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Abstract: The present article deals with the mathematical investigation of a negative-stiffness ideal
system that can be used in seismic isolation of civil engineering structures. Negative-stiffness systems
can be used in the seismic isolation of structures, because in the case of a strong earthquake, they
do not easily allow vibrations to develop. These negative-stiffness systems can be significantly
more efficient than the usual seismic isolation systems, as they drastically reduce the vibrational
amplitudes of structures, as well as eliminate the inertial seismic structure loadings. The mathematical
investigation of a negative-stiffness ideal system provides documented answers about the effect of
negative-stiffness systems in the seismic behavior of structures. First, the differential equation of
motion of a single-degree-of-freedom oscillator (SDoF) is formulated, without classical damping,
but with negative stiffness. Furthermore, the mathematical solution of the equation of motion is
given, where it is proven that this solution does not describe a structure vibration. Furthermore,
the seismic structure motion follows an exponential increase when the seismic ground excitation is
purely sinusoidal. Finally, to calculate the real response of the negative-stiffness system, a suitable
modification of the Newmark iterative numerical method is proposed.

Keywords: equivalent negative potential energy; modified Newmark’s method; negative-stiffness
system; negative stiffness; seismic isolation

1. Introduction

Civil structures always exhibit positive stiffness because the Bernoulli’s Technical
Bending Theory, the concomitant Betti Principle, the Maxwell–Mohr propositions, and
the Castigliano theorem are always valid. In each case, all civil engineering structures are
conservative systems when nonconservative forces, such as the typical hysteretic ones [1],
are neglected; consequently, their mechanical energy is always constant during the response.
On the contrary, civil engineering structures equipped with nonlinear devices [2,3] are
characterized by a mechanical energy that varies with time due to the work done by the
nonconservative force, according to the modified work–energy theorem.

As a result, the flexibility matrix of a conservative system, calculated by the flexibility
method, is always symmetric and positive definite. Similarly, the stiffness matrix, which
is calculated using the stiffness method (or the use of Finite Elements) is also symmetric
and positive definite. It is noted that in a positive definite matrix, all its diagonal terms are
greater than zero and also the matrix determinant is positive.

The physical meaning of the positive definite stiffness is as follows: When a force is
enforced on a single-degree-of-freedom system, then the point where the force is applied
always moves along the same direction of the applied force. Similarly, when a torque is
enforced on a structure, then the torque application point is always rotated with the same
direction of the torque. In this way, the virtual work is always positive and defined as the
internal product of the force and the induced displacement or the internal product of the
torque and the induced rotation angle. Negative-stiffness systems are not ordinary load-
bearing systems but, in fact, are motion transmission mechanisms, suitably connected to the

Buildings 2022, 12, 1214. https://doi.org/10.3390/buildings12081214 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings12081214
https://doi.org/10.3390/buildings12081214
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0001-5936-2880
https://orcid.org/0000-0002-4119-9381
https://doi.org/10.3390/buildings12081214
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings12081214?type=check_update&version=2


Buildings 2022, 12, 1214 2 of 17

structures. In general, a negative-stiffness system is defined as a single-degree-of-freedom
(SDOF) system in which, when a displacement (equal to unit) is applied to the direction of
its degree of freedom, the internal resistance force cannot develop, but further displacement
develops. This phenomenon is equivalent to the development of an additional internal
force (which has the same direction as the abovementioned displacement) of the structure,
which causes an increase in the SDOF system’s displacement. In other words, a negative-
stiffness system is not opposed to motion as would be the case with a regular-stiffness
spring, but instead strengthens the displacement.

Negative-stiffness systems were introduced for the first time by Molyneaux [4],
but without practical application in civil engineering structures, because, many times,
these phenomena were instantaneous without the required structure stability. More-
over, Alabuzhev et al. [5] gave elements of comprehensive analytical derivations about
the negative-stiffness system. Furthermore, Platus [6] published one of the first articles on
the negative-stiffness concept using basic examples of civil engineering structures. In the
above articles, the use of such systems is proposed for the purpose of isolating the motion
along the horizontal and vertical structure direction. Furthermore, each negative-stiffness
system with positive mass has an unstable solution (Inman [7], see Section 1.8). On the other
hand, in recent years, various negative-stiffness mechanisms have been applied on civil en-
gineering structures using these as seismic isolation systems. In addition, Carella et al. [8,9]
investigated a three-spring system with very low (practically zero) stiffness (Quasi-Zero
Stiffness—QZS), but it had the disadvantage that this worked only for a small range of
displacements, while for larger displacements, the stiffness of the system had a positive
value. Since then, considerable research has been carried out on the feasibility of the
practical application of QZS mechanisms, as examined in the studies of Yang et al. [10] and
Zhou et al. [11].

