-lm train-bfg train-rp train-scg train-cgb train-cgf train-cgp train-oss train-gdx

R ≥ 0.95 (%) of ANNs 3.429 0.028 0.007 0.014 0.051 0.028 0.025 0.003 0.000
0.92 ≤ R < 0.95 (%) of ANNs 38.294 6.350 2.445 4.895 8.871 6.681 5.622 3.176 2.639
0.90 ≤ R < 0.92 (%) of ANNs 25.803 18.640 10.333 16.402 21.433 18.632 17.407 14.492 11.871

Total (%) 67.526 24.990 12.778 21.297 30.304 25.313 23.029 17.668 14.510

10 Neurons in the Hidden Layer
Training function of ANNs

train-lm train-bfg train-rp train-scg train-cgb train-cgf train-cgp train-oss train-gdx

R ≥ 0.95 (%) of ANNs 3.400 0.029 0.009 0.015 0.053 0.030 0.023 0.004 0.000
0.92 ≤ R < 0.95 (%) of ANNs 37.896 6.681 2.720 4.964 8.863 6.982 5.654 3.301 2.672
0.90 ≤ R < 0.92 (%) of ANNs 25.542 18.710 10.626 16.184 21.061 18.586 16.933 14.224 11.744

Total (%) 66.838 25.391 13.346 21.148 29.924 25.568 22.587 17.525 14.416
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Table 9. Classification of MSE—ANNs with input parameters of Group 1.

Group 1_ Classification of MSE

7 Neurons in the Hidden Layer
Training Function of ANNs

Train-lm Train-bfg Train-rp Train-scg Train-cgb Train-cgf Train-cgp Train-oss Train-gdx

MSE ≤ 0.02 (%) of ANNs 73.845 39.738 22.742 37.373 47.960 39.114 39.759 32.559 24.172
0.02 < MSE ≤ 0.05 (%) of ANNs 24.297 53.256 67.244 55.197 46.043 53.267 53.122 59.590 35.775

MSE > 0.05 (%) of ANNs 1.858 7.006 10.013 7.430 5.997 7.619 7.120 7.851 40.053

8 Neurons in the Hidden Layer
Training function of ANNs

train-lm train-bfg train-rp train-scg train-cgb train-cgf train-cgp train-oss train-gdx

MSE ≤ 0.02 (%) of ANNs 72.489 39.623 23.289 36.359 46.871 39.802 38.576 32.031 24.230
0.02 < MSE ≤ 0.05 (%) of ANNs 25.411 53.858 66.622 56.650 47.445 53.435 54.580 60.565 35.736

MSE > 0.05 (%) of ANNs 2.100 6.519 10.089 6.991 5.684 6.763 6.844 7.404 40.033

9 Neurons in the Hidden Layer
Training function of ANNs

train-lm train-bfg train-rp train-scg train-cgb train-cgf train-cgp train-oss train-gdx

MSE ≤ 0.02 (%) of ANNs 71.505 39.575 23.939 35.687 46.013 40.113 37.558 31.539 24.049
0.02 < MSE ≤ 0.05 (%) of ANNs 26.190 54.330 65.894 57.610 48.541 53.649 55.862 61.414 35.374

MSE > 0.05 (%) of ANNs 2.305 6.094 10.167 6.703 5.446 6.238 6.580 7.048 40.578

10 Neurons in the Hidden Layer
Training function of ANNs

train-lm train-bfg train-rp train-scg train-cgb train-cgf train-cgp train-oss train-gdx

MSE ≤ 0.02 (%) of ANNs 70.517 39.710 24.408 35.199 45.344 40.257 36.821 31.122 23.675
0.02 < MSE ≤ 0.05 (%) of ANNs 26.923 54.526 65.203 58.330 49.395 53.846 56.803 62.073 34.845

MSE > 0.05 (%) of ANNs 2.560 5.765 10.389 6.471 5.261 5.897 6.376 6.805 41.480

Table 10. Classification of R—ANNs with input parameters of Group 2.

