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Abstract: In the European Union States, household energy usage accounts on average for 40% of
overall energy consumption and is responsible for a considerable amount of carbon dioxide emissions.
The urgent need to take concrete action to identify solutions that can ensure more effective usage
of energy in households, both because of environmental and political reasons, has been repeatedly
stated by the European Parliament. White box, grey box and black box predictive models were
demonstrated to be a feasible approach to predict the indoor temperature to implement an effective
energy management strategy. This study has the purpose of illustrating the potentiality of an LSTM
Artificial Neural Network in a short and long-term prediction of the indoor temperature in 15 offices
distributed on three storeys of an existing building (Energy Center of Turin (Italy)). The indoor
temperature was predicted two hours, five hours and one entire day ahead. The performance of
these algorithms has been evaluated not only based on two main criteria (i.e., Root Mean Squared
Error and Mean Absolute error) but also by considering the adaptability of the model between the
three floors and in terms of different years. Moreover, the proposed work explains how parameters
affect performances, aiming to properly identify the optimal model structure. Current results indicate
that these models can provide accurate predictions for all the proposed time scales and could all
potentially be used for predictive control purposes to optimise the energy demand. The novelty of
this study is to show that these models can only be trained on data for a limited period and a specific
plane, and then be reliable in predicting indoor temperature, both for different planes and for random
periods, taking into account temperature and relative humidity. Furthermore, input parameters are
limited to indoor HVAC variables, to ensure acceptable predictions regardless of outdoor parameters
availability. The only exception is the outdoor temperature, because of its undeniable and proven
importance, it was retained as the only exogenous input variable. Based on current literature and
temperature perception capabilities, the results were considered acceptable if the RMSE was less than
0.15 or better yet 0.10, which is equivalent to an inaccuracy between the predicted and actual indoor
temperature of 0.15 ◦C/0.10 ◦C. On average, the models trained on the Energy Center database
achieved an error of 0.1 ◦C in terms of RMSE.

Keywords: prediction model; indoor temperature forecasting; LSTM; artificial neural networks;
energy savings

1. Introduction

The EU has repeatedly stressed the need for efficient building energy management [1]
since they account for 40% of total energy consumption and 36% of total CO2 emissions
within the EU [2,3]. As HVAC systems are responsible for the most energy consumed in
buildings [4], automation of residential as well as commercial buildings and their “smart”
breakthrough is a key target to reduce energy waste. This amount is constantly increasing
due to population growth, rising temperatures and higher comfort standards. All the
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trends mentioned suggest that HVAC will be increasingly used soon. Predictive models are
one of the emerging technologies of recent times and are applied to different sectors. In the
context of buildings, predictive models are an essential resource for achieving a reduction
in energy consumption. The prediction of indoor temperature from certain input variables
allows, for example, the prediction of short- and long-term energy demand and peak load,
and, consequently, a more rational and optimised energy production that brings with it
significant benefits. It also opens the door to pre-heating and pre-cooling solutions based
on weather forecasts, and to better equipment management strategies that aim to reduce
internal fluctuations as much as possible. Predictive technologies play an important role in
laying the foundations for the implementation of intelligent buildings, where automatic
control strategies are implemented to anticipate both user behaviour and the effects of
external conditions to maximise indoor comfort. A plethora of different models [5] was
employed, including building energy simulation software (the so-called white models)
such as EnergyPlus and TRNSYS, that allows to explore even not yet existing buildings
behaviours and remain unaffected by database quality. Nevertheless, the mathematics
model realised to describe the building requires a lot of parameters and computational
times are prohibitively high. On the other hand, black models make their predictions
out of historical data thanks to statistical models instead of physical principles, with
lower computational times and less required expertise, even if they are significant data-
hungry, therefore huge volumes of data are needed to get accurate predictions. Finally,
grey models are intermediate approaches: they are less affected than black models by
data availability and quality, they require fewer input parameters than white models,
with intermediate computation times, and in most cases, have proven to be the most
effective models for managing the energy consumption of buildings [6]. This hybrid
category includes simplified RC models that offer much more simple building descriptions
by performing an electrical analogy, among them, Fraisse et al. [7] and its second-order
version [8] international standards (EN) ISO 13790:2008 that was recently replaced by
(EN) ISO 52016-1 [9], which empowered the hourly method of its predecessor to better
handle dynamic interactions between building components and system elements, and
VDI 6007-1 [10]. As more capacitance parameters are taken into consideration, accuracy
increases at the cost of greater computational times, leading to a trade-off. However,
hybrid models’ parameters detection relies on a wide range of methods, such as Genetic
Algorithms [11], regression algorithms [12], ODE-based [13] and physics-guided neural
networks [14], or even Unscented Kalman Filter that provides a different set of equations
(i.e., a filter) depending on the building zone [15].

