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Abstract: One of the environmental problems causing concern in the world today is the black
pollution caused by the accumulation of waste rubber resources. Relevant experimental studies
have proved that rubber concrete can help solve the black pollution problem caused by waste rubber
tires, but it is undeniable that rubber particles will reduce the mechanical properties of concrete.
To this end, many studies on the modification of rubberized concrete have been carried out, and
this paper summarizes these studies, considering compressive strength, durability performance and
insulation performance. The results show that chemical pretreatments, such as sodium hydroxide, can
significantly improve the adhesion between rubber particles and cement matrixes. Mineral powder
admixtures, such as silica fume and fiber admixtures, e.g., PP fibers, can improve the compressive
strength of rubber concrete.

Keywords: ceramsite concrete; thermal conductivity; durability; compressive strength; rubber

1. Introduction

The massive accumulation of waste rubber tires has caused a black pollution problem
that threatens the ecological environment [1]. Research on rubber concrete can help solve the
black pollution problem. The weak mechanical properties of rubber are responsible for the
weak mechanical properties of rubber concrete which make it impossible for rubber concrete
to be widely used. Properly solving the weakening of the mechanical properties of concrete
due to rubber can expand the application range of rubber concrete and solve the problem of
black pollution. The results show that the main reason for the weakening of the compressive
strength of concrete after adding rubber is the bonding between rubber particles and a
cement matrix, the bonding interface between them producing more micropores than that
of ordinary concrete [2,3]. Under the action of load, the deformation of micropores leads to
failure, which in turn leads to the failure of the overall structures in which they have been
used. Therefore, many scholars began to study how to improve the interface transition
zone between the two substances and enhance the bond strength between rubber particles
and cement matrixes. The main reason why the rubber particles and the cement matrix are
not tightly bonded is that the surface of the rubber particles is very smooth. Many scholars
have proposed methods for modifying rubber particles, such as chemical soaking treatment
and physical treatment. The chemical treatment involves roughening the rubber surface
with strong corrosive or oxidative chemical solutions, such as NaOH and KnMO4 [4–6].
Physical treatment is a special method for adsorbing small particles on rubber particles to
improve the surface roughness of rubber.
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Some scholars have not modified the rubber particles but have modified the rubber
concrete by adding mineral admixtures [7–9], mainly high-strength retarders to prolong
the hydration reaction of rubber concrete, as well as adding ultrafine fly ash to fill the
micropores between the rubber particles and the cement matrix, etc. In addition to adding
mineral admixtures, some scholars have proposed that rubber concrete can also be modified
by adding fiber-reinforced rubber concrete. After extensive research and argumentation,
both methods are considered feasible.

The durability of rubberized concrete [10,11] has also attracted much attention, es-
pecially its resistance to chloride ion penetration. Excellent resistance to chloride ion
penetration helps protect structural elements such as steel bars in concrete, which can
extend the life of building structures. At present, there are differences in the research on
the durability change of rubberized concrete, and there is no unified conclusion in the
research field. Some scholars [12,13] have shown that the excellent water resistance of
rubber can enhance the chloride ion penetration resistance and penetration resistance of
concrete, and this conclusion has been recognized by many scholars [11,14,15]. However,
some scholars [16–18] believe that the micropores generated by the loose bonding between
the rubber particles and the cement matrix will weaken the resistance of rubber concrete
to the penetration of chloride ions and that the micropores will become channels for the
penetration of chloride ions.

Another excellent property of rubberized concrete that has been recognized is its lower
thermal conductivity [19–21] compared to conventional concrete. Rubberized concrete is
an excellent thermal insulating concrete material. In the traditional prefabricated building
field, in order to meet building insulation requirements, complex laminated wall panels are
often produced, but rubber concrete can meet the building insulation requirements. The
excellent thermal insulation properties of rubber particles are fully utilized.

Research on the compressive strength, durability and thermal conductivity of rubber-
ized concrete is reviewed, and the progress of the research into rubber pretreatment and
the addition of mineral admixtures and fibers is summarized. The research status of rubber
concrete is expounded, and corresponding suggestions for follow-up research work are
put forward.

2. Waste Rubber Particles
2.1. Type and Size of Rubber Particles

At present, there are as many as 25 kinds of rubber available on the market [1]. These
kinds have different practical application fields. Automobile tires mainly use natural rubber,
or natural rubber and carbon black composite materials, so the waste tire rubber involved
in rubber concrete research is generally natural rubber or more complex synthetic rubber
material. The utilization of waste tire rubber produced every year is shown in Table 1.
Table 1 shows that 30% of the rubber is directly crushed and then landfilled. This treatment
method not only wastes rubber resources, but also pollutes the environment.

Table 1. Statistics for world waste rubber resource utilization [1].

Percentage

Recovery 3–15%
Reutilization 5–23%

Recovery (energy) 25–60%
Stacking 20–30%

Forrest [3] pointed out that rubber can be recycled in many ways, but it cannot be
widely used due to the high energy consumption caused by technology shortages at present.
Forrest thinks it is possible to simply reprocess rubber for reuse, such as turning it into
coarse particles that can be used as aggregate in concrete [2]. Roychand [22] found that
rubber particles often play an unfavorable role in the failure process of rubberized concrete.
He believes that this is due to the soft and elastic properties of rubber. The larger the size
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of the rubber particles, the more space they occupy in the rubber concrete, and the more
severe the failure response of the structure under load [23].

2.2. Properties of Rubber Particles

When conducting the test of rubber concrete, scholars choose different types and sizes
of rubber particles, which are summarized in Table 2 for the convenience of readers.

Table 2. Rubber particle size statistics table.

Reference CR Size Reference CR Size Reference CR Size

Steyn et al. [24] <4.75 mm (fine) Taak et al. [25] 10–20 mm (coarse) Dehdezi et al. [26] 2–4 mm (fine)

Tiwari et al. [27] <4.75 mm (fine) Mhaya et al. [9] 1–4 mm (fine),
5–8 mm (coarse)

Abdelmonem et al.
[28] 0–4 mm (fine)

Ramdani et al. [29] 0.2–4 mm (fine) Karunarathna et al.
[23]

2–4 mm (fine),
15 mm(coarse) Othman et al. [30] 180 µm (fine)

Ossola. [31] 420–840 µm (fine) Rahim et al. [32] 2–4 mm (fine) Mousavimehr et al.
[33] 0–4.75 mm (fine)

Barrera et al. [34] 0.85–2.8 mm (fine) Habib et al. [35] 0.075–10 mm (fine) Liu et al. [36] <0.42 mm (fine)

Su et al. [37] 0.3 mm, 0.5 mm,
3 mm (fine)

Chaikaew et al.
[38] 3.36 mm (fine) Eisa et al. [39] 2–3 mm (fine)

Zhu et al. [40] 1–2 mm (fine) Aslani et al. [41] 2–5 mm (fine) Shahjalal et al. [42] 4.75–19 mm
(fine\coarse)

Li et al. [43] 0–4 mm (fine) Wang et al. [44] 1.19–19 mm
(fine\coarse) Gerges et al. [45] 710 µm (fine)

Aureliano et al.
[46] 0–1.18 mm (fine) He et al. [47] <0.088 mm (fine) Liu et al. [48] 0.178, 1.11, 2 mm

(fine)

The smoothness of rubber prevents it from bonding effectively to cementitious sub-
strates. Delilah [49] put rubber particles into a 0.1 m sodium carbonate buffer containing
3% glutaraldehyde and 2% formaldehyde for special treatment, and the surface of the
rubber particles after the removal of impurities was smooth, as shown in Figure 1. In fact,
if no special treatment is performed, but only after pulverization, the surface of the rubber
particles will appear to be not smooth [50], as shown in Figure 2. The impurities remaining
on the surface of the rubber particles after crushing will fall off when combined with the
cement matrix, and there is no tight bond between the rubber particles and the impurities.
Deliah’s research revealed the true appearance of rubber particles, and Segre [51] also
observed the same phenomenon.
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The smoothness of rubber prevents it from bonding effectively to cementitious sub-
strates. Delilah [49] put rubber particles into a 0.1 m sodium carbonate buffer containing 
3% glutaraldehyde and 2% formaldehyde for special treatment, and the surface of the 
rubber particles after the removal of impurities was smooth, as shown in Figure 1. In fact, 
if no special treatment is performed, but only after pulverization, the surface of the rubber 
particles will appear to be not smooth [50], as shown in Figure 2. The impurities remaining 
on the surface of the rubber particles after crushing will fall off when combined with the 
cement matrix, and there is no tight bond between the rubber particles and the impurities. 
Deliah’s research revealed the true appearance of rubber particles, and Segre [51] also ob-
served the same phenomenon. 

