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Abstract: There has been a significant increase in construction and demolition (C&D) waste due
to the growth of cities and the need for new construction, raising concerns about the impact on
the environment of these wastes. By utilising recycled C&D waste, especially in concretes used in
construction, further environmental damage can be prevented. By using these concretes, energy
consumption and environmental impacts of concrete production can be reduced. The behaviour
of these types of concrete in laboratories has been extensively studied, but reliable methods for
estimating their behaviour based on the available data are required. Consequently, this research
proposes a hybrid intelligent system, Fuzzy Group Method of Data Handling (GMDH)–Horse herd
Optimisation Algorithm (HOA), for predicting one of the most important parameters in concrete
structure design, compressive strength. In order to avoid uncertainty in the modelling process, crisp
input values were converted to Fuzzy values (Fuzzification). Next, using Fuzzy input variables, the
group method of data handling is used to predict the compressive strength of recycled aggregate
concrete. The HOA algorithm is one of the newest metaheuristic algorithms being used to optimise
the Fuzzy GMDH structure. Several databases containing experimental mix design records containing
mixture components are gathered from published documents for compressive strength to assess the
accuracy and reliability of the proposed hybrid Fuzzy-based model. Compared to other original
approaches, the proposed Fuzzy GMDH model with the HOA optimiser outperformed them in terms
of accuracy. A Monte Carlo simulation is also employed for uncertainty analysis of the empirical,
standalone, and hybridised models in order to demonstrate that the evolutionary Fuzzy-based
approach has less uncertainty than the standalone methods when simulating compressive strength.

Keywords: sustainable concrete; construction and demolition waste; Fuzzy-based evolutionary
model; horse herd optimisation algorithm; parametric evaluation

1. Introduction

Global climate change is affecting many countries [1,2]. Thus, global collaboration
has been initiated to support low-carbon sustainable development in response to this
grand challenge [3]. The construction sector, however, cannot be excluded from these
mitigation strategies as this industry is responsible for a high portion of global carbon
emissions [4,5]. Cement is a significant source of carbon dioxide emitted during production
and consumption [6]. Thus, employing some strategies such as using recycled materials
could substantially reduce greenhouse gas emissions in this sector [7,8]. There are many
studies that address how the construction sector can reduce global warming’s impacts, but
there are few studies that address the use of recycled materials in this area [9]. Alternative
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materials, recycled waste concrete, can be substituted for conventional concrete constituents
to alleviate the aforementioned issues and improve sustainability.

Different studies were carried out to discuss and evaluate the technological feasibility
of Recycled Construction and Demolition Waste Aggregate Concrete (RCDWAC) [10–14].
The mechanical characteristics of RCDWAC may be generally less than those of Ordinary
Portland Concrete (OPC), but they are still adequate for some practical construction alter-
natives [15]. A recycling station and concrete factory are used to produce RCDWAC, which
incorporates natural coarse aggregates [16]. Two stages were involved in the demolition
waste concrete recycling process. Crushing with jaw crushers (first) and crushing with
impact crushers (second). Engineering tools (e.g., electromagnets, water cleaners, or air
sifters) were used to remove reinforcement and contaminants after crushing [17]. Figure 1
illustrates the reproducing cycle of RCDWAC. Although studies on these concrete types
have already begun, their characteristics remain unclear. Characteristics of concrete are
input parameters in a number of design codes [18]. It is, therefore, crucial that these char-
acteristics are accurately estimated so as to save time and effort [19]. Predicting concrete
characteristics has been the focus of the majority of earlier studies [20]. Models previously
published for regular concrete may, however, fail to accurately estimate the characteristics
of other types of concrete.
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The mechanical behaviour of concrete is dependent on experimental characteristics
such as volumetric/weighted mixture proportion values [21]. Developing cost-effective
and eco-friendly cementitious blends with optimal structural performance is a crucial
objective for researchers and engineers [22]. Complex standards necessitate specialised
users and time-consuming procedures for experimental investigation. Therefore, civil engi-
neers employed an eco-friendly solution based on the development of Artificial Intelligence
(AI) models to address this issue [23–30]. Several linear and nonlinear regression-based
AI methods have recently been utilised to model concrete’s mechanical and structural
properties. Sadowski et al. [31] estimated the compressive strength (CS) of low-strength
concrete containing mineral dusts using the hybridised model. DeRousseau et al. [32]
tried to compare predictive regression-based artificial intelligence models to simulate the
compressive strength of field-placed concrete. Shahmansouri et al. [33] proposed Artificial
Neural Network (ANN) and Gene Expression Programming (GEP) techniques for eco-
environmentally concrete properties. The authors of [34] introduced a novel method for
predicting the compressive strength (CS) of foam lightweight concrete based on an optimi-
sation algorithm and Multivariate Adaptive Regression Splines (MARS). Naseri et al. [35]
employed machine learning and evolutionary approaches for designing sustainable mix-
tures. Dao et al. [36] investigated Adaptive Neuro-Fuzzy Inference System (ANFIS) and
ANN to estimate the behaviour of geopolymer concrete. Asteris and Mokos [37] employed
an ANN system as an alternative application for estimating the CS of concrete using a
non-destructive experimental method. Golafshani et al. [38] estimated the compressive
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strength (CS) of ordinary and high-performance concretes employing evolutionary meth-
ods. Behnood and Golafshani [39] studied the M5p model tree method to simulate the
mechanical properties of mixtures containing waste foundry sand. Asteris and Mokos [37]
presented a surrogate model for the estimation of the compressive strength of masonry.
Feng et al. [40] evaluated an adaptive boosting technique for estimating the compressive
strength of concrete containing granulated blast furnace slag. Li et al. [41] examined the
ability of data-driven models known as ANN, ANFIS, and Multiple Linear Regression
(MLR) to predict the service life of concrete. Using the GEP concept, Gholampour et al. [42]
formulated the compressive strength of recycled aggregate concrete with non-pozzolanic
admixtures. Al-Shamiri et al. [43] presented the Extreme Learning Method (ELM) and
ANN for predicting the CS of cylindrical samples of high-strength concrete.