Black models are also greatly used in most of their variants, from linear regression,
as well as nonlinear regression [16,17], to various types of artificial neural networks. The
well-known study by Lu and Viljanen [18] showed the suitability of NNARX models in
the predicting indoor temperature task and their quickness and handiness in comparison
to physical models, achieving a coefficient of determination of 0.996. Overall, in the
literature, ANN was employed in a plethora of climate zones, including extreme humid
regions as Mba et al. [19] did by using ANN to forecast indoor temperature 24 h up
to one month ahead. More recently, also Shi et al. [20] proposed a BP neural network
to forecast indoor temperature 6 h, 24 h and 72 h in advance. Data were collected in
a tobacco factory warehouse in a high humidity area in China and included outdoor and
indoor temperature and relative humidity. Black models are also massively exploited
in non-industrial contexts, such as offices and commercial buildings, where the indoor
temperature is a significant comfort indicator. Soleimani-Mohseni [17] developed a simple
feed-forward neural network with one hidden layer based on the Levenberg–Marquardts
training algorithm and selected as input features just easily measured parameters such as
wall temperatures, indoor and outdoor temperatures, electrical power, ventilation flow rate
and time of the day to forecast a single office indoor temperature. The results showed that
even without past data, a non-linear artificial neural network gave a better estimation of the
operative indoor temperature than linear ARX models. Attoue et al. [21] as well proposed
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a three-layer ANN to forecast indoor temperature, considering a prediction horizon from
0.5 h to 4 h. This work has some points of similarity with the present study, for example,
there is a dataset consisting of several offices in the same building and a comparable outdoor
temperature range. Specifically, LSTM was used by Xu et al. [22] to forecast very-short
term (i.e., 5 min and 30 min-ahead) indoor temperature in a public building with measured
data collected for nearly 2 months. In these circumstances, an LSTM model modified by
an error correction model was compared with other machine learning models (i.e., DT,
SVM and BPNN) and showed evident advantages in directional prediction accuracy. ANN
potentialities were further explored in modelling multi-zone buildings by Huang et al. [23]
whose final purpose was to establish an effective driver for a predictive control system in
a commercial building located in Australia. The study illustrates that RMSE was reduced
by about 0.1 ◦C by choosing a multi-zone model instead of a single-zone model. Therefore,
the proposed model was able to take into consideration the thermal interaction between
the adjacent zones. The training was led by Bayesian regularisation exactly to improve
generalisation. Recently, Fang et al. [24] proposed also a multi-zone model that adopts
a cross-series learning strategy, providing predictions up to 2–3 days ahead. Among the
tested seq2seq models, the LSTM-dense model turned out to be the most useful for short-
term forecasting, while LSTM-dense-LSTM or LSTM-LSTM performed better for longer
prediction horizons. This study underlined the potentialities of LSTM models when a large
dataset of training data is available (i.e., three years). The training consisted not only of
historical variables but also of future variables, including forecasted outdoor temperatures.
Depending on the specific seq2seq architecture, variables were concatenated to form a total
input matrix to be passed directly or separately to encoder and decoder components. Other
machine learning techniques such as SVM [25] and ARMA [26] were also employed in
this scope. The autoregressive approach turns out to be effective, particularly if applied to
neural networks (e.g., NARX) rather than ARX, as illustrated in several studies [27–29]. On
the other hand, Gustin et al. [30] developed an AutoRegressive time series model using
eXogenous input using data collected during the 2015 heatwave and claimed that ARX,
whose predictor variables were selected by minimising the Akaike Information Criterion,
was suitable for temperature prediction from 1 up to 72 h in advance and even simpler to
derive than ARMAX.