 

Figure 1. Microscopic image of elastic rubber particles. (A) Conventional SEM. (B) Field emission
SEM at room temperature. (C) Transmission electron micrograph (TEM) of single rubber particles [49].
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Delilah [49] pointed out that these impurities include acidic substances and carboxyl
groups, which are derived from various admixtures added during the preparation of rubber
tires. Rubber tires go through an intensive refining process during the production process,
in which oils, additives, accelerators, carbon black and other substances are added. The
composition of rubber tires is shown in Table 3, and the substances added during this
process cannot be removed by simple mechanical crushing [22], as shown in Figure 3. Xiao
et al. [52] found that low temperature plasma treatment roughened the surface of rubber
particles and greatly reduced the water contact angle of rubber. The rough surface of the
rubber was able to bond with the cement matrix better.

Rubber is a highly elastic material that can recover when subjected to external forces.
The high elastic properties of rubber can make up for the high brittleness of concrete,
while the low elastic modulus of concrete has always been the focus of research. The work
of Karunarathna [23] shows that the elastic modulus of concrete is obviously reduced
after the incorporation of rubber, and rubber can delay the development of structural
cracks. Meanwhile, rubber particles can also act as bridges between cracks when concrete
is damaged by force, as shown in Figure 4.

Table 3. Basic composition of reclaimed rubber particles [22].

Material Main Ingredients Composition

Rubber Natural rubber, synthetic rubber 51%
Reinforcing agent Carbon black, silica 25%

Softener Petroleum process oil, petroleum
synthetic resin, etc. 19.5%

Vulcanizing agent Sulphur, organic vulcanizers 1.0%

Vulcanizing accelerator Thiazole accelerators, sulfenic
amide accelerator 1.5%

Vulcanizing accelerator aid Zinc oxide, stearic acid 0.5%

Antioxidant Amine antioxidants, phenol
antioxidants, wax 1.5%

Filler Calcium carbonate, clay
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Rubber is a kind of porous material. Karunarathna confirmed the high gas content
of rubber through research and photographed overflow bubbles on rubber surfaces when
soaked in water, as shown in Figure 5. The porous structure of rubber allows it to contain
more air, resulting in weak adhesion between rubber and cement matrix when mixed with
concrete. Roychand [22] expressed that the problem of high gas content in rubber can be
effectively improved by soaking the rubber in advance. Roychand believes that the porous
structure in rubber is derived from the linear structure of the internal material composition,
which guarantees the high elastic properties of the rubber.
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Through Fourier transform infrared and X-ray fluorescence analysis, Jusli et al. [53]
found that the main chemical components of broken tire rubber particles were carbon, zinc,
silicon, magnesium and calcium. The main chemical components are shown in Table 4.
According to Table 4, except for SBR, carbon black accounts for the vast majority. In
addition, there are admixtures such as oil that cause crushed tire rubber to act differently
to rubber alone. This is also a factor to consider when recycling scrap tire rubber. Delilah
et al. [49] purified natural rubber using lactic acid bacteria and latex and concluded that
natural rubber is composed of a rubber core and a protein coating by low-temperature
plasma monorail scanning and protein chemical analysis, as shown in Figure 6.

Table 4. Rubber chemical composition [53].

Chemical Composition Percentage (%)

SBR 48.0
Carbon black 47.0
Extender oil 1.9
Zinc oxide 1.1
Stearic acid 0.5

Sulfur 0.8
Accelerator 0.7
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3. Rubber Pretreatment

Navarro [50] showed that when rubber tires are produced they are mixed with ad-
mixtures, including carbon black, and these impurities will have adverse effects on the
adhesion of rubber particles to cement matrixes, which is an important reason why rubber
particles from waste tires need additional treatment.

Jokar et al. [4] used NaOH solution to soak rubber particles to explore the performance
difference between treated rubberized concrete and ordinary rubberized concrete. The
results show that the rubber particles pretreated with NaOH have better bonding relation-
ships with cement matrixes and higher compressive strength, as shown in Figure 7. The
NaOH solution not only helps to remove impurities from the rubber particles, such as
carbon black, which cannot be removed mechanically when the tire is broken into rubber
particles, but also roughens the rubber surface, thereby optimizing the bond between the
rubber and the cement matrix.
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concrete at 28 days (MPa) (R represents the replacement rate of rubber; Z represents the replacement
rate of zeolite) (* p < 0.05, ** p < 0.001, *** p < 0.0001, **** p < 0.00001) [4].

Qin et al. [19] focused on another kind of waste silicone rubber material derived from
insulators, which is different from the styrene butadiene rubber of waste automobile tires.
The composition of silicone rubber is shown in Figure 8. Qin used hydrogen peroxide
solution and potassium hydroxide solution, respectively, to conduct modification tests on
silicone rubber. The compressive strength test shows that the rubber concrete with special
treatment had a better performance, as shown in Figure 9. By testing water contact angle,
it was found that the silicone rubber particles with special treatment had better water
absorption performance than untreated silicone rubber.

Kumar and Dev [5] pretreated rubber particles with sulfuric acid and analyzed chemi-
cal composition changes in rubber particles before and after treatment using EDX, as shown
in Table 5. On this basis, the compressive strength performance of the pretreated rubber
concrete was compared with that of the untreated rubber concrete. The results showed that
the treated rubber particles could produce better bonds with the cement matrix and yield
higher compressive strength.
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Table 5. Chemical elements in rubber crumb before and after surface treatment in EDX analysis [5].

Element
Before Treatment of Rubber After Treatment of Rubber

Weight% Atomic% Weight% Atomic%

C K 62.80 71.52 70.25 78.10
O K 29.92 25.58 22.71 18.95
Al K 0.80 0.40 - -
Si K 2.39 1.16 3.20 1.52
S K 0.64 0.27 1.74 0.72

Ca K 2.56 0.87 2.10 0.70
Zn K 0.88 0.18 - -
Total 100 100

Zhang et al. [54] used acrylic acid and polyethylene glycol to modify the surface
of rubber particles. ACA and PEG can polymerize hydrophilic functional groups and
improve the hydrophobic properties of rubber particles. The improvement was expressed
in terms of water contact angle, as shown in Figure 10. Through microscopic research,
it was found that the modified rubber particles could more effectively combine with the
cement matrix, which showed that the modified rubber concrete had stronger compressive
strength. Najim [55] also came to the same conclusion.
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Figure 10. Effect of modification on distilled water wetting contact angle of rubber [54]. (a) Before
modification. (b) After modification.

Youssf et al. [6] studied modification effects using NaOH, H2O2, H2SO4, CaCl2,
KMnO4, NaHsO3 and silane coupling agent on rubber concrete. The compressive strength
of the pretreated rubber concrete is shown in Figure 11. It can be observed that the pretreat-
ment with NaOH and CaCl2 gave the best results; in contrast, the acid pretreatment showed
little improvement of the compressive strength of the rubberized concrete. In particular,
the compressive strength of rubber concrete pretreated with potassium permanganate
and sodium hydrogen sulfate solution was weaker than that of ordinary rubber concrete
without any treatment. The author believes that this is because the alkaline hydration
reaction environment in concrete will be affected by acidic substances.
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Zhu [56] carried out research on improving the transition zone of the rubber concrete
interface. Zhu pretreated rubber with a silane modifier and explored the bond situation
between the specially treated rubber and the cement matrix. The test results showed that
the rubber treated with the silane modifier could better bond with the cement matrix, which
was due to the wet performance and bonding performance of the silane modifier itself.
Chen et al. [57] used sodium hydroxide and ethyl orthosilicate to modify rubber concrete;
the results showed that the modified rubber concrete had better compressive strength
performance. The author studied the microstructure of the rubber concrete using SEM and
found that a large number of hydrophilic functional groups were passively accepted in
the process of rubber modification, which was an important factor in the enhancement
of the bonding between the rubber and the cement matrix. Secondly, the hydrolysis and
condensation reactions of these functional groups strengthened the bonds between the
rubber and the cement matrix, which led to the improvement of the compressive strength
of the rubber concrete. The principle of functional group action is shown in Figure 12.