Moreover, various isolation systems including zero-stiffness mechanisms have been
proposed, such as that of Yingli and Xu [12], who proposed the use of a dual QZS mech-
anism as a more effective element for vibration absorption. It is also noteworthy the
arrangement presented by Xu et al. [13], where five stiffness springs were used to form
the zero-stiffness mechanism. An arrangement with five springs was also proposed re-
cently by Zhang et al. [14], where the springs were connected to establish a QZS vibration
isolation system, in order to prevent various vibrations induced by underwater environ-
ment that cause problems on marine noise measuring equipment. Later, Nagarajaiah [15]
proposed an innovative, adaptable negative-stiffness system, which aims to reduce the
base seismic shear-force of the structure and, also, to reduce the large values of displace-
ments/accelerations that develop under high seismic actions. Attary et al. [16], presented
a rotation-based Adaptive Passive device (RBMAP), consisting of gears and arms, which,
if installed at the location of the isolation bearings of a bridge, can significantly reduce
the seismic shear forces on the bridge piers, as has been shown by suitable experimental
research. Recently, a negative-stiffness system called KDamper was proposed by Anto-
niadis et al. [17] and Sapountzakis et al. [18] and incorporates an extra damping system
called “the Tuned Mass Damper (TMD) system”. A key feature of this device is that it
ensures constant negative stiffness for an important range of displacement amplitudes,
thereby reducing the total stiffness of the isolated structure and achieving adequate seismic
isolation (Nagarajaiah and Varadaraian [19]; Nagarajaiah and Sonmez [20]).

In another article, a damping system combined with a negative-stiffness system to
achieve more effective seismic isolation was presented by Mofidian and Bardaweel [21].
Furthermore, Zhou et al. [22] examined the use of two axial-magnetized permanent mag-
netic rings, in the formation of a negative-stiffness system in combination with springs.
Similarly, the concept of using magnets in forming a negative-stiffness system was given in
an article by Hoque et al. [23], where the examined isolation device consists of magnets
and springs, which connect a base with an intermediate mass and a seismic isolation table.

A redundant planar rotational parallel mechanism (RPRPM), consisting of two parallel
linear elements, which are fixed to a vertical bar having a hinge in its center, was presented



Buildings 2022, 12, 1214 3 of 17

by Kanfkang and Hongzhou [24]. In this system, there are four springs, rigidly attached
to the ends of the two bars, both of which are crosswise; thus, the mechanism develops
negative stiffness. Another form of negative-stiffness system that consists of an axis of
continuous rotation, which is eccentrically loaded, and having springs at their two ends,
was presented by Abbasi et al. [25]. Moreover, it is worth noting that the negative-stiffness
device presented by Li et al. [26] comprised a pre-compressed spring that moves on a
curved block through a roller. This system can be applied to a bridge as a seismic isolator,
and the experimental investigation showed a reduction in the seismic shear force at the
base of the structure for the post-yielding state of seismic isolation bearings. It is noted that
in the linear elastic region, the positive stiffness of a system is practically independent of the
loading. On the contrary, in the case of negative stiffness, special loads are often required
to produce negative stiffness, such as the P-Delta effects (Adam and Jager [27]). Lastly,
in the very significant paper by Wang et al. [28], it referred to a study of multi-degree-
of-freedom (MDOF) structures equipped with a negative-stiffness-amplifying damper in
order to reduce the interstorey drifts.

However, despite the abovementioned articles with reference to the practical appli-
cation of negative-stiffness mechanisms, such systems need further analytical and math-
ematical investigation, in order to examine their response (acceleration, velocity, and
displacement) during seismic excitations.

In the present article, the differential equation of motion of a linear single-degree-
of-freedom oscillator without damping, but with negative stiffness and positive mass, is
presented. Then, through the solution of this equation of motion, it is mathematically
indicated that the response of a negative-stiffness oscillator does not mean oscillation.
Furthermore, the concept of the “equivalent negative potential energy” is produced, which
confronts the kinetic energy. Thus, an important energy absorption is achieved, despite the
fact that the theoretic oscillator does not possess classical damping. In addition, response
displacements follow an exponential increase, even if the base seismic excitation is purely
sinusoidal and it is compatible with Inman’s theory (1996) for the general case of negative-
stiffness systems. In the present article, in order to avoid the unstable solution of a negative-
stiffness system, we propose that the negative stiffness has to been interrupted after the
maximum ground seismic displacement (or after a suitable relative displacement) using a
secondary positive stiffness on the system. Subsequently, an appropriate modification of
the Newmark [29] iterative numerical method is proposed to approximate the numerical
response of the negative-stiffness system. Finally, an appropriate numerical example is
presented to determine the response of a negative-stiffness system using the proposed
modified Newmark numerical method, where it is proven numerically that this negative-
stiffness system is conservative.