Although the AI models mentioned above have been successfully applied to a wide
variety of civil engineering problems, many rely on crisp input variables to model the
target variables, which can be a limitation of the modelling [44]. In contrast to their crisp
counterparts, Fuzzy sets have gradual transitions between defined sets; this enables the
uncertainty associated with these concepts to be directly modelled. After defining each
model variable with a series of overlapping Fuzzy sets, the mapping of inputs to outputs
can be expressed as a set of IF-THEN rules, which can be specified entirely from expert
knowledge or from data [45]. However, unlike NNs, Fuzzy models are prone to a rule
explosion; that is, as the number of variables or Fuzzy sets per variable increases, there is
an exponential increase in the number of rules [46].

The main aim of this study is to develop a sustainable and predictive method for
assessing the CS of RCDWAC using a hybridised and self-tuned model. To the authors’
knowledge, a hybridised Fuzzy GMDH coupled with HOA has not previously been de-
veloped and applied in modelling sustainable technology. During the calibration stage,
the trial-and-error procedure for the hyperparameter setting for each model prevented
ANFIS and GMDH models from performing satisfactorily for CS prediction. To overcome
this shortcoming, HOA, a new metaheuristic method, is applied to explore for appropriate
values of the user-defined parameters of the proposed model. HOA is a low-cost algorithm
with a high degree of convergence that was first introduced in 2021 [47]. Then, the hybrid
Fuzzy GMDH-HOA results are compared to those extracted from ELM, ANFIS, GMDH,
and empirical equations by [42,48,49]. In this research, sensitivity analysis and parametric
study were conducted to investigate and determine the most effective input variables
(RCDWAC mix properties) and the influence of RCDWA on CS.

The remaining sections of the paper are as follows: Section 2 proposes a theoretical
framework, existing models, an RCDWAC dataset, and a statistical description of used data;
Section 3 describes the AI development and evaluation of proposed approaches for CS of
RCDWAC; and Section 4 concludes with a conclusion, research highlights, and limitations.

2. Materials and Methods
2.1. Theoretical Framework and Existing Models

Until 2015, the global consumption of aggregates for construction and maintenance
of civil engineering projects is anticipated to increase by over 5.2% per year, reaching
48.3 billion tonnes [50,51]. According to Eurostat (https://ec.europa.eu/eurostat, accessed
on 23 June 2022), Europe produced approximately 2.5 billion tonnes of waste in 2010, of
which about 860 million tonnes were demolition waste from the construction industry.
According to this challenge, one of the most impressive, cost-effective, and environmentally
friendly activities for the sustainable development of the concrete industry [48] is using
recycled aggregate in concrete production. Based on this sustainable concept, experimental
and artificial intelligence investigations were conducted to evaluate the strength behaviour
of RCDWAC using formula-based models. In structural challenges, estimating CS at various
ages is a significant concern. The following formula was proposed by ACI Committee

https://ec.europa.eu/eurostat
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209 [48] for calculating the compressive strength of Portland cement-based concrete. In this
formula, (t) refers to the age of specimens and (CS28) is the 28-day compressive strength.

CS (t) =
AS

4 + 0.85× AS
× CS28 (1)

Gholampour, Gandomi, and Ozbakkaloglu [42] presented a predictive equation for
RCDWAC based on experimental variables such as the water-to-cement ratio and recycled
aggregate using the AI method.

CS =
19.1× 0.998%RA × (W

C + 0.33)
W
C

1.5 (2)

Abdollahzadeh, Jahani, and Kashir [49] investigated experimental factors (246.2 > W
(Kg/m3) > 113, 500 > C (Kg/m3) > 250, 1797.7 > RA (Kg/m3) > 0 and 90 > AS (day) > 3) to
propose a linear relationship for CS of RCDWAC.

CS =
√

RA− (W − (CA + FA)) + (AS× 18.908) +
(
(−9.989)− 9.989

AS

)
(3)

2.2. Description of Dataset

Using experimental data records from RCDWAC mixtures to simulate the hardened
behaviour of concrete, this study implemented AI techniques based on the regression
concept. Therefore, instances of data were extracted from the document that had been
peer-reviewed [52–67]. Based on gathered data records, the predictive standalone and
evolutionary approaches of CS for RCDWAC were applied to 353 experimental records
of varying ages, utilising 353 experimental records. The dataset included influencing
parameters regarding mixture constituents of RCDWAC in numerous constituents. The
collected dataset is split into two subsets. The calibration subset is created for system
knowledge implementation and developing a CS regression model. The validation subset
is implemented to assess the performance capability of the proposed RCDWAC property
models. The calibrating subset consisted of approximately 75% of the CS data instances
(266 records). Alternatively, regression-based AI methods were validated using the re-
maining 87 records. Using Table 1 and Equation (4), the effective components for optimal
concrete design are reported. The statistical measures of the most effective variables to
design concrete with optimal mechanical properties such as cement (C), water (W), coarse
aggregate (CA), fine aggregate (FA), recycled aggregate (RA), and age of specimens (AS),
are presented in Table 1.

Table 1. Statistical measures of inputs and outputs in this study.

Variables W (kg/m3) C (kg/m3) FA (kg/m3) CA (kg/m3) RA (kg/m3) AS (days) CS (MPa)

Minimum 120 220 365 0 0 7 13
Median 180 400 720 629.5 443.7 28 41.2
Maximum 244 750 1020 1366 1259 180 88.3
Range 124 530 655 1366 1259 173 75.3
Mean 184.1 394.9 710.3 564.8 504.3 45.25 42.11
Std.
Deviation 27.14 83.94 108.5 438.7 414.6 43.96 13.13

Std. Error of
Mean 1.444 4.468 5.772 23.35 22.07 2.34 0.6986

Skewness 0.288 1.111 0.3158 −0.1004 0.2203 1.783 0.6451
Kurtosis 0.3913 2.982 1.499 −1.453 −1.412 2.252 0.778
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Moreover, the heatmap in Figure 2 illustrates the Pearson correlation analysis of
selected inputs used to develop the models. The correlation heatmap demonstrates no
significant correlations between the selected matrices and CS.

