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Abstract: The selection of an appropriate smart building technology has been a challenge for stake-
holders, because no specific selection criteria are currently available. This study aimed to identify the
potential selection criteria for the selection of smart building technologies for prison buildings in the
United Arab Emirates. A questionnaire survey was conducted to evaluate the relative importance
of smart building technologies and the specific selection criteria. 238 experts from the public and
the private sector with rich experience in the construction and prison industry participated in the
survey. The data obtained were analyzed for descriptive statistics and the Mann-Whitney U test was
conducted to compare the responses of the government and private sector respondents. Cronbach’s
coefficient was estimated using reliability analysis. Finally, exploratory factor analysis was performed
by Principal Axis Factoring (PAF) to extract the contributing factors and was further improved by
varimax rotation using SPSS. To evaluate the appropriateness of the factor extraction, the Kaiser-
Mayer-Olkin (KMO) measure of sampling accuracy and Barlett’s test of sphericity were conducted.
The results demonstrated that most participants thought that the safety and security, anti-hacking
capability, high working efficiency, and durability of the new smart building technology were very
important. 14 listed selection criteria were extracted into three factors by factor analysis explaining
50.585% total variation. Regarding smart building technologies, fire protection was mostly voted by
the participants followed by video surveillance and heat, ventilation, and air-conditioning system
(HVAC). This study is a novel research study identifying the key selection criteria for the selection of
important smart building technologies and would be helpful for a broad audience.

Keywords: smart building technology; selection criteria; HVAC; principal component analysis;
UAE; prisons

1. Introduction

Buildings used to be a crucial component of complex ecosystems as they share some
unique characteristics with living organisms such as energy cycling, information sharing,
and interaction with the outer environment. While compared with traditional buildings,
intelligent or smart buildings experience better interaction with their residents and the
environment. The smart building concept was pioneered during the 1980s in the USA
and evolved quickly throughout the world [1]. A smart building has a unique set of
integrated systems that perform different functions of the building such as energy and
power management, building security, and surveillance very smoothly thus keeping energy
losses to a minimum to maintain sustainability [2]. A truly smart building not only provides
safe, energy-saving, environmentally friendly, and convenient services but also incorporates
situational awareness, which allows it to proactively respond to the presence of people
and adapt to changing circumstances throughout the day using actuators and devices
that control engineering systems such as heating, lighting, and air conditioning [3]. Smart
buildings have been widely adopted in various parts of the world. Some popular smart
buildings include the Mirage in Las Vegas, Three Logan Square in Philadelphia, the Los
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Angeles Convention Center, and the City of San Francisco Public Utility Commission
headquarters [4].

To make buildings smart, various smart building technologies have been used globally.
The most commonly known smart building system is a building management system
(BMS), which manages buildings and their interaction with users. The BMS facilitates
proactive management of various mechanical, electrical, and plumbing systems, and
monitors and modulates the performance metrics of a building [5,6]. The BMS is further
enhanced by integrating modern technologies such as the internet of things (IoT) and
wireless sensor technology [7]. Besides BMS, building automation systems (BAS) integrate
and automate various functions of a building whereas energy management systems (EMS)
are used to monitor the power transmission system and have been widely researched due
to their ability to integrate and manage several kinds of automation technologies within
the building [8]. Smart buildings also require heating, ventilation, and air conditioning
(HVAC) systems, lighting control systems, access control systems, video surveillance, and
facility management systems [9].

Selecting an appropriate smart technology for a specific building has always been
an interesting subject for researchers and stakeholders. The most prominent of these
criteria include reliability, security, working efficiency, integrity, and market potential [10].
Another critical selection criterion is cost-effectiveness as smart buildings are considered
to be associated with lower maintenance and operational costs because of automation.
It is estimated that while smart buildings may have a 25% higher initial cost compared
with conventional buildings, they could generate an average of 38% operational and
maintenance efficiency over the next 30 years. Some other criteria for selecting a smart
building technology may include durability, and credible suppliers [11]. Intelligent fresh
air supply along with thermal control is also deemed critical when selecting smart building
technologies [12]. Another crucial criterion is the environmental sustainability of the
smart buildings which is considered a key criterion aimed to enhance working efficiency,
and reduce energy losses while maintaining residents’ living standards and improving
environmental stability [2]. Omar [13] stated that a diversity of selection criteria might be
considered for selecting and evaluating smart buildings such as safety, working efficiency,
economics, and living comfort.