2. Analytical Investigation of a SDoF System with Positive and Negative Stiffness

Consider the ideal case of a single-degree-of-freedom oscillator of Figure 1a, which
has mass m, zero damping, and is characterized by the following tri-linear law of response
(Figure 1b). Initially, from the zero-displacement until yielding (in order to achieve negative
stiffness) displacement δenabled or δe, the SDOF oscillator possesses a positive stiffness kP1
(i.e., kP1 > 0), while for larger displacements (i.e., for u > δe), the same oscillator possesses
a negative stiffness kN , where kN < 0. After the suitable relative displacement δu, we
consider an extra secondary positive stiffness kP2 for safety reasons. The oscillation of the
SDOF oscillator is examined in the following three phases:

- Phase A (for response on the first branch, where stiffness is positive, equal to kP1).
- Phase B (for response on the second branch, where stiffness is negative, equal to kN).
- Phase C (for response on the third branch, where stiffness is positive, equal to kP2).
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Figure 1. (a) SDOF oscillator; (b) positive and negative stiffness.

2.1. Phase A: Mathematical Analysis of the Equation of Motion of the SDOF System for u(t) ≤ δe

For the free oscillation of the SDOF oscillator on the first branch (i.e., when u(t) ≤ δe),
where the oscillator possesses positive stiffness kP1, the equation of motion for the free
oscillation is:

m· ..u(t) + kp1·u(t) = 0 (1)

By dividing Equation (1) by mass m, we obtain:

..
u(t) +

kp1

m
·u(t) = 0 (2)

where quantity kP1/m is always positive because mass m and stiffness kP1 are positive and,
thus, ω2

1 = kP1/m. Quantity ω1 represents the cyclic frequency (in rad/s) of the oscillator.
It is noted that the velocity (of mass) is defined as

.
u(t) = du/dt, while the acceleration

of mass is defined as
..
u(t) = d2u/dt2. In order to calculate the mechanical energy of this

system for vibration on the first branch where u(t) ≤ δe, we multiply the members of
Equation (1) by the differential displacement du and, thus, the differential virtual work
produced by the moving of the mass due to displacement du:

m· ..u(t)·du + kP1·u(t)·du = 0 (3)

By introducing the relation du =
.
u(t)·dt into Equation (3), we obtain:

m· ..u(t)· .u(t)·dt + kP1·u(t)·
.
u(t)·dt = 0 (4)

Integrating Equation (4) with respect to time, from 0 to time t1 where u(t) = δe is true,
shows that the change in the mechanical energy of the SDoF system (without damping),
which possesses a positive stiffness kP1, is zero.∫ t1

0 m· ..u(t)· .u(t)·dt +
∫ t1

0 kP1·u(t)·
.
u(t)·dt = 0 ⇒∫ t1

0
d
dt

(
1
2 m· .u2

(t)
)

dt +
∫ t1

0
d
dt

(
1
2 kP1·u2(t)

)
dt = 0 ⇒(

1
2 m· .u2

(t1)− 1
2 m· .u2

(0)
)
+
(

1
2 kP·u2(t1)− 1

2 kP1·u2(0)
)
= 0 ⇒

(T(t1)− T(0)) + (U(t1)−U(0)) = 0 ⇒
T(t1) + U(t1) = T(0) + U(0)

(5)



Buildings 2022, 12, 1214 5 of 17

where T(0) and U(0) are the initial kinetic energy and initial potential energy of the
undamped SDoF system, respectively; T(t1) and U(t1) are the kinetic energy and the
potential energy of the undamped SDoF system, respectively, at time moment t1, where
u(t1) ≤ δe. Equation (5) shows that the total mechanical energy (sum of kinetic and
potential energy) of the undamped SDOF system remains constant at any other time t until
time t1 (Chopra [30]). Equation (2) is also written as:

ω2
1 = −

..
u(t)
u(t)

(6)

which indicates that at each time t (0 ≤ t ≤ t1), the asked displacement time-history u(t)
is always proportional to the second derivative of

..
u(t) in relation (6), as the first-order

derivative does not exist. Moreover, the second derivative of the response displacement,
namely the response acceleration time-history

..
u(t), is analogous with −ω2

1 concerning the
response displacement time-history u(t). Therefore, both the time functions u(t) and

..
u(t)

have to possess the same form of time function to simplify them, while the time function
form must possess the special property to remain the same after two time-derivations.
Out of all the different forms of time functions, the following two are those that have the
above property:

u(t) = A· sin ω1t (7)

u(t) = A·eλ·t (8)

where A is a number representing the oscillation amplitude of the SDoF oscillator, λ is a
factor and e = 2.71828... is the base of the natural logarithm, Equation (7) is a harmonic
function, while Equation (8) is an exponential function. Equation (6) is directly verified
by introducing Equation (7), which proves that the parameter ω1 is the cyclic frequency
(in rad/s) of the SDoF oscillator. However, the solution of Equation (8) also verifies
Equation (6) because the following equations are true:

.
u(t) = A·λ·eλ·t (9)

..
u(t) = A·λ2·eλ·t (10)

By inserting Equations (8) and (10) into Equation (6), it is immediately given that:

λ2 = −ω2
1 (11)

from which we obtain:
λ = ω1i (12)

where i =
√
−1. Consequently, the solution of Equation (8) is written:

u(t) = A·eω1t i (13)

However, using Euler’s complex exponential equation, we can write Equation (13)
as follows:

u(t) = A·eω1t i = (A· cos ω1t) + (A· sin ω1t)i (14)

The complex vector of the displacement u(t) of Equation (14) can be represented
at the complex plane (Gauss plane, Figure 2), where the real part expresses the natural
phenomenon of harmonic oscillation with cyclic frequency ω1 (here identified as a solution
of the harmonic function of Equation (7)), while the imaginary part is used to calculate the
argument (i.e., the angle of the trigonometric numbers appearing in the solution), as well
as to calculate the modulus of the complex number, which, in this case, is identified by the
oscillation amplitude of the SDoF oscillator.