Group 2_ Classification of R

7 Neurons in the Hidden Layer
Training Function of ANNs

Train-lm Train-bfg Train-rp Train-scg Train-cgb Train-cgf Train-cgp Train-oss Train-gdx

R ≥ 0.95 (%) of ANNs 0.024 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.92 ≤ R < 0.95 (%) of ANNs 11.006 0.061 0.001 0.011 0.102 0.046 0.023 0.003 0.000
0.90 ≤ R < 0.92 (%) of ANNs 26.009 1.431 0.627 0.839 2.351 1.709 1.094 0.527 0.204

Total (%) 37.039 1.492 0.628 0.850 2.453 1.755 1.117 0.530 0.204

8 Neurons in the Hidden Layer
Training function of ANNs

train-lm train-bfg train-rp train-scg train-cgb train-cgf train-cgp train-oss train-gdx

R ≥ 0.95 (%) of ANNs 0.031 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.92 ≤ R< 0.95 (%) of ANNs 10.794 0.067 0.004 0.012 0.113 0.057 0.025 0.004 0.000
0.90 ≤ R < 0.92 (%) of ANNs 25.706 1.687 0.874 1.021 2.586 2.031 1.250 0.616 0.268

Total (%) 36.531 1.754 0.878 1.033 2.699 2.088 1.275 0.620 0.268

9 Neurons in the Hidden Layer
Training function of ANNs

train-lm train-bfg train-rp train-scg train-cgb train-cgf train-cgp train-oss train-gdx

R ≥ 0.95 (%) of ANNs 0.030 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.92 ≤ R< 0.95 (%) of ANNs 10.717 0.073 0.006 0.014 0.123 0.067 0.029 0.004 0.000
0.90 ≤ R < 0.92 (%) of ANNs 25.692 1.943 1.107 1.155 2.871 2.373 1.415 0.737 0.328

Total (%) 36.439 2.016 1.113 1.169 2.994 2.440 1.444 0.741 0.328

10 Neurons in the Hidden Layer
Training function of ANNs

train-lm train-bfg train-rp train-scg train-cgb train-cgf train-cgp train-oss train-gdx

R ≥ 0.95 (%) of ANNs 0.032 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.92 ≤ R< 0.95 (%) of ANNs 10.723 0.086 0.007 0.017 0.141 0.080 0.031 0.006 0.000
0.90 ≤ R < 0.92 (%) of ANNs 25.727 2.238 1.367 1.325 3.160 2.643 1.577 0.849 0.377

Total (%) 36.482 2.324 1.374 1.342 3.301 2.723 1.608 0.855 0.377
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Table 11. Classification of MSE—ANNs with input parameters of Group 2.

Group 2_ Classification of MSE

7 Neurons in the Hidden Layer
Training Function of ANNs

Train-lm Train-bfg Train-rp Train-scg Train-cgb Train-cgf Train-cgp Train-oss Train-gdx

MSE ≤ 0.02 (%) of ANNs 50.924 9.995 6.220 8.388 13.713 11.564 9.326 6.209 3.938
0.02 < MSE ≤ 0.05 (%) of ANNs 46.544 86.798 88.399 88.132 83.578 85.282 87.567 90.324 63.407

MSE > 0.05 (%) of ANNs 2.533 3.207 5.381 3.480 2.709 3.153 3.107 3.467 32.655

8 Neurons in the Hidden Layer
Training function of ANNs

train-lm train-bfg train-rp train-scg train-cgb train-cgf train-cgp train-oss train-gdx

MSE ≤ 0.02 (%) of ANNs 50.028 10.902 7.247 8.975 14.576 12.550 9.914 6.722 4.214
0.02 < MSE ≤ 0.05 (%) of ANNs 47.193 85.896 86.977 87.449 82.668 84.300 86.904 89.805 60.522

MSE > 0.05 (%) of ANNs 2.778 3.202 5.776 3.575 2.757 3.150 3.182 3.473 35.264

9 Neurons in the Hidden Layer
Training function of ANNs

train-lm train-bfg train-rp train-scg train-cgb train-cgf train-cgp train-oss train-gdx

MSE ≤ 0.02 (%) of ANNs 49.432 11.812 8.166 9.455 15.237 13.451 10.431 7.158 4.412
0.02 < MSE ≤ 0.05 (%) of ANNs 47.556 84.887 85.491 86.791 81.856 83.177 86.251 89.213 57.669

MSE > 0.05 (%) of ANNs 3.012 3.301 6.344 3.754 2.907 3.372 3.318 3.628 37.919

10 Neurons in the Hidden Layer
Training function of ANNs

train-lm train-bfg train-rp train-scg train-cgb train-cgf train-cgp train-oss train-gdx

MSE ≤ 0.02 (%) of ANNs 48.984 12.710 8.854 9.912 15.907 14.177 10.927 7.529 4.492
0.02 < MSE ≤ 0.05 (%) of ANNs 47.765 83.859 84.351 86.051 80.954 82.254 85.507 88.662 54.944

MSE > 0.05 (%) of ANNs 3.251 3.431 6.795 4.037 3.139 3.568 3.567 3.809 40.564

5. Discussion

The investigation of the results reveals that all the training algorithms present a number
of configured ANNs whose performance in the estimation of the structural damage through
the examined parameters is described with a very high R correlation coefficient (R > 0.95)
and very small MSE (MSE < 0.02). However, observing Tables 4–7, it becomes obvious that
the most efficient training algorithm is the Levenberg–Marquardt (LM) algorithm for the
first group of input data preventing the most significant configured MFP networks with
mean correlation coefficient ranging from 0.9008 to 0.9042 and with mean MSE ranging
from 0.0183 to 0.0192. Additionally, the best MFP model was trained by the LM algorithm
for input datasets of the first group of parameters with an absolute maximum value of R
equal to 0.9882 and a minimum MSE value equal to 0.0023 for 8 neurons in the hidden layer.