Alawadi et al. [31] carried out a test of several machine learning models under the
same conditions and regressors with good performances turned out to be extraTrees, less
sensitive to noise and outliers and to wider time frames than ANN, along with random
forests, various ANN declination, cubist, ELM [32] and gradient boosting of regression
trees. In this work, ANN is used for a short and long-term prediction of the internal
temperature in fifteen offices distributed on three floors of the Energy Center in Turin. The
prediction horizon varies from 2 h to one entire day. The performance of these algorithms
has been evaluated using: Root Mean Squared Error and Mean Absolute error. Moreover,
the proposed work explains how parameters affect performances, aiming to justify the
identification of the optimal model structure. In addition, this study illustrates the flexibility
of ANN techniques, which can predict both short- and long-term target variables and can
identify robust patterns between input and target characteristics, to the extent that neural
networks trained on single-plane data that do not cover the whole year are also employable
on other plans and at different times of the year without deteriorating their performance.

2. Materials and Methods
2.1. The Target Building

The dataset is composed of surveys taken from a three-storey building located in
Turin, Northern Italy. The target building, called Energy Center, is a research centre
of the Politecnico di Torino, in particular in the field of renewable and green energies
(Figure 1). The building comprises several areas that can be classified according to their
air-conditioning system: areas supplied by radiant floor panels and primary air (e.g.,
basement), areas supplied by radiant ceiling panels and primary air (e.g., offices), areas
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supplied by aerothermal heating (e.g., laboratory), areas supplied by an ‘all-air’ system,
without recirculation of the internal air (e.g., auditorium). The study is focused on the
northeast side of the building that includes five separated offices for each floor, whose layout
is shown in Figure 2. Each office, coded accordingly to its relative position as reported
in Figure 2, is climate-controlled by ceiling radiant panels, supplied by the same circuit,
and air-conditioned, through the same air system. Sensible heat is therefore managed
by radiant panels, while the air handling unit controls relative humidity and air supply,
the latter in proportion to current occupancy. A technological control unit is in charge of
maintaining the thermal conditions and includes: connection to groundwater, connection
to district heating, a multi-purpose geothermal heat pump, an absorption unit for the
production of thermal energy for air conditioning fed by district heating and cooling from
groundwater, storage tanks, a series of electric pumps and circulators, diverter and mixing
valves, temperature and pressure probes, flow and thermal energy meters, and a regulation
system controlled by the supervisory system. The building is also equipped with a solar
system used for domestic hot water production, but it does not actually play any role in the
air conditioning system. The acceptable indoor temperature range is approximately +20 ◦C
in winter and +26 ◦C in summer, with a tolerance of ±2 ◦C. These comfort conditions were
not met for a couple of offices (those highlighted in red in Figure 2). The measurements of
the sensors located in all fifteen offices were carried out four times per hour for a period of
one and a half years, from May 2019 to October 2020. The mentioned sensors are integrated
into Siemens system operator units for KNX S-Mode and KNX LTE-Mode. The sensors
mounted inside the Siemens panel are a thermistor NTC and they are wall-mounted close to
the door entrance. The recorded data refer not only to the indoor and outdoor temperatures
but also to various system-related variables. Each survey refers to a specific office, making
it possible to consider each room as a separate area. Some values, for example, the flow
and return temperatures of the floor AHU, are common to the whole floor, while others, for
example, the flow temperature of the AHU for all building areas considered, are common
to the whole building.
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2.2. The Dataset

As stated above, the dataset covers a period longer than a year, but, since an operation
of data integration was necessary, the final dataset made by joining the various data sources
turns out to be around 31,000 records long, including around 11 months of measurements.
Following other data cleaning steps, like removal of the unnecessary duplicates (a negligible
percentage of total) and missing values (2.7% of total), which originated from anomalies
attributable to sensor malfunctions, the number of records slightly decreases.

Outlier detection was achieved by setting ranges of validity for some features. For
example, records associated with an external temperature much below 0 ◦C or much above
30 ◦C were considered noisy and then excluded because those values are not consistent
with the climatic zone trends. A similar process was applied taking into consideration
other features (i.e., temperatures and humidity recorded inside the heating system) and
unrealistic records have been deleted from the dataset. The filtering operation was not
intended to be restrictive, to not lose information from data.