Buildings 2022, 12, 1214 6 of 17

Figure 2. The complex vector of displacement.

Indeed, the absolute modulus value r of the complex number u(t) in every time step
t is:

r =
√
(A· cos ω1t)2 + (A· sin ω1t)2 = A (15)

We observe that the complex solution of Equation (14) resulting from the exponential
function of Equation (8) gives a more complete qualitative and numerical interpretation of
the oscillation of the SDoF oscillator, which possesses positive stiffness kP1.

2.2. Phase B: Mathematical Analysis of the SDoF System for u(t) > δe

Consider that at time t1, the displacement u(t) of mass m that reaches the enabled
displacement δe, namely u(t) > δe is valid; then, the oscillator is inserted into the post-
elastic area (Figure 1b), where the negative stiffness kN occurs for each plastic displacement
y(t) > 0, where t1 ≤ t:

y(t) = u(t)− δe (16)

Then, the equation of motion, considering that kN is a pure negative parameter and,
therefore, we use the absolute value of kN , giving its negative sign—left from the absolute
value, Equation (1)—is now written as:

m· ..y(t)− |kN |·y(t) = 0 (17)

and dividing by mass m, we obtain:

..
y(t)− |kN |

m
·y(t) = 0 (18)

which is re-written as:
..
y(t)−ω2

2 ·y(t) = 0 (19)

where ω2
2 = |kN |/m. Here, the parameter ω2 is a positive amount but does not represent

an oscillation frequency. In order to calculate the mechanical energy of this mathematical
ideal system for oscillation on the second branch only, where y(t) > 0 is true, the two
members of Equation (17) are multiplied by the differential displacement dy and, thus, the
differential virtual work produced due to movement of mass m by dy:

m· ..y(t)·dy− |kN |·y(t)·dy = 0 (20)

By introducing the relation dy =
.
y(t)·dt into Equation (20), we obtain:

m· ..y(t)· .y(t)·dt− |kN |·y(t)·
.
y(t)·dt = 0 (21)
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Integrating Equation (21) with respect to time t, we obtain the mechanical energy of
the SDoF oscillator, which possesses negative stiffness:∫ t

t1
m· ..y(t)· .y(t)·dt−

∫ t
t1
|kN |·y(t)·

.
y(t)·dt = 0 ⇒∫ t

t1
d
dt

(
1
2 m· .y2

(t)
)

dt−
∫ t

t1
d
dt

(
1
2 |kN |·y2(t)

)
dt = 0 ⇒(

1
2 m· .y2

(t)− 1
2 m· .y2

(t1)
)
−
(

1
2 |kN |·y2(t)− 1

2 |kN |·y2(t1)
)
= 0 ⇒

(T(t)− T(t1))− (U(t)−U(t1)) = 0 ⇒
T(t) + (−U(t)) = T(t1) + (−U(t1))

(22)

where T(t1) and U(t1) are the kinetic energy and potential energy, respectively, of the
undamped SDoF system at time t = t1, where the negative stiffness of the SDoF oscillator
is activated and T(t) and U(t) are the kinetic energy and potential energy, respectively, of
the undamped SDoF system that possesses negative stiffness for y(t) > 0.

Equation (22) shows that potential energy acts competitively with the kinetic energy
of the undamped SDoF system (which possesses negative stiffness), developing a new
type of kinetic energy absorption (in other words, it brings an equivalent absorption), even
though this SDoF system does not possess viscous and hysteretic damping. This new type
of potential energy that causes the abovementioned absorption of kinetic energy is due to
the negative sign of the potential energy relative to the positive sign of the kinetic energy,
where Equation (22) shows that the two energies (kinetic and potential) act competitively
with each other, causing an equivalent absorption of kinetic energy, while the damping is
impossible in unstable systems (Inman [7]). The following numerical example of Section 3.2
shows that the mechanical energy is inclined to zero when stiffness is negative, which
indicates that the mechanical energy is quasi-constant. Thus, a civil engineering structure
with negative stiffness is a type of quasi-conservative system, because on the contrary case,
it is well-known that each negative-stiffness system with positive mass has an unstable
solution (Inman [7], see Section 1.8). For the solution of Equation (17), we have:

ω2
2 =

..
y(t)
y(t)

(23)

which shows that at any time t (with > t1), the asked response displacement time-history
y(t) is always proportional to the second derivative