CS = f (W, C, FA, CA, RA, AS) (4)
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In addition, the Pearson correlation analysis of selected inputs for developing
regression-based AI models is displayed on a heatmap in Figure 2. As stated by the
correlation heatmap, there are no significant correlations between the selected matrices and
CS, so it is best to consider all six parameters when modelling CS. Moreover, the histogram
of CS values presented in Figure 2 revealed that the greatest frequency of CS dispersion
occurred between 32.5 and 45.5 Mpa.

3. Methodology

Several AI models, including GMDH, ANFIS, ELM, and hybridised Fuzzy GMDH-
HOA, are used in the current study to model the CS of concrete made with recycled wastes
from the demolition of structures. In this subsection, the context of the discussed models is
presented. In addition, Figure 3 explains the workflow corresponding to the introduced
models in this study.
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3.1. Extreme Learning Machine (ELM)

Huang et al. [68] developed the ELM algorithm for determining the weight of a
hidden neuron. It substantially reduces the required calculation time for training and
selecting the model structure for large numbers. In addition, its implementation is relatively
straightforward [69–71]. With a network containing c outputs, hidden neurons and p input
units, the i-th output at time step zero is calculated as follows:

oi(t) = mT
i h(t) (5)

In the above equation mi ε Rq, ∀i ε {1, . . . , c} denotes the weight vector and relates
the hidden neurons to the ith output neuron. h(t)ε Rq denotes the hidden neuron output of
an input pattern X(t)ε Rq in the data set {X(t)}n

t=1. Vector h(t) is expressed as:

h(t) =
[

f
(

WT
1 X(t) + b1

)
, f
(

WT
2 X(t) + b2

)
, . . . , f

(
WT

q X(t) + bq

)]T
(6)

Here, bl denotes the bias of the l-th hidden neuron, Wl ε Rq denotes the weight vector
of the l-th hidden neuron; finally, f (.) represents a sigmoidal activation distribution. The
weight vectors (wl) are now randomly derived from a normal or uniform distribution.
In addition, H = [h(1) h(2) . . . h(n)] is a q × n matrix. In this matrix, the t-th column
represents the hidden-layer vector h(t)ε Rq. In a similar way, D = [d(1) d(2) . . . d(n)]
denotes a c× n matrix in which the t-th column is the target or desired vector d(t)ε Rc

which is related to the input pattern x(t), t = 1, . . . , N. Ultimately M = [m(1) m(2) . . . m(c)]
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is a q× c matrix. The i-th column of this matrix is the weight vector, miε Rq, i = 1, . . . , c.
These three matrices are associated with each other through linear mapping.

D = MT H (7)

Based on the available data, D and H are known matrices, whereas M is unknown, but
can be calculated using the Moore–Penrose pseudo-inverse method.

M =
(

HHT
)−1

HDT (8)

If we assume that the number of output neurons equals the number of classes, we can
calculate the class index i* for a new input pattern using the following formula:

i∗ = arg max
i=1,...,c

{Oi} (9)

where Equation (5) is used for the calculation of oi.

3.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS is a type of ANN that combines neural networks and Fuzzy logic [72]. Jang [73]
developed ANFIS in 1993 to model nonlinear functions, forecast chaotic time series, and
identify nonlinear components. Using the Takagi–Sugeno inference system (expressed as
Fuzzy If-Then rules) [74], ANFIS could be used to construct an input–output mapping.
Numerous benefits of ANFIS, including the ability to catch the nonlinear structure of a
procedure, accelerated learning, and adaptability, have led to its widespread use among
engineers [75]. The core of ANFIS is the FIS (Fuzzy Inference System). In the initial layer,
inputs are received and converted to Fuzzy values using MFs (Membership Functions).
The rule base consists of two Fuzzy IF-Then rules of the Takagi and Sugeno varieties:

• Rule 1 : i f x is A1 and y is B1, then f1 = p1x + q1y + r1.
• Rule 2 : i f x is A2 and y is B2, then f2 = p2x + q2y + r2.

Each node on the first layer is selected as an adaptive node with a function.

O1
i = µAi(s) (10)

In the preceding expression, O1
i represents the membership function of the linguistic

label Ai. Gaussian functions (also known as bell-shaped functions) are frequently used in
ANFIS due to their greater capacity in nonlinear data regression [75]. The following defines
a bell-shaped function with a minimum value of zero and a maximum value of one:

µ(x) = bell(x; ai, bi, ci) =
1

1 + [( x−c1
ai

)]
bi

(11)

In the expression above, x represents the input and {ai, bi, ci} represent the set parame-
ters. The incoming signals are multiplied in the second layer, and the resulting product
is transmitted to the third layer. The third layer, the rule layer, computes the ratio of the
i-th node’s firing strength to that of the other nodes. The fourth layer is the defuzzifica-
tion layer, where each node has a node function. The fifth output layer is responsible
for calculating the total output, which is the sum of all incoming signals. The current
procedure selects a threshold value between the actual and output values. The subsequent
parameters are then calculated using the least-squares method, which produces an error
for each calculated value. If the obtained value exceeds the threshold value, a gradient
descent algorithm [76,77] is used to update the assumed parameters. The procedure is
repeated until the error value falls below the threshold value. This method’s parame-
ters are simultaneously calculated and controlled utilising the least-square and gradient
descent algorithms.
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3.3. Group Method of Data Handling (GMDH)

A self-organising algorithm was initially developed by Ivahnenko. Typically, it is
based on self-organising systems [78]. The model can generate quadratic polynomials in
any neuron called Partial Descriptions (PDs) to select neurons with the best fit values, as
well as generate error criteria to terminate the training phase and form a tree-like structure
to solve highly complex problems [79,80]. A function of f̂ can be substituted for the actual
function f in order to predict the final output of a complex system, ŷ, for given model
input, X = (x1, x2, . . . , xn), so that it is as close as possible to its actual output, y. Conse-
quently, for given n observations of multi-variable data, the output variable is represented
as follows:

yi = f (xi1, xi2, . . . , xin), i = 1, 2, 3, . . . , M (12)