It should be kept in mind that the selection criteria for the smart building technologies
depend on the type of the smart building whether it is a commercial, residential or correc-
tional facility. Smart prisons are simply smart buildings designed for prison facilities to
monitor and control inmates’ behavior. Knight and Van De Steene [14] define a smart prison
as a structure that has an automatically controlled perimeter wall and lighting, optimum
water and energy control, remote monitoring, automated data collection on inmates and
the building, use of RFID to track and control violent inmates, and interception of illegal
calls. Various smart building technologies and prison concepts are being developed to
make smart prisons more efficient. For instance, the Belgium Prison Cloud is a smart digital
system that is used to monitor inmate activities after release and helps in rehabilitation
into society [15]. In their study, Cynthia, et al. [16] demonstrated the usefulness of IoT
technology in developing prisoner escape alert and prevention systems. Hence, a smart
prison building needs suitable selection criteria to choose smart building technologies to
enhance its unique functions such as monitoring and control of inmates.

Unfortunately, a set of selection criteria for smart building technologies for smart
prison buildings is missing from the current body of knowledge. Most of the current critical
criteria such as energy efficiency, affordable maintenance support, and maintenance and
operational costs are mainly designated for residential and commercial smart buildings.
Therefore, this study aimed to identify the key selection criteria for suitable smart building
technologies that could be implied in prison buildings. In particular, as smart building
technologies have been rarely implemented in UAE prisons and there is no specific standard
for the selection of smart building technology, this study was designed to assist UAE prison
administrators in selecting appropriate smart building technologies for prison buildings.
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For this purpose, a broad questionnaire survey was conducted in UAE to collect experts’
opinions on (1) the most critical selection criteria of smart building technologies that could
be implemented in the UAE prisons, and (2) the importance of various smart building
technologies which are currently used in the UAE prisons. Exploratory factor analysis was
then performed to identify groups of those selection criteria.

2. Materials and Methods

To address the research gap, semi-structured interviews were first conducted with
experts from the prison and construction sectors for their opinions on smart building
technologies that were currently being used in UAE prisons and the potential criteria for
their selection. After that, a comprehensive online questionnaire survey was conducted
to obtain the opinions of experts from the prison industry about (1) the key selection
criteria that should be considered while selecting an appropriate smart building technology
for prison facilities in the context of UAE prisons, and (2) the importance of various
smart building technologies for prison buildings in UAE. After the questionnaire survey,
explorative factor analysis was performed to group the selection criteria into different
groups based on the Eigenvalues.

2.1. Questionnaire Design and Data Collection

The questionnaire was designed based on (1) the Building Intelligence Framework
(BIF), which highlights distinguishing factors to separate smart buildings from traditional
buildings and (2), the Intelligent Building Survey (IBS) which provides the reasoning of
BIF with the empirical evidence; both have been extensively used in the study of smart and
intelligent buildings [17]. The Building Intelligence Framework (BIF) is now one of the most
popular models for analyzing smart building technologies and has been validated under
various environments and conditions [18–20]. In addition, the Intelligent Buildings Criteria
Selection (IBCS) model was used in designing the survey instrument for the identification
of decision criteria. The model has not been tested or validated but remains an ideal
framework for assessing the criteria for smart buildings [13].

Initially, semi-structured interviews were conducted involving 14 experts from prison
and construction sectors for their opinions on smart building technologies that were cur-
rently being used in UAE prisons and the potential criteria for their selection (unpublished
data). After conducting a thematic analysis of the interviewees’ responses and literature
review, 15 smart building technologies and 14 criteria on how to select these technologies
were listed in the questionnaire. The questionnaire contains three sections. The first section
included questions on the respondents’ personal and socio-economic information such as
age, gender, employment status, education level, type of organization, and the number
of years with the organization. The next section was designed to rank the smart building
technologies being used in prison facilities in UAE based on the Likert scale ranging from
1 to 5 (where 1 represented not important at all, and 5 represented extremely important)
regarding their importance. The last section explored the opinion of respondents on the
relative importance of different criteria for the selection of smart building technologies
in the UAE prisons based. Responses to questions in each section were measured on
a Likert scale ranging from 1 to 5 (where 1 represented not important at all, and 5 repre-
sented extremely important) [21,22].