..
y(t), as the first-order derivative is

missing, having analogic factor ω2
2 (see at Equation (23)). Therefore, both the time functions

y(t) and
..
y(t) must have the same form of time function, to simplify them, while the form

of time function must remain same, after two derivatives with reference to time. Of all the
different forms of time functions, only the exponential function has the above property and
can, therefore, be the solution as the harmonic function is not true now. Therefore:

y(t) = B·eµ·t (24)

where B and µ are number coefficients. It is known that the following two equations
are true:

.
y(t) = B·µ·eµ·t (25)
..
y(t) = B·µ2·eµ·t (26)

By inserting Equations (26) and (24) into Equation (23), it is noticed that Equation (24)
has to be:

µ = ±ω2 (27)

in order to be a solution. Therefore, the solution of Equation (24) is given by Equation (28)
and shows that it is not a harmonic oscillation and the displacements y(t) of the SDoF oscil-
lator increase or decrease exponentially over time. Moreover, as it is shown in Equation (22),
the inserted energy is absorbed:

y(t) = B·e±ω2t (28)
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The above results: (a) the fact that there can be no oscillation in the negative-stiffness
systems, because it leads to an exponential increase in displacements u(t); (b) the fact that
the mechanical energy of the system is drastically reduced (due to competitive kinetic and
potential energy action), allow the use of negative-stiffness systems for seismic isolation of
structures (as it has been experimentally shown to work according to the references already
mentioned), while simultaneously reducing (or zeroing practically) the mechanical energy
of the system. Conversely, classical seismic isolation alters the fundamental period of the
structure and drives it out of the resonance area, while negative-stiffness systems do not
even allow the oscillation and nullify the mechanical energy of the system.

2.3. Phase C: Mathematical Analysis of the Equation of Motion of the SDOF System for δt ≤ u(t)

For the free oscillation of the SDOF oscillator on the third branch (i.e., when the seismic
target displacement is smaller by displacement u(t), namely δt ≤ u(t)), where the oscillator
possesses the secondary positive stiffness kP2, the case is same with Phase A.

3. Adaptation of the Newmark Numerical Method to Solve the SDoF System with
Negative Stiffness

There are several numerical methods available in the literature where dynamic re-
sponse is calculated step by step [31]. The Newmark explicit time integration method is one
of the oldest and most powerful methods used for dynamic analysis of structures. There
are many advantages of this subfamily such as the possibility of unconditional stability for
nonlinear systems and second-order accuracy, which leads to frequent use in structural
dynamic analysis. Newmark’s method is simple and can be easily modified in ways that
lead to new, more accurate methods for earthquake response analysis [32–34]. In the fol-
lowing paragraphs, it is described how Newmark’s Beta Method is adapted to calculate the
response of an SDoF system with negative stiffness.

3.1. Analytical Formulation of the Adaptive Newmark Method to Solve SDoF System with
Negative Stiffness

Consider the ideal case of an SDoF oscillator having only a negative stiffness kN and
its mass (that is always positive) loaded with a dynamic sinusoidal loading P(t) given by
the following type (Figure 3):

P(t) = Po· sin(Ω·t) (29)

Figure 3. (a) Harmonic loading of an ideal SDoF oscillator with negative stiffness; (b) negative stiffness.

We consider the initial/starting time (t = 0) at the moment where the above force is
applied and, hence, the initial mass conditions (in terms of displacement, velocity, and
acceleration) are equal to zero. For the formulation of the Newmark [26] numerical method,
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we consider the general case that the damping of the SDoF oscillator is c; then, the mass
motion equation is given by Equation (30):

m· ..y(t) + c· .y(t)− |kN |·y(t) = P(t) (30)

We then adapt the Newmark [26] numerical method to the SDoF oscillator with
negative stiffness for linear systems. Writing the motion equation at both ends t + ∆t and t,
of the differential time interval ∆t, we have:

m
..
y(t + ∆t) + c

.
y(t + ∆t)− |kN | y(t + ∆t) = P(t + ∆t) (31)

m
..
y(t) + c

.
y(t)− |kN | y(t) = P(t) (32)

Subtracting the two above equations by members, the equation of motion over time
∆t with zero initial conditions is given as:

m ∆
..
y + c ∆

.
y− |kN | ∆y = ∆P (33)

where ∆P = P(t + ∆t) − P(t). Note that Equation (33) is expressed as a function of
differential differences ∆y, ∆

.
y, ∆

..
y. We then form the differential differences ∆y, ∆

.
y, ∆

..
y:

∆y = y(t + ∆t)− y(t) (34)

∆
.
y =

.
y(t + ∆t)− .

y(t) (35)

∆
..
y =

..
y(t + ∆t)− ..

y(t) (36)

The differential differences of Equations (34), (35), and (36) are a function of unknown
values y(t + ∆t),