In the current status, the model of GMDH can be well-constructed to predict the final
values of output, ŷi, in the case of each given input vector X = (xi1, xi2, . . . , xin). A rela-
tionship between the final output and the inputs can be defined using the
following function:

ŷi = f̂ (xi1, xi2, . . . , xin), i = 1, 2, 3, . . . , M (13)

Based on the measured (observed) values and predicted model outputs, the following
equation represents the error values:

M

∑
i=1

[
f̂ (xi1, xi2, . . . , xin)− yi

]2
→ min (14)

According to the GMDH model, dependent and independent parameters are related
as follows:

y = w0 +
n

∑
i=1

wixi +
n

∑
i=1

n

∑
j=1

wijxixj +
n

∑
i=1

n

∑
j=1

n

∑
k=1

wijkxixjxk + . . . , (15)

In addition, Equation (5) is suggested as the Kolmogorov–Gabor polynomial [78].
A quadratic polynomial has a lower error rate than other types of polynomials, and its
weighting coefficients are calculated by least squares. For each pair of input variables
xi and xj, the error between the actual value and predicted model output y should be
minimised. Additionally, this error function can determine the performance of a quadratic
polynomial, Gi, using the least-square method to optimally remove a specified number of
neurons (nodes) from each layer, as shown below:

E =
∑M

i=1 (yi − G())2

M
→ min (16)

When building the regression quadratic polynomial in GMDH, all possible indepen-
dent variables (or inputs) are considered out of n input variables [80]. Weighting coefficients
were derived using the least squares method in this case. The number of nodes in each
layer can be calculated as follows:

C2
n = n(n− 1)/2,

where n stands for the input numbers of the former layer. However, the partial descriptions
will be produced in the initial layer from observations

{(
yixipxiq

)
; (1, 2, . . . , M)

}
for dif-

ferent pairs of p, q ∈ {1, 2, . . . , n}. In other words, M triples
{(

yixipxiq
)
; (1, 2, . . . , M)

}
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could be formed as inputs–output systems from n observations using p, q ∈ {1, 2, . . . , n},
expressed as follows [75–77]: 

x1p x1q y1
x2p x2q y2

. . .
xmp xmq ym

 (17)

Considering coefficients of the weighting of the quadratic polynomial W =

{w0, w1, . . . , w5 }Tr, a mathematical matrix equation AW = Y, and the vector of output
Y = {y1, y2, . . . , yM }Tr, the final matrix created by combining two inputs can be deter-
mined as follows: 

1 x1p x1q x1p.x1q x2
1p x2

1q
1 x2p x2q x2p.x2q x2

2p x2
2q

. . . . . .
1 xmp xmq xmp.xmq x2

mp x2
mq

 (18)

The coefficients vector of W =
(

ATr A
)−1 ATrY can be calculated using the least-

squares approach.

3.4. Horse Herd Optimisation Algorithm (HOA)

Metaheuristic algorithms have been developed and used for a wide range of com-
plex engineering problems in recent years [81–86]. Developed by [47], HOA is based on
the horses’ observed behaviour patterns in their environment. The six most important
behavioural patterns of horses are hierarchy, sociability, grazing, imitation, defence mecha-
nism, and roaming, and the HOA is based on these behaviours. The movement applied to
the horses during each iteration (Equation (19)) is as follows:

X Iter,AGE
m =

→
V

Iter,AGE

m + X(Iter−1),AGE
m , AGE = α, β, γ, δ (19)

In the above equation, X Iter, AGE
m denotes the m-th horse position, Iter denotes the

current iteration, and AGE represents the range of age for the considered horse and
→
V

Iter,AGE

m represents the velocity vector of the considered horse. Each horse has a maximum
life of 25–30 years, so it could exhibit various behaviours during its lifetime [47]. Thus, δ
represents a life range of 0–5 years, γ represents a life range of 5–10 years, and α represents
horses that are older than 15 years. A comprehensive and large response matrix is executed
per iteration to determine the horses’ ages. In this respect, the matrix is sorted in terms of
best responses. From the sorted matrix, the first 10% of horses are selected, representing the
α horses. Consequently, the following 20% fall in the β group. Additionally, the remaining
30% and 40% of horses belong to γ and δ horses, respectively. The motion vectors of horses
per different ages and at each cycle of the algorithm could be written as follows based on
the above-mentioned horse behaviours (Equation (19))

→
V

Iter,α

m =
→
G

Iter,α

m +
→
D

Iter,α

m
→
V

Iter,β

m =
→
G

Iter,β

m +
→
H

Iter,β

m +
→
S

Iter,β

m +
→
D

Iter,β

m
→
V

Iter,γ

m =
→
G

Iter,γ

m +
→
H

Iter,γ

m +
→
S

Iter,γ

m +
→
I

Iter,γ

m +
→
D

Iter,γ

m +
→
R

Iter,γ

m
→
V

Iter,δ

m =
→
G

Iter,δ

m +
→
I

Iter,δ

m +
→
R

Iter,δ

m

(20)
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Using Equations (21) and (22) to explain how the global matrix is derived, positions
(X) are juxtaposed with the cost of each position (C(X)).

X =


x1,1 x1,2 · · · x1,d
x2,1 x2,2 · · · x2,d

...
...

. . .
...

xm,1 xm,2 · · · xm,d

, C(X) =


c1
c2
...

cm

 (21)

Global Matrix =
[
X C(X)

]
=


x1,1 x1,2 · · · x1,d c1
x2,1 x2,2 · · · x2,d c2

...
...

. . .
...

...
xm,1 xm,2 · · · xm,d cm

 (22)

As shown in the preceding equations, x represents the position and c(x) represents
the cost of each position. Moreover, m and d represent the number of horses and the
dimensions of the problem. Next, we would store the global matrix according to the last
column, which represents costs. The age of the horse is entered here.