To validate the survey instrument, a pilot study was conducted with five respondents
to identify areas that the respondents find difficult to apprehend. Changes were made
where necessary to ensure that the survey instrument is clear and suitable for its purpose.

Potential participants were identified mainly through personal resources and databases
from Abu Dhabi Police Head Quarters. Also, LinkedIn profiles of contractors, engineers,
consultants, and government officials were skimmed and scrutinized for participation in
the survey. The selective respondents with good knowledge of the smart building tech-
niques having a minimum of three years of experience in dealing with smart building
technologies were approached to minimize biases. Invitation letters briefly informing the
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participant about the goals and scope of the study were sent out to 400 target respondents
to officially invite them to participate in the survey through the Qualtrics online platform.
Follow-up reminders were sent after every two weeks to those who failed to respond
in time to make sure all participants responded to all the questions completely. Finally,
238 responses were collected online within a 40 day timeframe, demonstrating a 60% re-
sponse rate, which is encouraging as supported by many studies [23,24]. The respondents
included contractors, project managers, engineers, government officials, and members of
the public. This diversity of respondents enhanced the richness of the data collected.

2.2. Data Analysis

In this research, data collected from the survey was first analyzed for normality check
by the Shapiro-Wilk test [25]. The data were further subjected to descriptive statistics, and
Mann-Whitney U was performed to separate the responses of government and private
respondents using the Statistical Package for the Social Sciences [26]. The nonparametric
effect size was calculated by the following formula:

r = Z/
√

n (1)

where r = effect size coefficient, n = number of respondents in government and private groups.
The value of r ranges from −1 to 1 and Cohan classified it into three categories

each for positive and negative coefficients [27] i.e., 0.1–0.3 = small effect, 0.3–0.5 = mod-
erate effect, and 0.5–1.0 = large effect whereas for negative effect size coefficient, −0.1 to
−0.3 = small effect, −0.3 to −0.5 = moderate effect, and −0.5 to −1.0 = large effect. Since
most of the Z-scores were negative, therefore the absolute value of the effect size coefficient
was considered.

Cronbach’s alpha was estimated by reliability analysis to evaluate the authenticity
of the respondents’ opinions. Exploratory Factor Analysis (EFA) was performed on the
data obtained from each variable to extract the latent factors which contributed significant
contributions to variation among the tested variables. To evaluate the appropriateness
of the factor extraction, the Kaiser-Mayer-Olkin (KMO) measure of sampling accuracy
and Barlett’s test of sphericity were conducted. The KMO ensures that the observed
correlation coefficients and partial correlation coefficients are very less whereas Bartlett’s
Test of sphericity is used to check if there is a certain redundancy between the variables
and that at least two variables are correlated [28,29]. KMO measure test showed the value
of 0.920 for the selection criteria of the smart building technologies which is greater than
the acceptable limit of 0.60 whereas Barlett’s test of sphericity confirmed that the data
was suitable for factor extraction (χ2 = 1453.381, df = 91, p < 0.01) [30]. Principal Axis
Factoring (PAF) was used in this study to extract the factors which is a widely used method
for heteroscedastic data [31]. Following factors extraction by PAF, the varimax method of
rotation was applied to more accurately group different selection criteria.

3. Results
3.1. Sociodemographic Information of the Participants

The socio-demographics of the participants are illustrated in Table 1. Out of 238,
84.9% of participants were males compared to only 15.1% of females. Concerning age,
the higher proportion of participants was the aged between 31 and 40 years old (50.4%)
followed by respondents aged between 41 and 50 years (22.7%). Only 0.8% of participants of
age above 60 years participated in the survey. The survey participants belonged to diverse
ethnic groups but most of them were UAE nationals (87.0%). People from other countries
such as India, the UK, the USA, France, and Somalia working in the UAE also participated
in the survey (13.0%). Most of the participants were based in Abu Dhabi at the time of the
survey (72.7%), followed by Dubai-based respondents (16.4%). Participants with a good
educational background were selected to obtain a greater warranty of results. Out of all
the participants, 45.0% had a bachelor’s degree, followed by 26.1% with a master’s degree.
Ph.D. degree holders contributed 8% of the total participants. As the prison facilities are
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owned and operated by the government in UAE, most of the participants were from the
public sector (92.0%) with only 6.3% respondents from the private sector. 33.6% hold
a higher position in their respective departments (MIES), followed by 28.2% from PCI.
68.9% of participants had more than 10 years of relevant experience.