.
y(t + ∆t),

..
y(t + ∆t) of displacement, velocity, and acceleration, respec-

tively, at time t + ∆t. The differential differences ∆y, ∆
.
y, ∆

..
y are then expressed by the

known values y(t),
.
y(t),

..
y(t) of displacement, velocity, and acceleration, respectively, at

the preceding moment t by assuming how the response acceleration changes within the
elementary time step ∆t. Thus, for various assumptions referring to the “acceleration distri-
bution” (constant mean, linear, stepwise constant, parabolic, etc.) within ∆t, the “family of
Newmark methods” is derived. In the present work, we used the assumption of a “constant
mean acceleration” within the time intervals ∆t (i.e., between two discrete time points),
where the response acceleration of the oscillatory mass of a SDoF oscillator “is obtained
constant and equal to half-sum of the two ends of each interval ∆t”. This is sometimes
called “the average acceleration method” and it is unconditionally stable, meaning that the
method will converge for all time increments. Therefore, in the period from t to t + ∆t, the
response acceleration

..
y(t + τ) is obtained from the half-sum expression:

..
y(t + τ) =

..
y(t) +

..
y(t + ∆t)
2

, 0 ≤ τ ≤ ∆t (37)

Time τ denotes any time interval between times t and t + ∆t, according to Figure 4. By
integrating Equation (37) with respect to τ, i.e., by calculating the shaded area of Figure 4
in time step τ, the following results:

.
y(t + τ) =

τ

2
·
[ ..
y(t) +

..
y(t + τ)

]
+ C1 (38)

where C1 is the integration constant, which has such a value that for τ = 0, the velocity is
equal to that at the beginning of the time interval ∆t, i.e., C1 =

.
y(t). Therefore, Equation (38)

gives the final velocity value at the end of time step τ as:

.
y(t + τ) =

τ

2
·
[ ..
y(t) +

..
y(t + τ)

]
+

.
y(t) (39)
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Figure 4. The change in acceleration between time t and t + ∆t (β = 0.25 for mean acceleration into
each time interval, Chopra [30]).

By performing a new integration, that is, a new calculation of the shading area of
Figure 4 of Equation (39), the form of the displacement at the end of time step τ is given:

y(t + τ) =
τ2

4
·
[ ..
y(t) +

..
y(t + τ)

]
+ τ · .

y(t) + C2 (40)

where C2 is the integration constant which, for τ = 0, must result in a displacement equal
to that at the beginning of the time interval ∆t, i.e., C2 = y(t). Therefore, Equation (40)
gives the final value of the displacement at the end of time step τ:

y(t + τ) =
τ2

4
·
[ ..
y(t) +

..
y(t + τ)

]
+ τ · .

y(t) + y(t) (41)

Setting τ = ∆t at Equation (39) and Equation (41), we have:

.
y(t + ∆t) =

∆t
2
·
[ ..
y(t) +

..
y(t + ∆t)

]
+

.
y(t) (42)

y(t + ∆t) =
(∆t)2

4
·
[ ..
y(t) +

..
y(t + ∆t)

]
+ ∆t · .

y(t) + y(t) (43)

By introducing the differential differences ∆y, ∆
.
y, ∆

..
y as given in Equations (34)–(36),

respectively, into Equations (42) and (43), we obtain:

.
y(t + ∆t)− .

y(t) =
∆t
2
·
[
2· ..y(t) + ∆

..
y
]

(44)

y(t + ∆t)− y(t) =
(∆t)2

4
·
[
2· ..y(t) + ∆

..
y
]
+ ∆t · .

y(t) (45)

Solving Equation (45) with respect to ∆
..
y results in:

∆
..
y =

4

(∆t)2 ·
[
∆y− ∆t · .

y(t)
]
− 2· ..y(t) (46)
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and replacing Equation (46) by Equation (44), we have:

∆
.
y =

2·∆y
∆t
− 2· ..y(t) (47)

Moreover, Equations (46) and (47) can be re-written as:

∆
..
y =

1

β · (∆t)2 · ∆y− 1
β · ∆t

· .
y(t)− 1

2β
· ..

y(t) (48)

where β = 0.25, showing the mean acceleration into each time interval (Chopra, 2007) and

∆
.
y =

2 · ∆y
∆t
− 2 · .

y(t) (49)

Therefore, Equations (48) and (49) express the differential differences in acceleration
and velocity (i.e., ∆

..
y and ∆

.
y, respectively) as a function of time t. Thus, by inserting

Equations (48) and (49) into Equation (33), we obtain:[
m

β · (∆t)2 +
c

2β · ∆t
− |kN |

]
· ∆y = ∆p +

[
c

2β
+

m
β · ∆t

]
· .

y(t) +
m
2β
· ..

y(t) (50)

which is written in short form as:

k̂∗ · ∆y = P̂∗ ⇒
∆y = P̂∗

k̂∗
(51)

where
k̂∗ =

m

β · (∆t)2 +
c

2β · ∆t
− |kN |

k̂∗ = the “equivalent stepping lateral stiffness” of the SDoF oscillator;

P̂∗ = ∆P +

(
c

2β
+

m
β · ∆t

)
· .