Buildings 2022, 12, 999 10 of 32

Buildings 2022, 12, x FOR PEER REVIEW 10 of 33 
 

 
Figure 11. Effects of rubber pretreatment on rubberized concrete strength [6]. 

Zhu [56] carried out research on improving the transition zone of the rubber concrete 
interface. Zhu pretreated rubber with a silane modifier and explored the bond situation 
between the specially treated rubber and the cement matrix. The test results showed that 
the rubber treated with the silane modifier could better bond with the cement matrix, 
which was due to the wet performance and bonding performance of the silane modifier 
itself. Chen et al. [57] used sodium hydroxide and ethyl orthosilicate to modify rubber 
concrete; the results showed that the modified rubber concrete had better compressive 
strength performance. The author studied the microstructure of the rubber concrete using 
SEM and found that a large number of hydrophilic functional groups were passively ac-
cepted in the process of rubber modification, which was an important factor in the en-
hancement of the bonding between the rubber and the cement matrix. Secondly, the hy-
drolysis and condensation reactions of these functional groups strengthened the bonds 
between the rubber and the cement matrix, which led to the improvement of the compres-
sive strength of the rubber concrete. The principle of functional group action is shown in 
Figure 12. 

 
Figure 12. Schematic diagram of chemical modification of rubber surface and contact with cement 
paste. 

Pham et al. [10] Pretreated rubber with a copolymer composite coating and explored 
the performance of pretreated rubberized concrete in resisting freeze–thaw cycles. The 
test results showed that the anti-freeze–thaw cycle performance of the coated rubberized 
concrete was weaker than that of the original rubberized concrete, but the mass loss of 
both after the same freeze–thaw cycle was much higher than that of ordinary concrete. 
This shows that rubberized concrete has excellent resistance to freeze–thaw cycles and has 
application potential in cold regions. The residual compressive strength of the rubberized 
concrete after freeze–thaw cycles was higher than that of the untreated rubberized con-
crete. This shows the excellent performance of rubber concrete in terms of concrete dura-
bility. The test results are shown in Figures 13 and 14. The author believes that the results 
were determined by the characteristics of the rubber itself. The stable expansion and 

Figure 12. Schematic diagram of chemical modification of rubber surface and contact with ce-
ment paste.

Pham et al. [10] Pretreated rubber with a copolymer composite coating and explored
the performance of pretreated rubberized concrete in resisting freeze–thaw cycles. The
test results showed that the anti-freeze–thaw cycle performance of the coated rubberized
concrete was weaker than that of the original rubberized concrete, but the mass loss of
both after the same freeze–thaw cycle was much higher than that of ordinary concrete.
This shows that rubberized concrete has excellent resistance to freeze–thaw cycles and has
application potential in cold regions. The residual compressive strength of the rubberized
concrete after freeze–thaw cycles was higher than that of the untreated rubberized concrete.
This shows the excellent performance of rubber concrete in terms of concrete durability.
The test results are shown in Figures 13 and 14. The author believes that the results were
determined by the characteristics of the rubber itself. The stable expansion and shrinkage
resistance of the rubber particles can help a concrete specimen to release the expansion and
contraction pressure caused by the freezing and thawing of water molecules during the
freeze–thaw cycle. The pretreatment process can help the rubberized concrete retain more
residual strength.

Kashani et al. [11] studied five pretreatment methods for rubber particles, namely,
sodium hydroxide, potassium permanganate, sulfuric acid, silica fume coating and cement
coating. The results show that sodium hydroxide, potassium permanganate and sulfuric
acid solutions can improve the water contact angle of rubber particles, effectively improve
the bonding between rubber and cement matrix, and reduce the internal porosity of rubber
concrete, which helps rubber concrete with chlorine ion penetration. Zhong et al. [58]
used styrene–acrylic emulsion to impregnate rubber particles and the performance of the
specially treated rubberized concrete during freeze–thaw cycles was studied. The test
results showed that the rubber concrete after special treatment had a better compressive
strength residual than ordinary rubber concrete after 300 freeze–thaw cycles. Chou et al. [59]
used organic sulfur to optimize the bonding interface of rubber concrete. The author thinks
that the treatment of organic sulfur can help the rubber particles to bond with the cement
matrix better and optimize the microstructure of rubber concrete. Chaturvedy et al. [12]
reviewed the common points in the research on modified rubber concrete and considered
that improving the bonding interface of rubber and cement matrix is an important factor in
optimizing the durability performance of rubber concrete, the modification mechanism of
chemical pretreatment being the most important factor.
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The use of chemical products to modify rubber particles has potential to improve the
compressive strength and durability of rubber concrete. The improvement of the adhesion
between rubber particles and cement matrix is the key to improving mechanical properties
and durability. The surface modification of rubber particles by solutions such as sodium
hydroxide and the filling of pores by materials such as styrene–acrylic emulsions can effec-
tively optimize the bonding between the particles and the cement matrix, effectively reduce
the pores inside the rubber concrete and improve compressive strength and durability. In
fact, even though the strength of pretreated rubber concrete cannot be compared with that
of the control without rubber, the strength of pretreated rubber concrete is significantly
improved compared with that of untreated rubber concrete. The degree of improvement
is affected by many factors, such as treatment method, treatment substance and rubber
particle size. The different methods of rubber pretreatment selected by different scholars
and the effects achieved after treatment are summarized in Table 6.



Buildings 2022, 12, 999 12 of 32

Table 6. Summary table of rubber pretreatment.

References Rubber Particle
Size

Best Rubber
Content Treatment Methods Compressive

Strength Durability

Navarro
[50]

Average particle
diameter is

0.63 mm
9 wt%

Mix in an open low
shear intermittent
mixer for 1.5 h at
180 centigrade and
1200 rpm

_ _

Jokar [4] 1–6 mm 5 wt% rubber
and 15% zeolite

1. Soak in 1 M
NaOH aqueous
solution for 24 h,
then rinse the
rubber particles
with clean water
and dry them at
room
temperature

2. Add zeolite

The compressive
strength of all samples

of rubber concrete
modified by NaOH

solution at 7 and
28 days was higher

than that of the
untreated control

group

_

Qin [19] 5, 10, 20 and
50 mesh

5 wt% treated
with KOH or H2

O2

1. Soak in H2O2 for
24 H at room
temperature

2. Soak in KOH for
24 H and then
wash with water
several times

With the increase in
rubber content, the

compressive strength
of mortar decreased

slightly. The
pretreatment method

has an enhancing
effect on mechanical
strength of mortar

_

Kumar [5] 0.6–2.36 mm 15 wt%

The rubber particles
were first soaked in
15 wt% sulfuric acid
solution for 2 h, then
washed with water
3–4 times and finally
dried by natural air for
24 h

The rubber particles
pretreated with

sulfuric acid will not
cause serious strength

loss even when the
content reaches

15 wt%

_

Zhang [54] 5 and 40 mesh
For impact

resistance, 5 wt%
is best

The modifier prepared
by 17.2 wt% aca,
13.8 wt% peg and
69.0 wt% ae is sprayed
on the surface of
rubber particles, then
stirred for 20 min, then
placed in an oven and
heated at 40 ◦C for 30
min, then heated to
110 ◦C for 45 min and
finally naturally
cooled to room
temperature

Rubber particle
modification can

improve compressive
strength

Modified rubber
particles can reduce

the water–cement ratio
of concrete mixtures

from 0.4 to 0.38
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Table 6. Cont.

References Rubber
Particle Size

Best Rubber
Content Treatment Methods Compressive

Strength Durability

Najim [55] 2–6 mm
12% with

mortar
precoating

1. Water washing
2. Cement paste

precoating
3. Mortar

precoating
4. NaOH

pretreatment

Precoating rubber
particles with mortar

can significantly
improve the interfacial

bonding between
interphase rubber and

cement mortar, and
the compressive
strength can be

increased by 37%

Mortar pretreatment gives
rubber concrete a better

hole distribution,
although the size of holes
is not very different from
that of other pretreatment

methods

Youssf [6] 2.36 and
4.75 mm 15 wt%

1. Water washing
2. Water soaking-A
3. Water soaking-O
4. NaOH
5. H2O2
6. CaCl2
7. H2SO4
8. Silane
9.

KMnO4_NaHSO4

After adding rubber,
the compressive

strength of concrete
decreases obviously.