Table 1. Sociodemographic characteristics of the respondents participating in the survey.

Characteristics Categories Frequency Percent

Gender
Male 202 84.9

Female 36 15.1

Age

≤30 years 49 20.6
31–40 years 120 50.4
41–50 years 54 22.7
51–60 years 13 5.5
≥60 years 2 0.8

Nationality UAE 207 87.0
Foreigners 31 13.0

Emirates

Abu Dhabi 173 72.7
Dubai 39 16.4

Sharjah 11 4.6
Ajman 2 0.8

Fujairah 1 0.4
Umm Al Quwain 3 1.3
Ras Al Khaimah 9 3.8

Qualification

College diploma 10 4.2
Bachelor’s degree 107 45.0
Master’s degree 62 26.1

PhD 19 8.0
Others 40 16.8

Organization
Government 219 92.0

Private 15 6.3
Other 4 1.7

Affiliation

Ministry of Interior 45 18.9
Punitive and

Correctional Institutions 67 28.2

Ministry of Interior
Engineers and

Specialists department
80 33.6

Prisons Consultants,
Experts, and Architects 36 15.1

Strategic Partners 10 4.2

Experience

≤3 years 11 4.6
4–6 years 29 12.2
7–9 years 34 14.3
≥10 years 164 68.9

3.2. Normality and Reliability Analysis

The data for key selection criteria and smart building technologies being used in UAE
were subjected to a normality test. The Shapiro-Wilk test of normality showed that the data
for key selection criteria and smart building technologies were not normally distributed
(p < 0.05) (Table 2). The reliability analysis was performed to verify the authenticity of the
responses provided by the participants. Cronbach’s alpha for the tested characteristics
understudy was higher than 0.80 confirming the participant’s deep knowledge about the
questions asked. The Cronbach’s alpha for various selection criteria of smart building
technologies was 0.910, and for smart building technologies currently used in the UAE
prisons, a value of 0.913 was recorded (Table 2).
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Table 2. Shapiro-Wilk test of normality and reliability analysis.

Variable W Skewness Kurtosis DF p-Value Cronbach’s Alpha

Selection criteria 0.895 −1.509 ± 0.158 5.907 ± 0.314 238 0.000 0.910
Smart building

technologies 0.923 −1.019 ± 0.158 3.842 ± 0.314 238 0.000 0.913

Where W = Shapiro-Wilk test statistic.

3.3. Smart Building Technologies Currently Being Used in UAE Prisons

Of the 15 smart building technologies currently used in the UAE prisons, the result
in Table 3 shows that all these smart building technologies have mean scores above 4.0
(very important), except the E-shopping system. The top five smart building technologies
include fire protection system, video surveillance system, wiring infrastructure, HVAC
system and audio-video system. As for the opinions of different groups (public vs. private
respondents) are concerned, the Mann-Whitney U test shows non-significant differences
for 8 out of 15 smart building technologies by comparing government and private sector
respondents. In general, the public respondents perceived higher importance to most of
the smart building technologies than private respondents, except for building manage-
ment system (BMS). Government respondents when compared to private respondents for
“Fire Protection System” demonstrated no statistical difference (p = 0.2768) with a negli-
gible effect size (r = 0.0711), for “Video Surveillance System” has no statistical difference
(p = 0.0778) with a negligible-small effect size (r = 0.1153), for “Wiring Infrastructure” no
statistical difference (p = 0.4912) with a negligible effect size (r = 0.0450), and for “HVAC”
no statistical difference (p = 0.1735) with a negligible effect size (r = 0.0890), while for
“Networking System” showed statistical difference (p = 0.0026) with a small effect size
(r = 0.1968) followed by “Advanced Information System” (p = 0.0062) with negligible-small
effect size (r = 0.1788), “Building Management System” (p = 0.0058) with small effect size
(r = 0.1804) and “Energy and Sustainability System” (p = 0.0002) with small effect size
(r = 0.2462) (Table 3).