In situations where an optimal solution has a high probability, high accuracy and low
speed are advantages, and low accuracy and high speed are advantages in situations where
an optimal solution has a low probability. The general velocity vector is computed in the
following way:

The velocity of δ horses in the range of 0–5 years:

→
V

Iter,δ

m =
[

g(Iter−1),δ
m ωg(ŭ +
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l̆)[X(Iter−1)
m ]

]
+

[
iIter−1,δ
m ωi

[(
1

pN

pN
∑

j=1
X̂ Iter−1

j

)
− X Iter−1

]]
+
[
rIter−1,δ

m ωr
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X Iter−1
] (23)

The velocity of γ horses at the age of 5–10 years:

→
V

Iter,γ

m =
[

gIter−1,γ
m ωg(ŭ +
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l̆)
[
X Iter−1

m
]]

+
[

hIter−1,γ
m ωh

[
X Iter−1
∗ − X Iter−1

m
]]

+

[
sIter−1,γ

m ωs

[(
1
N

N
∑

j=1
X Iter−1

j

)
− X Iter−1

m

]]

+

[
iIter−1,γ
m ωi

[(
1

pN

pN
∑

j=1
X̂ Iter−1

j

)
− X Iter−1

]]

−
[

dIter−1,γ
m ωd

[(
1

qN

qN
∑

j=1
X̌ Iter−1

j

)
− X Iter−1

]]
+
[
rIter−1,AGE

m ωr
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X Iter−1
]

(24)

β horses aged 10–15 years have the following velocity:

→
V

Iter,β

m =
[

gIter−1,β
m ωg(ŭ +
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α horses older than 15 years have the following velocity:
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→
V

Iter,α

m =
[

gIter−1,α
m ωg

(
ŭ +
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3.5. Development of an Adaptive Fuzzy GMDH Using HOA

Ivakhnenko introduced the GMDH neural network, which belongs to the category of
self-organising models, in the 19th century. This procedure contains a number of significant
operations. The introduction of a combination of input parameters based on the complex
theorem of Ivakhnenko to generate partial descriptions (PDs) is one of the operations
(i.e., polynomial neurons). The other operation takes into account the error criterion
when selecting the seeds (perfectly working polynomial neurons) for each layer’s filtering
process. In this study, the optimal structure of a Fuzzy GMDH model was optimised using
evolutionary computing techniques and a parallel evaluation mechanism for the target
variable. As a benefit, Hwang has utilised the Fuzzy GMDH as a conjunction model by
employing various iterative algorithms or evolutionary techniques [87].

Studies available show that a typical Gaussian membership function Fkj can be used
to construct neural-Fuzzy systems, as this type of MF can produce more precise results for
Fuzzy GMDH systems. It could be used as the number (k) of Fuzzy rules that are applied
to the boundary of the jth input vector (xj) as follows:

Fkj
(

xj
)
= EXP[

(
xj − akj

)2

bkj
] (27)

In the above equation, akj and bkj denote constant coefficients that are applied in
the Gaussian membership function known as the Fuzzy rule. Furthermore, y, which
denotes the output vector, is derived as the output of a neural-Fuzzy system using the
following equation:

y =
K

∑
k=1

ukwk (28)

In the above equation uk = ∏
j

Fkj
(
xj
)
. wk denotes the real value of the kth Fuzzy

rules [87]. According to the Fuzzy GMDH model, each neuron (partial description) pos-
sesses two inputs but one output. As shown in Figure 4, the output vector of each PD in
the current layer is the input vector of the following layer. The ultimate output of the Fuzzy
GMDH method is determined by averaging the outputs corresponding to the last layer.
Therefore, the inputs from the mth neuron and pth layer are taken as the output variables
or vectors corresponding to the m− 1th and mth PDs (or neurons) in the p− 1 layer. Thus,
these output vectors are used to generate the input vector (or neuron) in the m−th PD (or
neuron) and pth layer. The relationship in mathematical form between ypm, yp−1, m−1, and
yp−1,m is demonstrated by:

ypm = f
(

yp−1,m−1, yp−1,m
)
=

K

∑
k=1

µ
pm
k .wpm

k (29)

µ
pm
k in the above equation is a mathematical description used for calculating the

kth Gaussian function. The following equation ultimately determines the Fuzzy GMDH
network output:

y =
1
M

M

∑
m=1

ypm (30)
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It should be noted that all the Gaussian functions and weighted coefficients are
determined by the trial-and-error method.

Regarding the Fuzzy hybrid GMDH, the backpropagation algorithm must be used
to tune all the involved parameters in the PDs and Fuzzy MFs. The problem with this
algorithm is that it is unable to determine which PD or link should be eliminated, meaning
that the network may contain unnecessary PDs or links. The complex topology of the
Fuzzy GMDH model necessitates an efficient algorithm for optimising and tuning Fuzzy
MF parameters as well as determining optimal weighting coefficients for PDs in the GMDH
algorithm. In this regard, our study employs the HOA algorithm, which has several benefits
in exploring and locating the best available solution for highly complex problems [47].
The mentioned algorithm could be used concurrently for network parameter training
and structural identification. The HOA algorithm has a number of variables that can be
altered to achieve the optimal objective function solution with minimal error. The following
function is assumed as the objective function of the optimisation operation in the Fuzzy
GMDH based on HOA:

Eval = ∑N
i=1(y(i)− ŷ(i))2

N
(31)

The percentage of the best and worst horses, denoted by pN and qN, respectively. RF
(reduction factor), behaviour coefficients for each horse’s age range (α,β,γ, δ), number of
agents, and maximum number of iterations. Once the process of optimisation is complete,
the weighting coefficients are determined. Using the HOA-based Fuzzy GMDH, the
Gaussian functions are then derived. In this study, the number of variables and maximum
iteration number in the HOA were set to 6 and 150, respectively. In addition, other
parameters of the HOA were set similar to [88].

3.6. Statistical Performance

Several performance measures (Equations (32)–(36)) were used in this study, including
Wilmot’s Index of Agreement (WI), Root Mean Square Error (RMSE), Correlation Coefficient
(CC), Percent Mean Absolute Relative Error (PMARE), and 95% uncertainty (U95).