The dataset was also reduced in the number of its features, trying to keep only the
variables that impact the target variable (i.e., indoor temperature). Even if a lot of fea-
tures resulted to be linked to each other by a strong correlation, as shown in Figure 3, the
correlation was not used as a driver in the choice of relevant features. The features were
originally 63 and were selected through the expert judgement method. With the exception
of the outside temperature, the selected characteristics concern the air-conditioning sys-
tem related to the radiant ceiling panels located in the offices and the air-handling units
connected to them; therefore, many of the original characteristics concerning the solar
system or other parts of the air-conditioning system were discarded. Even if other variables
(i.e., solar radiation) may have an impact on predicted variables, we chose not to further
collect them, to enhance the model capability to provide accurate predictions using as
less information as possible. Moreover, Attoue et al. [21] illustrated that the neglect of
some external variables (i.e., solar radiation, humidity and even the historical outdoor
temperature) did not significantly deteriorate the performance of their ANN model, as the
MSE increased from 0.0277 to 0.0365 while R decreased from 0.9967 to 0.9959. However,
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they reported that among cited external features, the outdoor temperature had the highest
importance (i.e., importance factor of 42%). A similar finding was confirmed by Fang
et al. [24] whose correlation analysis outlined the future outdoor temperature as the most
important exogenous variable, so we decided to keep it as an input. The main criterion
adopted was selecting among available features only the ones that were related to the
heating system which involved the target offices. Hence, these were considered valuable
as input features variables associated with air-handling units and cold and hot collectors
belonging to ceiling conditioning panels. In the end, it results in 49 features, which include
outdoor temperature, indoor temperature for each office, set-point temperature for each
office, ceiling panel supply temperature, supply and return temperatures of cold and warm
collectors, supply and return air temperature for each floor, overall supply air temperature
for the whole building area, supply and return a degree of humidity for each floor.
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In addition, another feature was created (i.e., the hour of the day), resulting in 50 final
features listed in Table 1. In fact, in several studies, such as that by Soleimani-Mohseni
et al. [17], it is shown that the hour of the day affects the air’s indoor and operative
temperature in a non-linear way and its use as an input feature improves significantly
the estimations.
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Table 1. Recap of the selected feature. Note that setpoint temperatures and indoor temperatures can
be found five times per floor because they are repeated for each office on each floor. Note also that
AHU temperatures and humidity degrees are repeated for each floor.

Description Unit of Measurement

Ceiling conditioning panel supply temperature ◦C

Return temperature of cold collector supplying ceiling conditioning panels ◦C

Supply temperature of cold collector supplying ceiling conditioning panels ◦C

AHU supply temperature for the whole considered building area ◦C

Return temperature of hot collector supplying ceiling conditioning panels ◦C

Supply temperature of hot collector supplying ceiling conditioning panels ◦C

Target floor AHU supply humidity degree Int

Target floor AHU return humidity degree Int

Target floor AHU supply temperature ◦C

Target floor AHU return temperature ◦C

Outdoor temperature ◦C

Target office setpoint temperature ◦C

Target office indoor temperature ◦C

Hour of the day Int

The data pre-processing steps are summarised in Figure 4.
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2.3. Possible Approaches

Broadly speaking, MISO and MISO terms refer to systems provided with multiple
outputs and inputs. Similarly, a model can be provided with multiple variables as inputs,
while resulting in only an output, otherwise in multiple ones. If the MISO approach is
applied to the case study under consideration, the model will process all the available
input variables and will provide a single output, which can be identified as the internal
temperature of a single zone (i.e., a single room). Otherwise, a MIMO model can provide
predictions even the indoor temperatures related to each room on each building floor, but
it will have to deal with major complexity.

In this case study, the building was broken down into three zones, each one represented
by a single floor, to handle the complexity due to the need to predict separately the internal
temperature of each office. As a result, the maximum number of outputs provided by
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MIMO models developed in this case study will be five (i.e., the number of offices for
each floor).

2.4. The Model

The indoor temperature prediction was achieved through a black-box model, more
specifically, an LSTM neural network. According to several studies, such as by Huang
et al. [23], LSTM is likely to outperform other machine learning methods in terms of
predicting a variable variation trend. They proved to be particularly suitable for time
series prediction thanks to their ability to process the entire data sequences and not only
single data points. The network is made of three separate layers; the activation function
chosen for the input layer and the hidden layer is ReLU, thanks to its versatility, while the
output layer is associated with a linear activation function. Moreover, the output layer
contains several neurons equal to the number of the features that have to be predicted (i.e.,
one temperature for one office in the MISO approach and five temperatures, associated
with each office on the whole floor in the MIMO approach). The batch size is set to 64.
A simplified representation of the network architecture is reported below in Figure 5.
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Neural networks were chosen over linear models thanks to their capability to manage
heat transfer dynamics through buildings that are typically not linear phenomena. As
shown in Figure 6, the error using a linear predictor is much higher, with the same training
dataset size and input features listed in Table 1.