Furthermore, depending on the number of neurons in the hidden layer, ANN cases
trained with the LM algorithm present R > 0.90 with a percentage up to 66.30% for the first
group of parameters and up to 37.04% for the second group of parameters. Likewise, most
ANN cases trained with the same algorithm are able to predict the DIPA,global damage index
with MSE less than 0. Similarly, depending on the number of neurons in the hidden layer,
up to 73.85% for the group 1 parameters and up to 50.92% for the group 2 can predict the
DIPA,global damage index with MSE less than 0.02. This means that at least 66.30% of the
first group and 37.04% for the second group of parameters are able to develop ANNs with
excellent predictive accuracy (with R > 0.90 και MSE < 0.02 simultaneously).

Concluding, the very high correlation coefficient R combined with a very small mean
squared error (MSE) are effective quality indicators of the results. This fact confirms that
the proposed methodology provides satisfactory results in predicting the utilized damage
index and is an efficient tool using artificial intelligence procedures.

One possible application of the proposed methodology is to use the trained ANN
to predict the damage indicator of a building for the early identification of its structural
damage immediately after a seismic event, under the condition that all the required seismic
intensity parameters have been evaluated instantly after the event by processing regional
seismic record data.

6. Conclusions

This research designates the performance of forty HHT-based seismic intensity param-
eters, calculated for an RC-framed structure, to predict seismic damage through artificial
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neural network models. A number of 75,051,360 MFPs were developed, and their investi-
gation revealed the increased ability of the examined parameters to predict the structural
damage proving their interrelation with the overall structural damage index of Park and
Ang. For this reason, the structure of the MFP artificial network with one hidden layer
was chosen. The calculation of the configured MFPs led to the development of high-
performance mathematical models which are able to express the probability that a structure
will experience a damage situation, as expressed by DIPA,global, with high accuracy.

For the calculation of the MFPs, nine training algorithms were utilized, which led to
a significant percentage of ANNs with a very high coefficient correlation (R > 0.90) and
low MSE (MSE < 0.02). The most efficient of them turned out to be the LM algorithm. A
number of 8.339.040 ANNs were configured with the LM algorithm from two groups of
twenty parameters. These seismic parameters created MFP networks of a high explanation
of variance of DIPA,global (with R > 0.90) and a very low MSE (MSE < 0.02), simultaneously
with a percentage up to 66.30% for the first group and up to 37.04% for the second group of
parameters. According to the classification table of the DIPA,global, an MSE coefficient with
values lower than 0.02 cannot essentially change the class of structural damage caused by a
seismic excitation.

The numerical results reveal that the 40 examined HHT-based seismic intensity param-
eters provided adequate results, evaluating the used damage index with sufficient accuracy,
justified by many seismic excitations with very high correlation coefficient R and a very
small mean squared error. Thus, the proposed methodology is a valuable complement to
existing artificial intelligence procedures.

Additionally, it is observed that the best performance of all the investigated statistical
coefficients was displayed among the ANNs with nine neurons in the hidden layer, which
used the LM algorithm. In particular, the MFPs with nine neurons in the hidden layer for
the input datasets of Group 1 accomplished an estimation of damage with an R correlation
coefficient value upon the value of 0.9883 and a value of MSE that can be reduced until the
values of 0.0023.

The conditions that must be considered for applying the proposed procedure are first
that the number of the used seismic intensity parameters and accelerograms is sufficiently
large for the appropriate training of the ANN. In addition, the numerical values of the
utilized damage index must be considered to cover all the structural damage grades (low,
medium, large, and total) during the ANN training.

It is obvious that all the above outcomes confirm the capability of the examined seismic
intensity parameters to predict the induced seismic damage to the RC-framed structures.
In addition, the investigated HHT-based seismic parameters are presented as effective
descriptors of the seismic damage potential and, thus, are able to stand as helpful tools
for a performance-based design of framed structures. Consequently, the developed ANN
models using HHT-based seismic parameters can be considered an essential method for
the early identification of structural vulnerability.
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