3.4. Key Selection Criteria

Regarding the 14 selection criteria of smart building technology for prison buildings,
the results revealed that all the listed selection criteria were rated as “very important” with
a mean value of more than 4.0 (Table 4). The top five selection criteria were safety and
security of the smart building technology (4.55), the anti-hacking capability of the smart
building technology (4.46), the high working efficiency of the smart building technology
(4.37), easy access to spare parts (4.32) and strict compliance with international standards
(4.32), followed by allowing for further upgrade (4.29) as, without the ability to upgrade,
the smart building technology will become void soon with the advancement in technol-
ogy. The respondents were also concerned that the smart building technology should be
durable (4.27) with a longer life with affordable maintenance support (4.22), and it must be
compatible (4.25) with the existing prison buildings and new prison design. Environmental
sustainability (4.25) has been an issue for all the prison buildings, so was ranked as very
important as was cost-effectiveness (4.27). In UAE, very few companies perform business
with smart building technologies, so the government has to rely on international firms for
the purchase of new smart building technology. For suppliers operating in UAE, it was
highlighted that their firms should have good credibility (4.11) to meet the standards and
should have a wide range of products with authentic brand and warranty (4.09) (Table 4).
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Table 3. Descriptive statistics, Mann-Whitney U test, and Cohan’s effect size for the smart building technologies being used in the UAE prisons.

Smart Building Technologies Mean Rank
Govt (n = 219) Private (n = 15)

Mann Whitney U Z p-Value r
Mean Rank Mean Rank

Fire protection system 4.66 1 4.66 1 4.60 1 1389.500 −1.0876 0.2768 0.0711
Video surveillance system 4.63 2 4.64 2 4.40 3 1228.000 −1.7638 0.0778 0.1153

Wiring infrastructure 4.45 3 4.48 3 4.40 3 1482.500 −0.6885 0.4912 0.0450
Heat, ventilation, and

air-conditioning system (HVAC) 4.39 4 4.40 4 4.20 4 1332.500 −1.3609 0.1735 0.0890

Audio-video system 4.33 5 4.36 5 3.80 6 1461.000 −0.9155 0.3599 0.0598
Networking system 4.31 6 4.33 6 3.80 6 922.500 −3.0108 0.0026 0.1968

Building automation system (BAS) 4.27 7 4.28 8 4.07 5 1250.500 −1.9365 0.0528 0.1266
Advanced information system 4.27 7 4.30 7 3.73 7 998.000 −2.7351 0.0062 0.1788

Building management system (BMS) 4.27 8 4.24 9 4.47 2 982.500 −2.7595 0.0058 0.1804
Lighting system 4.20 9 4.22 11 3.80 6 1225.500 −1.7939 0.0728 0.1173

Energy and sustainability system 4.20 9 4.24 10 3.53 8 744.000 −3.7660 0.0002 0.2462
E-messaging system 4.07 10 4.12 12 3.07 10 1050.000 −2.5597 0.0105 0.1673

Vertical transportation system 4.06 11 4.10 13 3.33 9 1054.500 −2.5532 0.0107 0.1669
Funds transfer system 4.03 12 4.07 14 3.33 9 894.500 −3.0584 0.0022 0.1999

E-shopping system 3.48 13 3.55 15 2.47 11 1623.000 −0.0881 0.9298 0.0058
Where r = Cohan’s effect size.
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Table 4. Descriptive statistics, Mann-Whitney U test, and Cohan’s effect size of the key selection criteria for selecting smart building technologies for UAE prisons.

Selection Criteria Mean Rank
Govt (n = 219) Private (n = 15)

Mann-Whitney U Z p-Value r
Mean Rank Mean Rank

Safety and security of the
smart building technology 4.55 1 4.56 1 4.40 3 1641.000 −0.0067 0.9946 0.0004

The anti-hacking capability of
new smart building technology 4.46 2 4.45 2 4.53 1 1562.500 −0.3476 0.7282 0.0227

High working efficiency of
new smart building technology 4.37 3 4.37 3 4.27 4 1377.500 −1.1464 0.2516 0.0749

Easy access (availability) to spare parts 4.32 4 4.30 5 4.53 1 1616.000 −0.1162 0.9075 0.0076
Strict compliance with international standards 4.32 5 4.31 4 4.40 3 1515.000 −0.6018 0.5473 0.0393