The compressive
strength of rubber

concrete was
improved by 2–10% by
various pretreatment

methods

Various pretreatment
methods can help improve

the hydrophilicity of
rubber, which is

manifested by a decrease
in carbon content and an

increase in oxygen content

Zhu [56]
1–3 mm,

3–6 mm, 20
mesh

5 wt% with the
size is 3–6 mm

The surface properties
of rubber particles
were changed by
immersing rubber in
silane coupling agent

The compressive
strength of rubber
concrete decreases

with the increase in
rubber content. The

larger the rubber
particle size, the less

the strength decreases;
rubber particles with

particle size of 1–3 mm
have the best

modification effect

After adding rubber, the
total porosity increased;

the larger the particle size
of rubber, the smaller the

median pore size;
compared with the control

group, the specific pore
volume of the modified

rubber concrete decreased
significantly

Chen [57] 300–700 µm _

It was first immersed
in sodium hydroxide
solution and then
immersed in ethyl
orthosilicate ethanol
solution prepared with
ethyl orthosilicate
(TEOS) and absolute
ethanol solution for
modification

The compressive
strength of 10% rubber
mortar modified with
5 wt% TEOS at 28 days
was 28.58 MPa, which

was 26.63% higher
than that of the

original rubber, greatly
improving the

compressive strength
of the mortar

—

Pham [10] 0.6–1.3 mm

30 wt% rubber
precoat with

styrene
butadiene-type

copolymer

First, RA needs to be
precoated with styrene
butadiene copolymer
(2% of RA mass). The
treated RA was kept in
a room at a
temperature of 20 °C
and a relative
humidity of 50% for
1 h

_

The ability of resisting
freeze–thaw cycles of

rubber cement mortar was
better than that of the
control group, which

shows that the residual
strength was greater and

the mass loss smaller. The
combination with special

treatment performed
better
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Table 6. Cont.

References Rubber
Particle Size

Best Rubber
Content Treatment Methods Compressive

Strength Durability

Kashani
[11] 2.36–4.75 mm 10 wt% with

cement coating

1. Two coatings
(cement coating,
silica fume
coating)

2. Soaking
(KMnO4, NaOH,
H2SO4)

Compared with
untreated samples, the
compressive strength

of rubber concrete
pretreated with
different coating

methods increased by
42% and 49%

Chemical pretreatment
changed the hydrophobic

properties of rubber
particles, strengthened the

bonds between rubber
particles and cement

matrix, and reduced the
porosity of the specimen

Zhong [58] 80 mesh 10 wt%

1. Washing
2. Soaking in

NaOH solution
3. Modification by

styrene–acrylic
emulsion

When the rubber
content was less than
20%, the modification
effect of NaOH was
the best; when the

content of NaOH was
less than 15%, the

modification effect of
NaOH was the best,

followed by
styrene–acrylic

emulsion, while there
was no significant

difference between the
water washing group
and the control group

On the basis of the
apparent analysis, it is

believed that the addition
of rubber particles helps to

improve the ability of
magnesium oxide cement

to resist freeze–thaw
cycles.

Chou [59] 30–50 mesh _

Soak the rubber
particles in carbon
disulfide and put them
in glassware to stand
at room temperature.
After the carbon
disulfide evaporates,
clean the rubber with
acetone and dissolved
water

The pretreatment of
carbon disulfide can

help the rubber
particles change the

hydrophobic
characteristics,
strengthen the

hydration process and
enhance the

compressive strength
of rubber concrete

The pretreatment of
carbon disulfide can help

to improve the friction
between the aggregate and
the cement matrix in the
concrete, strengthen the

molecular forces between
C-S-H, strengthen the

hydration reaction and
reduce porosity

4. Incorporating External Compounds

Xue and Shinozuka [7] found that adding silica fume (SF) to rubberized concrete
would yield higher compressive strength. The form of silica fume and rubber is shown in
Figure 15, and the compressive strength comparison is shown in Figure 16. At the same
time, the seismic disturbance resistance of rubberized concrete was improved compared
with that of traditional concrete. The authors believe that this is because the silica fume fills
the pores caused by the inconsistency of the rubber and cement matrix during the early
mixing and curing process.

Li et al. [8] studied the modification mechanism of different materials in rubberized
concrete and finally selected the composite admixture composed of silica fume, silane and
polymer modifiers to modify rubberized concrete. The modification effect of the rubberized
concrete after the incorporation of a small amount of composite admixture was significant.
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Hamid et al. [13] studied the mechanical properties of rubber concrete mixed with
seawater mixture and designed 13 different seawater rubber concrete test groups. The
test results are shown in Figure 17. Regarding the compressive strength of concrete mixed
with coarse and fine rubber particles after mixing with seawater, a decreasing trend was
first observed, followed by an increasing trend. Mhaya et al. [9] studied the effect of the
addition of granulated blast furnace slag particles (GBFS) and rubber on the compressive
strength of concrete. The test results showed that the rubber concrete mixed with GBFS
showed better compressive strength. Through microscopic examination, it was found that
the bonding between rubber and cement matrix was optimized after the incorporation of
GBFS. After consideration, it is believed that the activation characteristics of GBFS not only
act on the cement, but also cause a certain amount of corrosion to the surface of the rubber
particles. The rough rubber particles can bond more closely with the cement matrix. The
chemical composition and physical properties of GBFS and rubber are shown in Table 7.

Grinys et al. [60] modified rubberized concrete by adding glass powder and rubber
latex. The results showed that although the strength of rubberized concrete mixed with
glass powder did not change much in the early stage, the strength at 28 d was 11–13%
higher than the rubber concrete without glass powder. On the basis of the observation of
the microstructure, it is believed that the existence of glass powder activates the cement,
so that the hydration reaction can continue, and a higher compressive strength appears in
the later stage. The pozzolanic effect of the glass powder is also an important reason for
the later strength improvement. Figure 18 shows the existing form of waste porous glass
in concrete. Jokar et al. [4] modified rubber concrete by adding zeolite. The test results
showed that the rubber concrete mixed with zeolite had a higher compressive strength than
ordinary rubber concrete. The authors believe that this is because the pozzolanic effect and
activation characteristics of the fine zeolite particles make the rubber particles and cement
have better adhesion, which is manifested as improved compressive strength.
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Chemical 
Compositions 

GBFS (%) 
Chemical 

Compositions 
RC (%) 

Physical 
Properties 

RC 

Silica Oxide, 
SiO2 

30.80 
Acetone ex-

tract 
10 

Size of fine 
rubber, mm 

1–4 

Aluminium 
Oxide, Al2O3 

10.9 Ash content 24 
Size of coarse 
rubber, mm 

5–8 

Iron Oxide, 
Fe2O3 

0.64 Carbon black 14 
Heat loss, 
kgf/cm2 

<1 

Calcium Ox-
ide, CaO 

51.80 
Rubber Hy-
drocarbon 

(RHC) 
52 

Metal con-
tent, % 

<0.5 

Magnesium 
Oxide, MgO 

4.57   
Fiber con-

tent, % 
<1 

Potassium Ox-
ide, K2O 

0.36     

Loss on Igni-
tion, LOI 
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Grinys et al. [60] modified rubberized concrete by adding glass powder and rubber 
latex. The results showed that although the strength of rubberized concrete mixed with 
glass powder did not change much in the early stage, the strength at 28 d was 11%-13% 
higher than the rubber concrete without glass powder. On the basis of the observation of 
the microstructure, it is believed that the existence of glass powder activates the cement, 
so that the hydration reaction can continue, and a higher compressive strength appears in 
the later stage. The pozzolanic effect of the glass powder is also an important reason for 
the later strength improvement. Figure 18 shows the existing form of waste porous glass 
in concrete. Jokar et al. [4] modified rubber concrete by adding zeolite. The test results 
showed that the rubber concrete mixed with zeolite had a higher compressive strength 
than ordinary rubber concrete. The authors believe that this is because the pozzolanic 

Figure 17. Comparison of the compressive strengths of blast furnace slag seawater concrete at
28 days curing age (M1 is the control group; M2 is the 100% seawater combination; M3 to M5
are fine aggregate rubber replacement groups; M6 to m8 are coarse aggregate rubber replacement
groups) [13].