CC =
∑n

i=1
(
texp − texp

)
.
(
tpre − tpre

)√
∑n

i=1 (texp − texp)
2

∑n
i=1
(
tpre − tpre

)2
(32)

RMSE =

√
1
n ∑n

i=1

(
tpre − texp

)2 (33)

WI = 1− ∑n
i=1
(
texp − tpre

)2

∑n
i=1
(∣∣tpre − texp

∣∣+ ∣∣texp − texp
∣∣)2 (34)

PMARE =
100
n ∑n

i=1

(
tpre − texp

)2 (35)
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U95 = 1.96
√
(STDEV2 + RMSE2) (36)

In the equations mentioned above texp and tpre, respectively, denote the values of
experimental and predicted target variables (for example, CS). Additionally, texp and
tpre represent the mean of experimental and determined target values, respectively. n
denotes the total number of the used data. In this study, the RMSE value with the range of
(0, +∞) and the optimal value of zero were selected to assess performance. CC measure
with the range of (−1 to 1) exhibits the appropriateness of the chosen input variable for
determining the target value (with CC ≥ 0.8 being the accepted value), and the PMARE
(0, +∞) determines the relative error of measured descriptive and logical behaviours and
is based on the relative error. U95 is calculated as the 95% uncertainty band to verify the
validity of a model.

4. Application Results and Discussion

The ANFIS, ELM, GMDH, and Fuzzy GMDH-HOA models’ implementation and
performance capabilities are examined in this section.

4.1. Implementation of Proposed Models

For the development of the ELM approach, a two-layer architecture was employed.
On the basis of prior research [89], the transfer function values, including the sigmoid
function, were used to determine the ELM characteristics. To develop the best model’s
architecture, 10–120 hidden neuron nodes were proposed. In addition, the RMSE criterion
is applied to 500 iterations of the initialisation process for random parameters of hidden
layers for each hidden node. Table 2 displays the results of the trial-and-error method for
determining the optimal number. The 90-neuron ELM model performs best in the learning
and validation phases, with less than 6 and 8 % errors, respectively.

Table 2. Outcomes of the trial-and-error process used to determine the number of neurons in the
ELM model.

Model Number Number of Neurons RMSE of Training Stage RMSE of Testing Stage

1 10 10.851 13.524
2 30 9.684 12.289
3 50 9.158 11.235
4 60 7.624 8.362
5 70 7.112 8.027
6 80 6.298 7.899
7 90 5.981 7.389
8 100 6.893 8.068
9 110 7.251 9.621
10 120 8.622 10.136

Best performance is indicated by bold text.

In terms of RCDWAC’s standalone ANFIS for CS, the R2019a version of MATLAB
software is implemented. In order to create an ANFIS model, an initial Fuzzy inference
system must be developed and then trained. The Takagi–Sugeno type’s membership
functions (Gaussian MFs) were used for this purpose because they typically produce
more robust results [38]. Second, the default hybrid algorithm of ANFIS was used during
the training phase, and the least square algorithm was used to set the member function
parameters. The optimal architecture of ANFIS for simulation of CS of RCDWAC was
determined through a trial-and-error procedure, as shown in Table 3 and Figure 5. The
ANFIS predictive model was developed using six predictors and four MFs for each input
variable with 100 iterations to estimate the compressive strength of RCDWAC based on
this structure.
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Table 3. Results of the trial-and-error process to determine the number of MFs in the ANFIS model.

Model Number Number of MFs RMSE of Training Stage RMSE of Testing Stage

1 2 9.721 10.189
2 3 7.582 8.428
3 4 6.297 6.317
4 5 6.358 6.581
5 6 5.059 6.554
6 7 4.288 7.263

Best performance is indicated by bold text.
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In this study, based on MATLAB open-source code for GMDH evaluation, randomised
data information is separated into a calibration subset and a validation subset in order
to present new predictive models of CS of RCDWAC. The calibrating subset is utilised in
the method’s learning process. The validating phase is used to determine the predictive
technique’s performance capacity. Consequently, the GMDH model was implemented
using six quadratic polynomials neurons based on a trial-and-error approach to reduce the
measurement of each neuron [87].

The developed Fuzzy GMDH-HOA is implemented by the metaheuristic optimisation
algorithm. The proposed model was included in partial description which is based on
Gaussian variables and the Fuzzy rule and weights. The HOA algorithm was performed
for optimising crucial parameters in PDs. Operation of the coupling and optimising process
of the neuro-Fuzzy approach and HOA is a parallel interaction in each PD (neurons).
As mentioned before, the proposed Fuzzy GMDH-HOA model for CS of RCDWAC has
six independent predictors. Developed Fuzzy GMDH-HOA was implemented in the
architecture of two Fuzzy rules and six weighting coefficients.

4.2. A Comparison of Models

The applicability of the regression-based AI method (e.g., GMDH, ANFIS, ELM, and
novel proposed Fuzzy GMDH-HOA) was studied to evaluate the compressive strength
of RCDWAC. The performance capability metrics of the developed AI method for the
evaluation of concrete behaviour strength are presented in Table 4.
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Table 4. Performance of predictive models.

Performance Models CC RMSE (MPa) PMARE (%) U95 WI

Training subset

GMDH 0.834 7.546 15.925 29.698 0.876
ANFIS 0.887 6.297 10.639 28.557 0.922
Fuzzy GMDH-HOA 0.944 4.311 8.3182 27.103 0.970
ELM 0.900 5.980 12.326 28.295 0.942

Testing subset

GMDH 0.822 7.656 17.063 29.762 0.884
ANFIS 0.878 6.317 10.864 28.529 0.926
Fuzzy GMDH-HOA 0.941 4.525 9.551 27.189 0.969
ELM 0.856 7.389 13.638 29.502 0.918
Gholampour, Gandomi
and Ozbakkaloglu [42] 0.756 10.703 26.926 33.177 0.790

Abdollahzadeh, Jahani
and Kashir [49] −0.150 16.129 31.645 40.743 0.322

209-Creep and
Concrete [48] 0.531 20.192 38.605 47.190 0.555

Best performance is indicated by bold text.