Allow for further upgrade 4.29 6 4.28 7 4.47 2 1293.000 −1.4956 0.1348 0.0978
The durability of new

smart building technology 4.27 7 4.29 6 3.87 6 1359.500 −1.2141 0.2247 0.0794

Suitability of the new smart building
technology to the existing buildings 4.25 8 4.27 8 3.87 6 1273.500 −1.5837 0.1133 0.1035

Compatibility of new smart building technology
with the design of new prisons 4.25 8 4.26 9 4.07 5 1492.500 −0.6460 0.5183 0.0422

Affordable maintenance support 4.22 9 4.20 11 4.40 3 1325.500 −1.3571 0.1748 0.0887
Environmental sustainability of the

new smart building technology 4.21 10 4.24 10 3.80 7 1248.500 −1.6611 0.0967 0.1086

Cost-effectiveness 4.17 11 4.18 12 3.87 6 1073.500 −2.4290 0.0151 0.1588
Supplier’s credibility in the market 4.11 12 4.11 13 4.07 5 1582.500 −0.2533 0.8000 0.0166

Smart building technology brand and warranty 4.10 13 4.07 14 4.47 2 1499.000 −0.6216 0.5342 0.0406
Where r = Cohan’s effect size.
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Similarly, respondents working in government and private organizations have con-
trasting opinions about the importance of selection criteria. The Mann-Whitney U test
revealed non-significant statistical differences (p > 0.05) for all the tested selection criteria
when comparing government and private sector respondents, while cost-effectiveness
proved to be the only selection criteria that demonstrated statistically significant difference
(p = 0.0151) with negligible effect size (r = 0.1588). The government respondents empha-
sized higher ratings for safety and security with no statistical difference (p = 0.9946) and
negligible effect size (r = 0.0004), high working efficiency with non-significant difference
(0.2516) and negligible effect size (r = 0.0749), durability of new smart building technol-
ogy having non-significant difference (p = 0.2247) with negligible effect size (r = 0.0794),
compatibility with the design of new prisons showing no statistical difference (p = 0.5183)
with negligible effect size (r = 0.0422), sustainability demonstrated no statistical difference
(p = 0.1133) with negligible effect size (r = 0.1035), and suppliers’ credibility illustrated
no statistical difference (p = 0.8000) with negligible effect size (r = 0.0166) whereas other
criteria were ranked higher by the private sector respondents. The anti-hacking capability
was the top-ranked selection criterion for the private group (statistically non-significant
difference having p = 0.7282 with negligible effect size r = 0.0227) followed by allowing for
further upgrades (statistically non-significant difference having p = 0.1348 with negligible
effect size r = 0.0978) and smart building brand and warranty (statistically non-significant
difference having p = 0.5342 with negligible effect size r = 0.0406). The public respondents
ranked all criteria above the mean value of 4.00 except for durability, suability, sustainability,
and cost-effectiveness. (Table 4).

3.5. Exploratory Factor Analysis

The factor analysis extracted three factors based on the Eigenvalues following vari-
max rotation. The first factor denoted as economic criteria included five selection criteria
that cumulatively contributed 18.063% variation to overall variance (Table 5). The selec-
tion criteria in this factor included durability of the new smart building technology with
a factor loading of 0.695 followed by the suitability of the new smart building technology
to the existing buildings (0.665), compatibility of new smart building technology with the
design of new prisons (0.532), affordable maintenance support (0.528), and installation
and operational costs (0.471). The second factor assigned as performance-related criteria
contributed 16.532% variation and has the highest factor loading of 0.659 for the high
working efficiency of new smart building technology. The other criteria in this factor
included strict compliance to international standards (0.620), the anti-hacking capability of
new smart building technology (0.613), easy access (availability) to spare parts (0.521), and
safety and security of the smart building technology (0.467). The third factor sustainability-
related criteria demonstrated a 15.991% variance and included four key criteria such as
smart building technology brand and warranty with a factor loading of 0.720, followed
by suppliers’ credibility in the market (0.626), allowing for further upgrade (0.612) and
environmental sustainability of the new smart building technology (0.412). The scree plot
for all the extracted factors based on their Eigenvalues has been illustrated in Figure 1. The
scree plot provides a quick indication of the elbow-shaped curve of the extracted factors
based on Eigenvalues. Only three factors had Eigenvalues greater than 1, whereas the rest
of the factors were valued below the marginal level of 1.