Table 7. Chemical and physical properties of blast furnace slag and rubber (XRF) [9].

Chemical Compositions GBFS (%) Chemical Compositions RC (%) Physical Properties RC

Silica Oxide, SiO2 30.80 Acetone extract 10 Size of fine rubber, mm 1–4
Aluminium Oxide, Al2O3 10.9 Ash content 24 Size of coarse rubber, mm 5–8

Iron Oxide, Fe2O3 0.64 Carbon black 14 Heat loss, kgf/cm2 <1
Calcium Oxide, CaO 51.80 Rubber Hydrocarbon (RHC) 52 Metal content, % <0.5

Magnesium Oxide, MgO 4.57 Fiber content, % <1
Potassium Oxide, K2O 0.36
Loss on Ignition, LOI 0.22
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Kang et al. [61] studied the change in compressive strength of rubberized concrete
after adding silica fume. The test results showed that the addition of microsilica fume
filled the tiny pores inside the rubberized concrete, and the compressive strength of the
rubberized concrete was improved, which is consistent with the research results of many
scholars [11,16,62–64]. The effects of different silica fume dosages on the compressive
strength of rubberized concrete are shown in Figure 19. Li [65] used carbon nanotubes to
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modify rubber cement mortar to explore the effect of carbon nanotubes on the compressive
strength of rubber cement mortar. The results showed that the effect of carbon nanotubes on
the compressive strength of rubber cement mortar was positive because the bridging effect
of carbon nanotubes and the nanoforest effect can help to connect the rubber and cement
matrix. At the same time, carbon nanotubes can also help strengthen the hydration reaction
of cement, which is also an important reason for the improvement in compressive strength.
Bashar et al. [66] incorporated nanosilica materials into rubber concrete, and the test results
show that the rubber concrete incorporating nanosilica had a higher compressive strength.
This because nanosilica filled the pores inside the rubberized concrete specimens, the reason
being similar to the mechanism of action indicated by the study of Li [65].
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Zhang [67] studied the role of metakaolin (MK) in rubberized concrete, and the results
showed that although the pozzolanic effect of MK helped to significantly improve the
mechanical properties of rubberized concrete, the effect was not linear, first increasing first
and then decreasing. Zhang thought that this was because MK is rich in activated alumina,
which promotes secondary hydration, and the resulting calcium hydroxide can help build
a denser internal system and resist greater external loads; however, a large amount of MK
does not guarantee that the secondary hydration reaction will be enhanced, so there is a
theoretical maximum value. The author suggests that the dosage should between 13–16%.

The study by Hamid et al. [13] also showed that the rubber concrete mixed with
seawater showed a slight positive result in terms of water resistance. Combined with the
compressive strength analysis, it can be considered that the presence of seawater helps the
roughening of the rubber, which improves the strength of the bonding between rubber
particles and cement matrix. Grinys [60] also investigated the effect of glass powder on the
durability of rubber concrete and obtained the residual compressive strengths of different
test groups through 200 freeze–thaw cycles. The results showed that the freeze–thaw
resistance of concrete was greatly improved after incorporating rubber, but the ability
of rubber concrete to resist freeze–thaw cycles was inhibited when glass powder was
added. This was because the rubber selected for the preparation of tires is almost non-polar,
and when combined with the cement matrix, many tiny pores will be generated. The air
stored in these pores will help the rubber concrete release the expansion and contraction
pressure generated in the freezing and thawing environment, but the filling effect of glass
frit and the pozzolanic effect will fill these pores. Although this will help the compressive
strength of rubberized concrete, it will reduce its freeze–thaw resistance. Blast furnace
slag (GGBS), metakaolin (MK) and fly ash (FA) were added to rubberized concrete by
Siad et al. [17] to explore the effects of these three mineral admixtures on the durability of
rubberized concrete. The results showed that the addition of MK and FA in equal amounts
to rubberized concrete yielded the most significant improvement in terms of the ability of
rubberized concrete to resist chloride ion penetration (RCPT) and water resistance. On the
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basis of the analysis of the microscopic images, it is believed that FA fills the tiny pores
caused by the inconsistency between the rubber and the cement matrix during the mixing
process of rubber concrete and that MK plays a reinforcing role. The pozzolanic effect of
MK activates the cement matrix and strengthens the cement matrix. The hydration reaction
in the later stage healed a considerable proportion of the tiny pores. The combination of MK
and FA significantly improved the resistance of rubber concrete to chloride ions and water
molecules. The effects of three mineral admixtures on the durability of rubber concrete can
be seen in Figure 20.
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The research of Onuaguluchi [16] showed that rubberized concrete mixed with silica
fume had better anti-water permeability, and the measured water absorption was smaller.
From microscopic research, it is believed that the pozzolanic effect of silica fume in the
hydration process of rubber concrete effectively fills the tiny pores inside the specimen,
which has been recognized by Basem and Gupta [18,64]. Li [65] mixed carbon nanotubes
into rubber cement mortar and studied the changes in compressive strength and water
resistance in rubber cement mortar. The test results showed that carbon nanotubes could
significantly reduce the water absorption rate of rubber cement mortar, and the absorption
rate could be reduced by up to 79% with the optimal dosage. Li measured the water
resistance of the specimens for the length of time that the capillary pressure drives the water
into the rubber cement mortar specimens. The specimen incorporating carbon nanotubes
needed more time, indicating that its water resistance was better than the traditional rubber
cement mortar.

Zhang [67] studied the freeze–thaw cycle resistance of metakaolin rubber concrete.
The test results showed that metakaolin (MK) could greatly improve the freeze–thaw cycle
resistance of rubber concrete, but this improvement was not linear. This characteristic is
consistent with the variation trends in compressive strength summarized by the author.
The incorporation amount of 13% reached the maximum value. After 100 cycles, the
mass loss rate was reduced from 0.60% to 0.34%. The authors believed that the optimal
incorporation amount was between 13% and 16%. Of course, after the comparison, it is
considered that the improvement in the durability of the concrete by the rubber particles
was also significant.

The strong pozzolanic effect of silica fume, metakaolin and other substances helps
to improve the efficiency of the hydration reaction inside the concrete specimen, prolong
the hydration reaction time and is of great help in improving the performance of rubber
concrete. At the same time, the addition of carbon nanotubes and other substances can help
rubber concrete build a stronger internal structure and improve its compressive strength
and durability at a physical level. The different mineral admixtures selected by different
scholars and the actual results are summarized in Table 8.
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Table 8. Summary table of incorporating external compounds.

References Rubber
Particle Size

Best Rubber
Content Treatment Methods Compressive Strength Durability

Xue [7] Maximum size
of 6 mm

5 wt% with
silica fume

The silica fume coats the
rubber crumb, with free
water in the concrete

The compressive
strength of rubber
concrete decreased with
the increase in rubber
content, and the
compressive strength at
20% replacement rate
decreased by 46.68%
compared with the
control group

Adding rubber to
concrete will increase
its damping ratio; the
addition of silica fume
strengthened the
adhesion between
rubber particles and
cement matrix

Li [8] 8–12 mesh

In terms of
impact
resistance, 30%
rubber mixed
with 10% micro
silicon powder
is the best

The silicone rubber
modifier is used to
pretreat the rubber

The modified effect of
the modifier on the
coarse-grained rubber is
better than that of the
fine rubber powder, and
the increase ratio of the
compressive strength is
20% to 10%

_

Hamid [13]
The same size
of sand; 10 mm;
20 mm

The
combination of
ordinary water
mixing and 5%
rubber
replacing
coarse
aggregate is the
best

Adding 7 wt% silica
fume into rubber
concrete. Rubber
concrete prepared by
replacing ordinary water
with seawater

The compressive
strength of the
combination of 100%
seawater and 20%
rubber decreased by 65%
compared with the
control group

The results of RCP and
water absorption test
prove that rubber
particles can slightly
improve the
permeability of
concrete

Mhaya [9] 1–4 mm,
5–8 mm

30 wt% mixed
rubber

Adding 10–50% ground
blast furnace slag as
modified material of
rubber concrete

The combination of 30%
coarse and fine mixed
rubber particles had the
highest compressive
strength after 28 days of
curing (27.2 mpa)

The microstructure
analysis shows that
the increase in rubber
content will weaken
the interfacial
transition zone and
cause an increase in
porosity

Grinys [60] 0.063–2 mm

For durability,
the sample
with 10 Kg/m3

rubber
replacing fine
aggregate
performs best

Polypropylene fiber and
glass powder mixed into
rubber concrete for
modification; liquid
polymer-based
carboxylated styrene
butadiene latex used as
the surface treatment for
rubber particles

The compressive
strength of glass powder
modified rubber
concrete samples after
56 days of curing
increased by 13%
compared with 28 days,
while other samples in
the same period
increased by only 2.8%

The high specific
surface area of fine
rubber powder helps
to improve the
freeze–thaw resistance
of rubber concrete.
Fine rubber powder
can well fill the tiny
pores between
aggregate and cement
matrix

Kang [61] 1–2.36 mm _

Modification test carried
out by adding silica
fume into rubber
concrete

The addition of rubber
reduces the compressive
strength of concrete, and
the addition of silica
fume can help to
improve the
compressive strength of
rubber concrete

The abrasion
resistance of rubber
concrete is better than
that of the control
group. The addition of
silica fume can
improve the abrasion
resistance of rubber
concrete
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Table 8. Cont.