y(t) +
m
2β
· ..

y(t)

P̂∗ = the corresponding “equivalent stepping load” of the SDoF oscillator.
Equation (51) allows the calculation of the differential displacement ∆y when the

values of velocity
.
y(t) and acceleration

..
y(t) are known at time t. Then, the differential

differences in acceleration ∆
..
y and velocity ∆

.
y are then calculated from Equations (48)

and (49), respectively. Inverting Equations (34)–(36), we calculate the required values of
displacement, velocity, and acceleration, respectively, at time t + ∆t:

y(t + ∆t) = y(t) + ∆y (52)

.
y(t + ∆t) =

.
y(t) + ∆

.
y (53)

..
y(t + ∆t) =

..
y(t) + ∆

..
y (54)

The above procedure accumulates rounding errors, clipping errors, and other errors.
To eliminate these errors, the acceleration

..
y(t) must be obtained directly from the mass

equation as follows:
..
y(t) =

P(t)− c
.
y(t) + |kN | y(t)

m
(55)

3.2. Algorithm of the Modified Newmark Method on a SDoF Negative-Stiffness System

From the abovementioned description of the Newmark method, the following cal-
culation algorithm is summarized, with its steps listed in Table 1. To understand the
abovementioned algorithm, we use a theoretical numerical example of a SDoF, a pure
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negative-stiffness oscillator with no damping (c = 0), which is loaded with a dynamic
sinusoidal load of duration 5 s given by the following expression, Figure 5.

P(t) = Po· sin(Ω·t) = 10· sin(12.5663·t)

where Po = 10 kN and Ω = 12.5663 rad/s. The oscillator mass is m = 120 tons and
possesses a negative stiffness kN = −200 kN/m. The time step of analysis is selected
to be ∆t = 0.02 s, while the three initial conditions of mass (displacement, velocity, and
acceleration of the oscillator mass) are all zero. The following expressions are then defined
at time step ∆t = 0.02 s:(

c
2β

+
m

β · ∆t

)
=

(
0

2·0.25
+

120
0.25 · 0.02

)
= 24, 000

m
2β

=
120

2·025
= 240 (56)

..
y(0) =

P(0)− c
.
y(0) + |kN | y(0)

m
=

0− 0·0.4 + |−200| ·0
120

= 0

Table 1. Algorithm of the Newmark-modified method for a SDoF system with negative stiffness
(linear acceleration method (γ = 1/2, β = 1/4)).

1. Initial Calculations

1.1
..
y(0) = P(0)−c

.
y(0)+|kN | y(0)

m
1.2 Time step selection ∆t

1.3 α = 1
β∆t m + γ

β c and b = 1
2β m + ∆t

(
γ
2β − 1

)
c

2. Calculations In Any Time Step i (Time t)

2.1 Determination of equivalent step load of the SDoF oscillator:

P̂∗ = ∆P +
(

c
2β + m

β·∆t

)
· .

y(t) + m
2β ·

..
y(t)

2.2 Determination of negative stiffness kN
2.3 Determination of the equivalent stepping lateral stiffness k̂∗1 of the SDoF oscillator:

k̂
∗
= m

β·(∆t)2 +
c

2β·∆t − |kN |
2.4 Solve for ∆yi
2.5 ∆

.
y =

2·∆y
∆t − 2 · .

y(t)
2.6 ∆

..
y = 1

β·(∆t)2 · ∆y− 1
β·∆t ·

.
y(t)− 1

2β ·
..
y(t)

2.7 ∆yi = y(t + ∆t)− y(t)
∆

.
yi =

.
y(t + ∆t)− .

y(t)
∆

..
yi =

..
y(t + ∆t)− ..

y(t)

3. Repeat the procedure for the next time step. Replace i with i + 1 and repeat steps 2.1 to 2.7
for the next time step.
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Figure 5. Graph of sinusoidal loading.

Then, the equivalent step loading p̂∗1 is calculated at time t1 = t0 +∆t = 0.00+ 0.02 = 0.02 s.

P̂∗1 = ∆P +
(

c
2β + m

β·∆t

)
· .

y(0) + m
2β ·

..
y(0) =

= (2.486885) + (24, 000) · (0.) + 240 · (0.) = 2.486885

The “equivalent stepping lateral stiffness” k̂∗1 of the SDoF oscillator is then calculated.

k̂∗1 =
m

β · (∆t)2 +
c

2β · ∆t
− |kN | =

120
0.25 · (0.02)2 +

0
2·0.25 · 0.02

− |−200| = 1, 199, 800

Therefore, the step increment ∆y1 of the displacement in the first step is:

∆y1 =
P̂∗1
k̂∗1

=
2.486885

1, 199, 800
= 0.000002

The step increment ∆y1 of the velocity in the first step is now calculated:

∆
.
y1 =

2 · ∆y1

∆t
− 2 · .

y(0) =
2 · 0.000002

0.02
− 2 · 0. = 0.000207

Therefore, the velocity
.
y(0 + 0.02) and the displacement at the end of the time interval