In this research, based on a 75–25% data dividing feature, the proposed hybridised
and self-adaptive Fuzzy GMDH-HOA model (CC = 0.944, RMSE = 4.311 MPa and
U95 = 27.103) and (CC = 0.941. RMSE = 4.525 MPa and U95 = 27.189), outperformed
the other regression-based AI techniques and experimental equations in both calibrating
(train) and validating (test) phases, respectively. For further investigation of the Fuzzy
GMDH-HOA model, predictive equations extracted from the aforementioned method
attained the lowest value of PMARE (9.551%) and highest value of WI (0.969); it indicated
that hybridising of the AI method enhanced the accuracy of calibrating and validating the
subset in terms of WI of the GMDH, ANFIS, and ELM by 8.5%, 4.1%, and 5.1%, respectively.

The validation measures through the regression slope (external validation) [90] for
estimation of CS of RCDWAC using the presented models are reported in Table 5. Based on
the table, Fuzzy GMDH-HOA with Kprim of 0.983, n of −0.124, and Rm of 0.587 satisfies the
required conditions with the best validation compared to those yielded by other methods
such as GMDH (Kprim = 1.005, n = −0.477), ANFIS (Kprim = 0.958, n = −0.272), and ELM
(Kprim = 0.942, n = −0.345) models. Moreover, the values of Rm for GMDH (Rm = 0.306),
ANFIS (Rm = 0.407), and ELM (Rm = 0.382) were lower than the recommended condition
(Rm > 0.5). Therefore, Fuzzy GMDH-HOA was based on an optimistic CS estimation
model, and computational correlations were not randomly determined.

Table 5. External validation of predictive models.

Models K KPRIME M N RM

GMDH 0.964 1.005 −0.441 −0.477 0.306
NF 1.020 0.958 −0.288 −0.272 0.407
Fuzzy
GMDH-HOA 1.005 0.983 −0.128 −0.124 0.587

ELM 0.942 1.033 −0.311 −0.345 0.382

Equation

texp×tpre

t2
exp

R2−R2
0

R2
R2−R′0

2

R2

R2 ×(
1−

√∣∣R2 − R2
0

∣∣)
Where

R2
0 = 1−∑n

i=1 t2
pre(1− k)2/ ∑n

i=1 tpre − tpre )2

R′0
2 = 1−∑n

i=1 t2
exp(1− k′)2/ ∑n

i=1 texp − texp)2

Condition (0.85 < K and Kprim < 1.15) (m and n < 0.1) (Rm > 0.5)

Moreover, in this study, Table 6 is provided in order to discuss the outcomes of the
present study with other ones in terms of four aforementioned factors. It is found that the
accuracy of the current model seems to provide accurate and precise results in comparison
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to the previous studies while the number of sample sizes of the current model is much
larger than those in the past, except Yuan et al. [91] that used 638 datasets for model
development. However, it can be seen from the results of Yuan, Tian, Ahmad, Ahmad,
Usanova, Mohamed, and Khallaf [91] that the accuracy of the models compared to the
present research decreased significantly by about 15 and 32% in terms of CC and RMSE,
respectively. Results from Ahmad et al. [92] are similar and slightly more accurate than
the present study because of two important factors: (1) number of input parameters;
and (2) number of datasets. It is proven that in many cases having more input variables
can improve the accuracy of the models and increase the complexity of the models. The
comparison indicated that the current model with fewer input variables and comprehensive
datasets is sufficient for predicting the recycled concrete strength.

Table 6. Summary of the previous studies on prediction models of recycled concrete.

Reference Method CC RMSE Range of CS Age of Sample Sample Size
Number of

Input
Parameters

Present study Fuzzy
GMDH-HOA 0.94 4.525 13–88 7, 28, 56, 90,

180 353 6

Ahmad, Chaiyasarn,
Farooq, Ahmad, Suparp,
and Aslam [92]

ANN 0.97 4.36
20–108 7, 28, 90, 180 344 9

GEP 0.96 3.05

Salimbahrami and
Shakeri [93]

ANN 0.97 15.02
18–60 7, 28 124 7SVM 0.98 14.97

MLR 0.81 15.99
Yuan, Tian, Ahmad,
Ahmad, Usanova,
Mohamed, and Khallaf [91]

GB 0.81 6.976
17–103 638 12

RF 0.84 5.642
Naderpour et al. [94] ANN 0.82 6.116 9.85–80.52 28 139 6

In addition, regarding to comparison of the model prediction with empirical dataset,
it should be noted that in the first step of model development, the network of each model is
trained and constructed, and the network then evaluated using unseen datasets called the
testing step as the second step. Therefore, assessing the proposed models in the identified
range of the dataset will lead to similar prediction results.

Figures 6 and 7 display scatterplots for a graphical comparison of AI models based
on regression. Fuzzy GMDH-HOA has the highest correlation around the X = Y ideal line
during the calibrating and validating phases. In light of these numbers, the CS values
calculated using the proposed Fuzzy GMDH and HOA are approximately closest to the
perfect line.
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Figure 7. Testing performances of proposed models for CS of RCDWAC.