References Rubber
Particle Size

Best Rubber
Content Treatment Methods Compressive Strength Durability

Li [65] 60 mesh _

Carbon nanotubes
added in the mixing
process of rubber
concrete

After 28 days of curing,
when the CNT content
was 0.08%, the
compressive strength
increased by 57.0%. The
compressive strength
decreased with the
increase in CNT content

CNT effectively
improved the
impermeability. When
the CNT content was
0.04%, 0.08% and 0.12%,
the water droplet
infiltration rate
decreased by 4.3%, 7.6%
and 8.7%, respectively,
compared with the
control group

Bashar [66] 30 mesh _
Nanosilica added in the
mixing process of rubber
concrete

The compressive
strength of rubber
concrete was
significantly improved
by the addition of
nanosilica. The addition
of nanosilica reduced
the impact resistance of
rubber concrete

The addition of
nanosilica significantly
reduced the porosity of
rubber concrete,
strengthened the
internal microstructure
of concrete and
improved the durability
of rubber concrete

Zhang [67] 40 mesh

The rubber
content is 19%,
and the partial
kaolin content
is 13%

Metakaolin was added
into rubber concrete as a
substitute for cement to
study its modification

The addition of rubber
reduces the compressive
strength of concrete,
while the addition of
metakaolin enhances the
compressive strength of
rubber concrete, but
there is a threshold for
the enhancement effect

After the freeze–thaw
cycle, the mass loss of
samples mixed with 19%
rubber was 0.6% and
that of samples mixed
with 16% metakaolin
was 0.33%, while that of
the control group was
4.7%

Side [17] 0.27–0.66 mm,
1.2–2 mm

When the
rubber content
is 20%, the
rubber concrete
has the best
deflection
resistance

Polyvinyl alcohol fiber
and polyvinyl alcohol
fiber are added to rubber
concrete as additives,
and fly ash, blast
furnace slag, silica fume
and metakaolin are used
as substitutes for cement

The samples of fly ash,
blast furnace slag, silica
fume and metakaolin
replacing cement all
strengthen the
compressive strength of
rubber concrete

The microstructures of
the rubber concrete
samples mixed with
metakaolin were
observed after curing for
360 days. It was found
that the pore structure
almost disappeared, the
water absorption
decreased significantly
and the durability
improved

Onuaguluchi
[16]

Smaller than
2.3 mm _

Limestone powder is
used as a modified
material for rubber.
Rubber crumbs, water
and LP are mixed in a
Hobart mixer at low
speed. Coated rubber
crumbs are air-dried for
24 h and stored in plastic
bags for one month

The compressive
strength of rubber and
silica fume samples
pretreated with
limestone powder is
much higher than that of
ordinary rubber concrete

The addition of rubber
reduced the water
absorption of concrete,
and the samples mixed
with silica fume even
decreased by 59%
compared with the
control group
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Table 8. Cont.

References Rubber
Particle Size

Best Rubber
Content Treatment Methods Compressive Strength Durability

Basem [64]
Maximum
size of
4.75 mm

_

Blast furnace slag, fly
ash, silica fume and
metakaolin are added
into rubber concrete
after replacing cement in
the proportions of 10%,
20%, 30% and 40%

Compared with the
control group, the
compressive strength of
the samples with 20%
rubber content
decreased by 58.2%.
Silica fume can help
improve the
compressive strength of
rubber concrete

_

Gupta [18]

2–5 mm in
width and up
to 20 mm in
length

_

Fine aggregate is
partially replaced by
rubber fiber and cement
is replaced by silica
fume. Use a plasticizer
to improve the working
performance of concrete

The compressive
strength decreases with
the increase in the
amount of rubber fiber
and increases with the
increase in silica fume
replacement rate

The addition of silica
fume will reduce the
water absorption of
concrete, while the
increase in rubber fiber
content will increase
water absorption. After
silica fume replaces
cement, the chloride ion
permeability of concrete
increases

5. Incorporating Fiber Modification

Youssf et al. [6] explored the effects of three different fibers (PP fiber, steel fiber
and rubber fiber) on the mechanical properties of rubber concrete. The improvement in
compressive strength of rubberized concrete by PP fiber and steel fiber was almost invisible,
while the incorporation of rubber fibers had a negative effect (see Figure 21).
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Youssf concluded that the rigidity of the rubber fibers was very low. The compressive
strength of the rubberized concrete was therefore reduced after their incorporation. FHos-
sain et al. [68] incorporated polypropylene fibers into rubberized concrete and studied the
effect of polypropylene fibers on the compressive strength of rubberized concrete. The test
results showed that the compressive strength of rubberized concrete was significantly en-
hanced after adding the fibers, and the maximum compressive strength at 28 days increased
by 26.9%. At the same time, Hossain found that the compressive strength of rubberized
concrete does not decrease linearly with the increase in rubber content. The combination
with 10% rubber content had a better compressive strength performance than the control
group composed of ordinary concrete. Then, with the gradual increase in rubber content,
the compressive strength of rubberized concrete gradually decreases. This phenomenon
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also occurred in Bu’s experiments. When examining the experiments in which this kind of
strength change phenomenon occurred [69], it was found that it was related to the size of
the rubber particles selected in the experiment. Small-sized rubber particles will cause the
rubber concrete to deteriorate at a lower dosage. The compressive strength, meanwhile,
increased. It is believed that the rubber particles can be distributed in the concrete specimen
when the size is small and act as an elastic unit, which can slow down the damage to the
internal structure caused by the external load and act as a benign protection unit. However,
the increase in the amount of particles incorporated in the rubber will damage the structure
to an extent far greater than any protective effect. Carroll et al. [70] explored the effect
of polyvinyl alcohol fibers (PVA) on the modification of rubberized concrete. The study
showed that the rubberized concrete mixed with PVA had higher compressive strength
than the combination without fibers. The results are shown in Figure 22. The authors
believe that the incorporation of fibers can help to build a stronger force-bearing system
inside rubberized concrete.
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Figure 22. Variation diagram of compressive strength of rubber concrete at 28 days with rubber
content [70].

Murali et al. [71] proposed a process for preparing rubberized concrete by grouting
(see Figure 23). The steel fiber-modified rubber concrete specimens were prepared by
grouting method and their compressive strength was studied. The results showed that the
steel fiber improved the compressive strength of the rubber concrete, but the effect of the
improvement with the low water–binder ratio was far less than that obtained with the high
water–binder ratio environment. This was because the steel fibers can better exert their own
tie effects in an environment with a high water–binder ratio, and the high water–binder
ratio was beneficial with respect to the arrangement of steel fibers in the rubber concrete.
The research of Fu [72] also obtained the same conclusion.