∆t, i.e., at time t1 = 0.02 s, are:

.
y(0 + 0.02) =

.
y(0) + ∆

.
y1 = 0. + (0.000207) = 0.000207

y(0 + 0.02) = y(0) + ∆y1 = 0 + 0.000002 = 0.000002

Finally, the acceleration
..
y(0 + 0.02) at time t1 = 0.02 s is given:

..
y(0 + 0.02) = P(0.02)−c· .y(0.02)+|kN |·y(0.02)

m =

= 2.486885−0·0.000207+|−200|·0.000002
120 = 0.020727

The abovementioned procedure is repeated for the next steps, while the results of the
first four time steps are listed in Tables 2 and 3. Figures 6–8 show the response diagrams of
the displacement, velocity, and acceleration of the oscillating mass of the undamped SDoF
oscillator having negative stiffness, respectively. The same figures show the responses of
the SDoF oscillator with different values of negative stiffness. We can see in Figures 6–8 that
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in the case of such SDoF oscillators, all three response vectors (displacement, velocity, and
acceleration) have the same sign and follow an exponential rate, without oscillation, and
consequently, Equations (25), (26), and (28) are verified, even though the external dynamic
loading is harmonious. Indeed, as the absolute value of negative stiffness increases, the
more exponential the response results are, and as the negative stiffness approaches zero,
a subtle oscillation begins to appear (see Figure 8 for kN = −100 kN/m), which is due
to a change in the sign of external potential, sinusoidal loading, and not to the SDoF
system. This subtle mass oscillation decreases drastically with the increase in the absolute
value of negative stiffness |kN|. Figure 9 gives the numerical calculation of the kinetic
energy, the potential energy, and the mechanical energy of the SDoF system with negative
stiffness. We observe that the mechanical energy of the system, which is always defined
as the sum of kinetic energy and potential energy, is now practically zero. This happens
because the negative sign of stiffness is transferred to the potential energy and, therefore,
the potential energy competes with the kinetic energy of the SDOF system. The zeroing of
mechanical energy shows that the negative-stiffness system absorbs the mechanical energy,
even though the examined oscillator has no classical damping.

Table 2. Newmark Numerical Method for Linear Systems with Negative Stiffness.

t P(t) ∆P
..
y(t) ^

P
∗ ^

k
∗

∆y

0.00 0.0000 0.000000

0.02 2.486885 2.486885 0.020727 2.486885 1,199,800.0 0.000002

0.04 4.817512 2.330627 0.040166 12.279826 1,199,800.0 0.000010

0.06 6.845440 2.027928 0.057109 31.257021 1,199,800.0 0.000026

0.08 8.443249 1.597809 0.070505 58.239350 1,199,800.0 0.000049

0.10 . . . . . . . . . . . . . . . . . . . . . .

Table 3. Newmark Numerical Method.

t P(t) ∆P ∆
.
y

.
y(t) y(t)

0.00 0.0000 0.00400 0.000000

0.02 2.486885 2.486885 −0.00012 0.00388 0.000079

0.04 4.817512 2.330627 −0.00012 0.003761 0.000155

0.06 6.845440 2.027928 −0.00012 0.003641 0.000229

0.08 8.443249 1.597809 −0.00012 0.003520 0.000301

0.10 . . . . . . . . . . . . . . . . . . .

Figure 6. Response displacements of SDoF oscillators with different values of negative stiffness.
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Figure 7. Response velocities of SDoF oscillators with different values of negative stiffness.

Figure 8. Response accelerations of SDoF oscillators with different values of negative stiffness.

Figure 9. Potential energy competes with kinetic energy resulting in the elimination of the mechanical
energy of the SDOF system with negative stiffness.
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4. Conclusions

The present paper aims to investigate through analytical methods the behavior of a
theoretical, ideal SDoF oscillator with negative stiffness and positive mass, loaded with
dynamic loading. The main conclusions of these procedures are listed below.

• The mathematical investigation of the motion of mas equation has shown that the
mathematical equation of response for the theoretical SDoF negative-stiffness system is
exponential, which leads to the conclusion that there can be no oscillation of negative-
stiffness systems.

• The Newmark numerical method has been adapted with β = 0.25 and γ = 0.5 to
calculate the response of such a system, and the influence of the magnitude of the
absolute value of negative stiffness on the response results has been examined. As
the absolute value of negative stiffness increases, the more exponential the response
type is.

• Finally, it has been shown both analytically and numerically that in negative-stiffness
systems, the mechanical energy of the system, which is always defined as the sum of
kinetic energy and potential energy, is virtually zero, and this is due to the competitive
action between kinetic energy and potential energy. The zeroing of the mechanical
energy of a negative-stiffness SDoF shows an absorption of the kinetic energy, even
though the examined SDoF oscillator is naturally undamped.

• Further investigation will include the examination of a negative-stiffness SDoF oscilla-
tor with viscous and hysteretic damping.
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