Table 5. Explanatory factor analysis for the key selection criteria of smart building technologies for
UAE prisons.

Factor 1 Economic Criteria Factor Loading Covariance (%)

The durability of new smart building technology 0.695 18.063
Suitability of the new smart building technology to the existing buildings 0.665

Compatibility of new smart building technology with the design of new prisons 0.532
Affordable maintenance support 0.528
Installation and operational costs 0.471
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Table 5. Cont.

Factor 2 Performance-related criteria

High working efficiency of new smart building technology 0.659 16.532
Strict compliance with international standards 0.620

The anti-hacking capability of new smart building technology 0.613
Easy access (availability) to spare parts 0.521

Safety and security of the smart building technology 0.467

Factor 3 sustainability-related criteria

Smart building technology brand and warranty 0.720 15.991
Supplier’s credibility in the market 0.626

Allow for further upgrade 0.612
Environmental sustainability of the new smart building technology 0.420

Figure 1. Scree plot of the key selection criteria for the selection of smart building technologies in the
UAE prisons.

4. Discussion
4.1. Factor 1: Economic Criteria

The first factor is comprised of economic selection criteria that accounts for
18.063% variation for the tested selection criteria. This factor possessed prominent cri-
teria, including the durability of new smart building technology, the suitability of the new
smart building technology to the existing buildings, compatibility of new smart build-
ing technology with the design of new prisons, affordable maintenance support, and
installation and operational costs.

Many previous studies have emphasized the high cost of smart building technologies.
These costs are not only limited to purchase cost but also accounts for installation costs,
operational costs, and maintenance costs. Operational and maintenance costs are key
selection criteria that may be considered while selecting smart building technologies. High
management costs are the key hurdles in the way of adopting smart building technologies
as reported by [32]. Very high procurement costs of smart building technology hinder its
adoption at a large scale, as the building owners do not have enough resources to purchase
smart technologies [33]. In comparison with small buildings, operational costs are usually
lower for larger buildings that have advanced BAS. Contrastingly, redundant technologies
such as smart thermostats are more economical for use in smart buildings. This comparison
of buildings with advanced BAS does not seem true when compared with wireless cloud-
based EIS. Tracy [34] reported that cloud-based EIS requires 30% fewer installation costs
than a typical BAS. Similarly, cloud computing technologies provide not only economic
comfort to the users but are also safer and more reliable than traditional data management
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systems [35]. Panchalingam and Chan [36] reported that artificial intelligence (AI)-powered
smart building technologies are cost-effective, have higher security benefits and energy
savings, and enhance the life span of the devices compared to traditional smart technologies.
Many studies have also focussed on the issue of lowering maintenance costs of smart
building technologies, thus enhancing the longer life span of smart technology [37,38].

4.2. Factor 2: Performance-Related Criteria

The next factor, performance-related criteria, explained for 16.532% of the variation
including criteria such as high working efficiency, strict compliance to international stan-
dards, the anti-hacking capability of new smart building technology, easy access to spare
parts, and safety and security of the smart building technologies.

The performance of smart building technology is mainly assessed by speed, accuracy,
and working efficiency. Performance is not only attributed to the smartness of the building
system but also a measure of the level of satisfaction of end-users [39]. The Performance
indicators may include high working efficiency, ability to integrate with BMS, automated
monitoring, energy saving, reliability, and compatibility with other building systems [40].
Cohen, et al. [41] highlighted five indicators to assess whether either smart building
fulfills the needs of its residents. The prominent indicators include user comfort, residents’
physical well-being, an appropriate lightning system, noise control system, and quality
air. According to Zhang and Hu [32], the lack of modern security and management
technologies may lead to poor performance of the building systems whereas managing
the maintenance costs, effective building management through digital infrastructure tools,
and adopting appropriate smart building technologies boost the overall performance of the
smart building system [7].

Evidence exists in the literature on adopting smart building technologies for enhanc-
ing the energy performance of smart buildings. For instance, the Siemens Middle East
Headquarters in Abu Dhabi has managed to reduce its power consumption by 63% by
adopting smart building concepts [42]. In Amsterdam, The Edge building has been able to
achieve a 70% reduction in electricity consumption by adopting a smart energy manage-
ment system that adjusts temperature and light levels according to the building operations
and occupancy [43]. Theoretically, Moreno, et al. [44] have shown that smart buildings can
achieve up to 98.5% energy expectation maximization (EM) efficiency in variable occupancy.
Another study by Ożadowicz [45] investigated the impact of building automation on energy
efficiency by analyzing a university building. The study revealed that electric energy use
was reduced by 36.6%, while heat energy declined by 30.5% due to the implementation of
the automation project.