Wang et al. [14] studied the modification effect of different kinds of fibers on rubberized
concrete. The authors selected four different kinds of fiber materials: short-straight steel
fibers (S-1), long hooked-end steel fibers (S-2), long flat-surface synthetic fibers (P-1) and
long rippled-surface synthetic fibers (P-2). The results showed that the effect of S-1 fibers
was the best; the compressive strength of the 28-day-old specimen could even exceed that of
ordinary concrete without rubber, which shows that suitable fiber material can compensate
for the mechanical property weakening of concrete caused by rubber.
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Srivastava et al. [73] added carbon fiber into rubberized concrete. The research results
showed that 4%, 5% and 6% of carbon fiber rubberized concrete showed good compressive
strength performance, and the compressive strength increased with the increase in carbon
fiber dosages. Chen et al. [74] studied the combined effect of steel fiber and nanosilica
on the mechanical properties of rubber concrete. The authors proposed that 1% is the
optimal dosage of steel fiber, while nano-silicon will be further optimized on the basis
of strengthening the compressive strength of rubber concrete by steel fibers, and these
two things can play an excellent synergistic effect. In the high-temperature environment,
the concrete specimen was still affected by the bridging effect of the steel fibers and still
could exert a high strength, and the effect of the steel fibers on the high content of rubber
concrete was more obvious. However, the enhanced role of nanosilica was gradually lost
in the case of high rubber content. Liu [75] studied the feasibility of using three kinds
of fiber-modified rubber concrete as bearing components. In the experiment, the author
simulated and studied several performance requirements that need to be considered for
bearing components. The test results showed that steel fibers, carbon fibers and polymer
acrylic fibers can enhance the compressive strength of rubberized concrete.

Wang et al. [14] also focused on the effect of various fiber materials on the surface
resistivity of rubberized concrete, and the results showed that the incorporation of fibers
had a negative impact on the surface resistivity of rubberized concrete, though the results
were still better than those for ordinary silicon concrete. The resistivity values of ordinary
concrete were between 6 and 29 kΩ·cm. The rubber concrete modified by fiber still remained
between 31 kΩ·cm and 36 kΩ·cm, and the ordinary rubber concrete values were as high as
38 kΩ·cm. Although the incorporation of fibers will have a certain negative effect on the
resistivity value of rubberized concrete, this negative effect is acceptable considering that
fibers can greatly improve the compressive strength of rubberized concrete. The resistivity
value can be considered as the resistance of the concrete interface to chloride ion penetration.
A higher resistivity value means better chloride ion penetration resistance. Luo et al. [76]
studied the freeze–thaw cycle resistance of steel fiber-modified rubberized concrete. The
test results showed that the addition of steel fibers could significantly improve the residual
strength of rubberized concrete after freeze–thaw cycles. With the increase in the number
of freeze–thaw cycles, the reinforcing effect of steel fibers constantly weakened. At the
same time, the authors showed that the mass loss of the rubberized concrete without steel
fibers during the freeze–thaw cycle was faster than that of the rubberized concrete with
steel fibers.

Turatsinze et al. [77] studied the synergistic effect of rubber and steel fibers in the
process of cracking resistance. The test results showed that steel fibers could effectively
retain the residual strength of rubber concrete after being damaged by external forces,
while rubber could effectively reduce the surface cracks generated in the process of loading.
Wang et al. [78] showed that polypropylene fiber could help rubber concrete to build
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structures effectively resistant to electron passage. The resistivity of specimens at the age of
28 days is shown in Figure 24. The combination of 10% rubber and 0.5% polypropylene
fibers has the best surface resistance and freeze–thaw resistance. The author considers that
the alkali–silicon reaction between polypropylene fibers and the hydration process is an
important link in improving the durability of rubber concrete.
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Gupta et al. [15] studied the durability of concrete mixed with rubber fiber and rubber
particles, and the results showed that the reinforcement in the mixed rubber concrete
was less corroded by chloride ions than that in the concrete prepared with single rubber
particles. The author also explored the quality loss of rubber concrete with three different
acid solutions, and the results showed that mixed rubber concrete was better than ordinary
rubber concrete in terms of acid erosion resistance ability. This was because the characteris-
tics of large size and high curvature of rubber fibers can cooperate with rubber particles to
construct a more perfect structural network to resist acid entry and erosion.

To sum up, adding fiber materials, such as carbon fiber, PP fibers and steel fibers,
can improve the compressive strength of rubber concrete. From the observation of mi-
crostructures, it can be found that mixing with fibers can help rubber concrete bear greater
external loads. The fibers can help rubber concrete build a more stable internal mesh
structure. Special material fibers such as polypropylene fiber play a more special role, and
the alkali–silicon reaction of polypropylene fibers can significantly improve the durability
of rubber concrete. The tests conducted by scholars by adding different types and amounts
of fibers into rubber concrete are summarized in Table 9.

Table 9. Summary table of incorporating fibers.

References Rubber
Particle Size

Best Rubber
Content Treatment Methods Compressive Strength Durability

Hossain [68] Maximum CR
size of 4.75 mm

The samples with
30% recycled
aggregate, 5%
rubber particles
and 2% pp fibers
have the best
ductility and
bending resistance

In recycled aggregate
concrete, rubber particles
were added to replace fine
aggregate, and PP fiber was
added for modification

The addition of rubber
will reduce the strength of
recycled concrete, while
the addition of PP fiber
will increase it. The
compressive strength of
concrete with 10%
recycled aggregate
replacement was better
than that of the 30%
replacement and control
groups.

_
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Table 9. Cont.

References Rubber
Particle Size

Best Rubber
Content Treatment Methods Compressive Strength Durability

Bu [69] 1–2 mm

0.1% pp + 0.9%
MS (micro-steel
fibers) was the
best fiber mix

In the experiment, mixed
fibers (PP fibers mixed
with micro-steel fibers)
and polycarboxylic
ether-based
superplasticiser were used
to modify a mineral
admixture

After 0.1% pp fiber +0.9%ms
fiber was mixed into
concrete, the maximum
compressive strength of
concrete was 33.94 mpa.
Compared with the control
group, the compressive
strength of concrete samples
with 20% rubber content
decreased by 44.21%

_

Carroll [70] 9.5 mm,
2.4 mm _

Five kinds of fibers were
selected for modification:
9.5 mm and 13 mm (PVA)
fibers, 25 mm twisted steel
fibers, 25 mm hooked steel
fibers and 13 mm straight
steel fibers

The compressive strength of
concrete samples will
decrease no matter the size
of rubber particles, but the
samples mixed with fiber
always maintain a high
value

_

Murali [71] 12–19 mm _

Soak the rubber particles
in 10% volume fraction
NaOH solution for 0.5 h,
wash them with clean
water, then let them stand.
At the same time, the steel
fibers are used as an
additive for modification.
The author also took the
water–cement ratio as the
modification variable

The compressive strength of
samples decreased with the
increase in rubber content
and increased with the
increase in steel fiber
content. The impact
resistance increases with the
addition of rubber and steel
fibers

_

Fu [72] 1–3 mm

The combination
of 10% rubber
and 0.75% steel
fiber has the
maximum
compressive
strength

Steel fibers with 0.5%,
0.75% and 1% volume
fractions were selected as
the additives for
modification

The compressive strength of
the sample is determined by
the amount of rubber and
steel fibers

_

Srivastava [73] 10–50 mm

50 mm long
rubber fibers and
10% content was
the best
combination

Cut the rubber tire fiber
up to 10 mm. This is used
to replace the coarse
aggregate in the concrete

The addition of rubber will
reduce the compressive
strength of concrete, but it
shows less strength loss
when the length of rubber
fibers is 50 mm and the
percentage of rubber fiber
used is 10%

_

Chen [74] 1–2 mm

The optimum
volume ratio of
steel fiber
modification is
1.0%, and the
optimum content
of nanosilica
modification is
1.0%

The effects of steel fiber
volume ratio and
nanosilica content on the
mechanical properties of
rubber concrete were
mainly studied

Steel fibers can increase the
compressive strength of
rubber concrete at high
temperatures by 103.93%.
The improvement of steel
fibers on the compressive
strength of rubber concrete
at a high temperature is
much greater than that at
room temperature.
Nanosilica can play a
reinforcing role

_
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Table 9. Cont.