Figure 8 depicts the time series plot for evaluating CS experimental data records (black
and dashed line) and proposed data-driven models (coloured and solid line). The Fuzzy
GMDH-HOA improved the estimation accuracy of the local maximum (in the range of
50–80 MPa) and minimum values of RCDWAC strengths over other AI tools. A boxplot of
the absolute error with quartile values was created for AI analysis (Figure 9). The boxplot’s
lower, upper, and middle lines represent the first quartile, third quartile, and median values,
respectively. The Fuzzy GMDH-HOA model median and whiskers for simulated and actual
CS were nearly identical. The Fuzzy GMDH-HOA model achieved significantly greater
statistical precision than the other AI tools.
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In addition, the Empirical Cumulative Distribution Function (ECDF) analysis was used
to measure and investigate the percentage form of the estimated statistical error (|CS|) for
the proposed regression-based AI approaches (Figure 10). Concerning the percentage of
errors presented within the estimation error range (i.e., from −34.102 to 27.402 MPa), the
ECDF reported the capability of Fuzzy GMDH-HOA for estimating the CS of RCDWAC.
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The Monte-Carlo Simulation (MCS) method is used to model uncertainty and specify
randomness in a model. Based on probabilistic events, the military was the first to imple-
ment MCS [95–97]. Predicting the CS involves numerous uncertainties and difficulties, such
as the uncertainties associated with input predictors, the uncertainties related to model
parameters, etc. The MCS is utilised with forecasting models GMDH, ANFIS, ELM, and
GMDH HOA that utilise CS values. Figure 11 displays the results of this study, including
the Mean Absolute Deviation (MAD), median of predicted CS, and uncertainty bandwidth.
According to the figure, the positive values obtained for the mean of the estimation error
indicating that the estimated CS through the application of the predictive models is greater
than those obtained through experimentation. In addition, the lower (15.775 percent) and
higher (23.320 percent) uncertainty bands were produced by the Fuzzy GMDH-HOA and
GMDH, respectively.
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4.3. Variable Importance Analysis

Variable Importance (VA) analysis determines how differences in the values of inde-
pendent variables affect the dependent variable. The VA percentage is denoted as follows
for each model’s inputs [88]:

Li = tmax(xi)− tmin(xi) (37)

VAi =
Li

∑M
j=1 Li

× 100 (38)

where tmax and tmin are the maximum and minimum values of the simulated CS over the
ith input domain and other predictor values are equal to their mean values. Using the
Fuzzy GMDH-HOA model, Figure 12 depicts the outcome of VA analysis for RCDWAC
CS evaluation based on the Fuzzy GMDH-HOA model (optimistic developed model).
This figure indicated that the coarse aggregate (20.03% importance) content is the most
influential independent predictor in CS of RCDWAC.
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4.4. Parametric Evaluation of RCDWA on CS

A parametric study was applied to evaluate the presented evolutionary Fuzzy GMDH-
HOA model based on experimentally effective constituents (e.g., RA, CA, FA, C, W, and
AS). The model’s compatibility between estimated values and RCDWAC mixtures was
evaluated to determine the quality and validity of the developed Fuzzy-based design model.
In this study, only selected input variables are treated as variables at any given time, while
other experimental factors are treated as constants based on the mean values of their entire
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datasets [55]. Mechanical properties of RCDWAC mixtures are highly dependent on the
mix design and the materials used, and even small changes in the composition of materials
can have significant effects. The projects constructed with the optimal content produced
a more uniform mixture and, as a result, enhanced mechanical properties. Overall, the
model accurately predicts all trends with smooth curves. Specifically, Figure 13 depicted
the expected decrease in CS values with the use of water content in recycled aggregates
with long and short curing times (7, 90, and 180 days), as well as the fact that excessive
water content in recycled aggregates may cause segregation problems.
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5. Summary and Conclusions

Recycled Construction and Demolition Waste Aggregate Concrete (RCDWAC) is an
eco-friendly and cost-effective alternative to conventional concrete in the construction in-
dustry. This study aimed to implement an eco-friendly solution based on a novel Artificial
Intelligence (AI) method in concrete technology for modelling and estimating the Compres-
sive Strength (CS) of RCDWAC using an alternative artificial computing system known
as Fuzzy GMDH-HOA. Several AI benchmark methods, such as the supervised learning
method (e.g., GMDH), Fuzzy paradigm (e.g., the NeuroFuzzy system), and committee-
based model, were compared with the presented model to determine its efficacy and
capability (e.g., ELM). In addition, the uncertainty of the presented novel Fuzzy GMDH-
HOA model was investigated using the Monte-Carlo simulation framework. For evaluating
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the predictability of the developed models, statistical indicators including PMARE, CC, U95,
RMSE, and WI were utilised. In this regard, the RMSE and PMARE values of the Fuzzy-
GMDH-HOA model for CS prediction were decreased to 30.8% and 7.5%, respectively,
when compared to the standalone GMDH model. This study’s findings demonstrated the
predictive capacity of the proposed Fuzzy GMDH-HOA in developing a reasonable and
robust regression-based AI technique for predicting the CS of RCDWAC. On the basis of
AI computational operation, modelling error, and visual consideration (e.g., scatterplots,
time series plots, boxplot, and ECDF distribution diagram), the proposed model extracted
from Fuzzy GMDH can improve accuracy by hybridising the evolutionary HOA algorithm.
According to a sensitivity analysis, the coarse aggregate is the most influential independent
variable in RCDWAC mix design, accounting for 20.03% of its importance.

Nonetheless, this paper proposed an innovative hybridisation of evolutionary models
to evaluate the CS of RCDWAC; future research should address several limitations. As
suggested by hybridised computation, Fuzzy GMDH-HOA may be used to simulate the
CS of RCDWAC with a high level of estimation capability. One of the disadvantages of
the proposed Fuzzy GMDH-HOA is that the technique is time-consuming because tuning
parameters are used to achieve optimal conditions. To circumvent these limitations, it
was determined that more metaheuristic optimisation algorithms with a high level of
convergence should be utilised. More focus should be placed on coupling AI, and the data
mining approach (ensemble mechanism, deep learning methods, etc.) could be extended to
include the data mining approach. As can be presented from the AI process, the proposed
model could predict the CS of RCDWAC in different input types with optimal performance.
One of the disadvantages of the proposed hybrid model (e.g., Fuzzy-GMDH-HOA) is
that non-equation-based prediction and its implementation is time-consuming because
it optimized user manual parameters of the model. Therefore, it was recommended to
propose more evolutionary AI approaches for domination of these limitations via high
convergence speed algorithms, classifiers, and methods. More focus should be placed on
coupling AI, and data mining approaches (ensemble mechanism, deep learning methods,
etc.) could be extended to include the data mining approach.
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