4.3. Factor 3: Sustainability-Related Criteria

The remaining selection criteria were grouped under sustainability-related criteria for
smart building technology which contributed 15.991% to the total variance for all the tested
selection criteria. The critical selection criteria placed in this group include the brand and
warranty of the smart building technology, suppliers’ credibility in the market, ability of
the smart buildings to allow for further upgrades, and environmental sustainability of the
smart building technology.

Environmental sustainability has been a key criterion for smart building systems to
ensure less energy consumption, less waste generation, and low greenhouse gas emissions.
Smart buildings are aimed firsthand to keep the environment sustainable but constructing
sustainable buildings is not an easy task. Serious efforts were implemented in the recent
past to make the environment sustainable by improving working efficiency and eliminat-
ing waste through modern building systems. Smart buildings could be environmentally
sustainable by reducing greenhouse emissions, enhancing recycling, and adopting renew-
able energy sources [42,43,46]. For this purpose, in 2014, the Dubai Municipality issued
a directive requiring the use of Building Information Modeling (BIM). All buildings of
over 300,000 square feet or 40 stories were required to use the BIM [47]. The Masdar smart
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city, a project worth $22 billion, was designed with sustainable urban technology ideas to
ensure zero carbon and sustainable settlement [48]. Most cities and towns have adopted
sustainability as a long-term solution to growth and development. Thus, governments
particularly in the developed world have promoted the concept of sustainable design [49].
For instance, in the United States, the number of energy and environmentally efficient
buildings has increased due to the tax benefits associated with such buildings [50]. In
recent times, sustainability has been associated with green buildings whereas performance
is related to smart buildings because green buildings serve the primary purpose of limiting
environmental impacts whereas smart buildings focus on the efficient operation of the
building system [51].

AlWaer and Clements–Croome [52] have outlined nine key performance indicators
(KPIs) to obtain sustainability in terms of the energy efficiency of smart buildings. The
critical KPIs included maximizing passive solar energy, enhancing electrical energy con-
servation, and conserving non-renewable energy resources. A smart building’s energy
efficiency and carbon reduction ability can be assessed by adopting six KPIs outlined
by Global Sustainability Perspective from Jones Lang LaSalle (JLL). These KPIs include
wireless sensors, cloud computing, advanced communication system, data analytics tool,
remote control system and integrated administrative system [53].

5. Conclusions

This paper identifies and evaluates the key selection criteria for smart building tech-
nologies used in UAE prisons. The findings demonstrated that all the tested selection
criteria had mean values above 4 (very important). The highly ranked selection criteria
include safety and security, antihacking capability, the high working efficiency of the smart
building technology, easy access to spare parts, and strict compliance with international
standards, followed by allowing for further upgrades. Concerning the importance of
smart building technologies currently used in the UAE prisons, the prominent technologies
include fire protection system, vertical transportation system, wiring infrastructure, HVAC,
and lighting systems, each with a mean ranking of more than 4.0 (very important), except
E-shopping system. The exploratory factor analysis (EFA) reveals that three potential
factors were extracted that contributed approximately 50% variation. These factors were
named as economic, performance-related, and sustainability-related criteria, each factor
contributing approximately 17% variation.

This study generated key insights about potential smart building technologies be-
ing implemented in prison buildings in the UAE. First, various critical selection criteria
were highlighted in this study that could serve as the basis of guidelines for the broader
audience ranging from academia to private stakeholders. Secondly, the potential smart
building technologies were listed that could be used for prison facilities helping prison
administration with ease to control inmates and operate prison matters with very less
manpower engagement.

This study suffers the following limitations. First, the selection criteria identified
are mainly applicable to the prison structures of the UAE only. Similar studies can be
conducted in other geographical locations in gulf countries where prison structures are
similar to that of the UAE. Another limitation of this study is that the findings of the current
survey might be more useful for public organizations, because most of the respondents are
from the public sector. Private organizations do not avail much liberty in sharing ideas in
government policy matters regarding the implementation of smart building technologies.
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