References Rubber
Particle Size

Best Rubber
Content Treatment Methods Compressive

Strength Durability

Liu [75] 40–60 mesh

The best
combination is a
mixing amount
of rubber
powder less than
5 kg/m3 and of
steel fibers less
than 15 kg/m3

Waste rubber powder,
polypropylene fibers,
carbon fibers and steel
fibers were selected for
modification

When the amount of
rubber powder is less
than 5 kg/m3 and the
amount of steel fibers
is less than 15 kg/m3,
the amount of steel
fibers increases and
the compressive
strength of the
modified concrete will
be greater than that of
normal concrete

_

Luo [76] 0.125 mm

2% steel fibers
was best for
rubberized
concrete in terms
of durability

In this paper, the
compressive strength
and durability of rubber
concrete were studied by
adding steel fibers

Rubber will reduce the
compressive strength
of concrete, while steel
fibers play a
reinforcing role and
the reinforcing role of
steel fibers decreases
with the increase in the
number of
freeze–thaw cycles

The influence of
steel fibers on the
mass loss rate of
rubber concrete in
freeze–thaw cycles
is positive

Turatsinze [77] Smaller than
4 mm _

The synergistic effect of
steel fibers and rubber
particles on concrete was
studied

The addition of rubber
will reduce the
compressive strength
of concrete but
significantly improve
its brittleness

The presence of
rubber greatly
reduces the
shrinkage of
concrete and the
presence of steel
fibers enhances
this effect

Wang [78] 7–30 mesh

0.5%
polypropylene
fibers combined
with 10% rubber
showed the best
resistance to
chloride ion
penetration

The synergistic effect of
polypropylene fiber and
rubber particle-modified
concrete was studied

After adding rubber
into polypropylene
fiber concrete, the
compressive strength
decreases significantly,
but the residual stress
after fracture increases
significantly

The synergistic
effect of rubber
particles and
polypropylene
fibers greatly
improves the
freeze–thaw
resistance and
chloride
penetration
resistance of
concrete

Gupta [15]

Width of
2–5 mm and
length up to
20 mm,
0.15–1.9 mm

The combination
with 10% rubber
particles had the
lowest mass loss
in the
freeze–thaw
cycle test

The modification effects
of rubber particle
aggregates and rubber
fibers on concrete were
investigated

_

The water
resistance of
rubber particles
and fibers helps
concrete better
resist the corrosion
of acid substances.
Rubber particles
and rubber fibers
provide resistance
to chloride ions
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6. Coefficient of Thermal Conductivity

Qin et al. [19] also paid attention to the change in thermal conductivity of silicone rub-
ber concrete after special treatment. The test results are shown in Figure 25. Silicone rubber
concrete is considered to be an excellent thermal insulation material. Based on the analysis
of the porosity and compressive strength of silicone rubber concrete, the author thinks
that the improvement in thermal insulation performance with silicone rubber concrete is
due to the excellent thermal insulation performance of silicone rubber itself, which is less
affected by external interference factors. Liu’s [75] study also involved the temperature
difference resistance of fiber-modified rubber concrete, and the test results showed that
rubber concrete itself had a better ability to resist temperature changes compared with
ordinary concrete.
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Figure 25. Thermal conductivity of original and treated silicone rubber concrete [19].

Marie [20] explored the effect of adding rubber into recycled aggregate concrete on
thermal insulation performance. The study showed that the addition of rubber can sig-
nificantly improve the durability of recycled aggregate concrete, mainly manifested in a
reduction in thermal conductivity. The thermal conductivities of the recycled aggregate con-
crete group and the rubber-incorporated group are shown in Figure 26. It can be observed
that with the increase in rubber content and recycled aggregate, both concretes showed bet-
ter thermal insulation performance, which was due to the thermal insulation performance
of recycled aggregate and rubber particles being better than that of ordinary aggregate.
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Petrella et al. [21] studied the influence of rubber particles of different size on the
thermal conductivity of recycled aggregate concrete. The results showed that the fine
rubber particle concrete had a better thermal insulation ability than the coarse rubber
particle concrete. This was because fine rubber particles have a larger specific surface area,
which can weaken the fluidity inside the concrete, and the rubber particles do not easily
float and segregate, which reduces the weak links in the concrete, which is helpful for
the thermal insulation performance of the concrete. Jin et al. [79] compared the aging of
rubber concrete mortar and ordinary cement mortar in a high-temperature environment.
The research shows that the mortar mixed with rubber and ordinary mortar resisted aging
at the same high temperature for the same time, and the former had a better resistance
hardness residue. Benazzouk et al. [80] used the self-coherence mean model to discuss
the influence of rubber on the thermal properties of concrete. The test results showed that
the thermal conductivity of rubber concrete can be reduced by about 80% compared with
ordinary concrete, and the minimum can reach 0.47 W/mK. The author believes that rubber
has great potential to modify the thermal properties of ordinary concrete.

To sum up, the thermal conductivity of rubberized concrete is lower than that of tradi-
tional concrete, which also means that rubberized concrete has better thermal insulation
performance. This is due to the excellent thermal insulation ability of the rubber particles
themselves. The relevant tests and conclusions on the thermal conductivity and thermal
insulation performance of rubber concrete are summarized in Table 10.

Table 10. Summary table of thermal conductivity.

References Rubber Particle
Size Best Rubber Content Treatment Methods Thermal Conductivity

Qin [19] 5, 10, 20 and
50 mesh

5 wt% treated with
KOH or H2O2

1. Soak in H2O2 for
24 H at room
temperature

2. soak in KOH for
24 H, then wash
with water
several times

Compared with the control group,
the thermal conductivity of the
sample with 30% silicone rubber
content was reduced by 60.64%,
and the silicone rubber concrete
had good thermal insulation and
thermal insulation properties

Marie [20] 0.075–4.75 mm

20% recycled aggregate
instead of coarse
aggregate and 10%
rubber particles instead
of fine aggregate
constituted the best
combination

The author used
recycled aggregate
instead of coarse
aggregate and rubber
powder instead of fine
aggregate to explore
the modification of
concrete

Appropriate recycled aggregate
and rubber aggregate can reduce
the thermal conductivity by up to
32% compared with the contract
control group

Petrella [13] 0.5–2 mm _

In this paper, rubber
particles and waste
porous glass were used
as aggregate substitutes
to modify the
properties of concrete

The rubber particles fill the pores
between the porous glass and the
cement matrix, preventing heat
transfer, thus reducing the thermal
conductivity of concrete

Liu [75] 40–60 mesh

The best combination
was with the mixing
amounts of rubber
powder less than
5 kg/m3 and steel
fibers less than
15 kg/m3

Waste rubber powder,
polypropylene fibers,
carbon fibers and steel
fibers were selected for
modification

The temperature resistance of fiber
waste rubber concrete was better
than that of ordinary concrete in
the control group, which shows
that the temperature change in
fiber waste rubber concrete was
less than that in the control group
within the same temperature
change range
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Table 10. Cont.

References Rubber Particle
Size Best Rubber Content Treatment Methods Thermal Conductivity

Benazzouk [80] Smaller than 1 mm 50 wt% _

The thermal conductivity of
concrete samples with rubber
particles decreases rapidly and
decreases with the increase in
rubber content

7. Conclusions

This paper summarizes the modification of rubberized concrete with chemical so-
lutions, admixtures, rubber size and fibers, characterized by compressive strength and
durability, and also summarizes the influence of concrete on the thermal conductivity of
rubber. The paper also summarizes research on waste rubber particles, particle size and
properties. The results show that rubber particles pretreated with chemical solutions are
more closely bound to the cement matrix, with higher compressive strength and better
durability. Compared with the rubber concrete without any treatment, it can be found that
the pretreatment can significantly improve the mechanical properties and durability of
rubber concrete, and this fact proves that chemical solution pretreatment is effective. The
pozzolanic effect of wollastonite and metakaolin in the admixture helps to strengthen the
hydration reaction of the rubberized concrete, improve the overall strength of the concrete
and reduce the excess pores in the concrete specimen. Additives such as carbon nanotubes
can help rubber concrete build a better internal structural system, while fibers can reduce
the development of cracks in rubber concrete under load and significantly improve the
compressive strength of rubber concrete. The addition of rubber significantly reduces the
thermal conductivity of concrete, and rubberized concrete has excellent thermal insulation
properties. Rubber concrete can be modified in the above ways, and modified rubber
concrete products have the advantage of being suitable for more application scenarios.
In addition to the above three modification methods, there are many other aspects to be
explored in the research on rubber concrete modification, such as the treatment of rubber
particles with high-energy rays and high-temperature heating. The mechanical properties
of concrete and rubber obviously decrease after mixing, which limits the range of potential
applications. However, on the basis of the current research results for rubber concrete
modification, modified rubber concrete has good market application value and is worthy
of further exploration.
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