The linear regression was further studied in terms of time-lagging the external tem-
perature against the internal temperature. Due to the thermal inertia of building materials,
some input variables (e.g., outdoor temperature) may not have an immediate effect on in-
door temperature; otherwise, their impact may last and involve subsequent measurements.
Consequently, the correlation may be more pronounced between the previously measured
outdoor temperature rather than the simultaneous correlation with the indoor temperature.
This lag effect has previously been defined as a non-linear phenomenon that may not
be captured by traditional linear regression. The lag due to thermal inertia was roughly
estimated according to ENI ISO 13786, depending on the main component of the wall
(e.g., concrete), in a range between 0.5 and several hours, also depending on the insulation,
plaster and wall thickness; this means that, as each measurement is approximately 15 min
away from the previous one, the external temperatures must be shifted relative to the other
input characteristics by several times between 3 and 10 or more. The area of the dataset
that includes the outdoor temperature was shifted forward 3, 10, 20, and 30 times to assess
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whether a delayed impact on indoor temperature occurs and when it is most likely to
occur. As illustrated in the figure below (Figure 7), a local minimum is reached by the
RMSE between 3 and 10 shifts, but the results provided, although slightly better than with
traditional linear regression, are still not comparable to those obtained with the LSTM.
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The models were developed using the Keras library (https://keras.io (accessed on
1 June 2022)). Instead, the linear prediction was implemented thanks to scikit-learn library
and statsmodels library, whose documentation is also reported (https://www.statsmodels.
org/dev/generated/statsmodels.regression.linear_model.OLS.html (accessed on 1 June
2022), https://scikit-learn.org/stable/index.html (accessed on 6 June 2022)). The models
were tuned in terms of several performance-affecting parameters: number of neurons for
input and hidden layers, number of layers, learning rate, loss functions, regularisation
techniques (i.e., dropout probability), chosen optimiser, model structure (i.e., bidirectional
or traditional). Performance is evaluated concerning the selected floor, time horizon length,
and adopted approach (i.e., MISO or MIMO).

Since every floor can be considered an independent zone, the peculiarity of this circum-
stance raises an interesting question. The problem may be broken into more manageable
sub-problems; hence every floor may be paired with three models, one for each proposed
prediction time step (i.e., 2 h, 5 h, 24 h). Otherwise, the building may be treated as a whole
and only three models, one for each proposed prediction time step (i.e., 2 h, 5 h, 24 h),
trained on aggregated data. In the latter case, accuracy may take a backseat, while the

https://keras.io
https://www.statsmodels.org/dev/generated/statsmodels.regression.linear_model.OLS.html
https://www.statsmodels.org/dev/generated/statsmodels.regression.linear_model.OLS.html
https://scikit-learn.org/stable/index.html
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capability to predict as uniformly as possible future indoor temperatures across the whole
building may hold more importance.

Since exploiting the generalisation capability of neural networks is one of their most
interesting features, in this case, the developed models trained on the data of the whole
building as well as the models trained on the data of individual floors, assuming that
the generalised model should only be considered if it manages the well-known trade-off
between accuracy and versatility, showing acceptable results in terms of human perception
of temperature. Models trained on single plane data were kept as benchmarks to evaluate
the performance of other models. For these models, many tests were performed to find
the best match for each plane, resulting in three slightly different model variants for each
approach adopted (i.e., MISO and MIMO). This methodology allowed us to achieve better
performance. During each test, the training phase lasts 100 epochs.

2.5. The Dataset Split

Performances were evaluated with the RMSE and MAE metrics. They are two of the
most commonly used metrics used to measure accuracy for continuous variables. MAE
is the average over the test sample of the absolute differences between prediction and
actual observation. Since the average is purely arithmetic, all individual differences have
equal weight.

RMSE rule also measures the average magnitude of the error and, just like MAE,
expresses it in units of the variable of interest, is insensitive to errors direction and has to
be minimised to achieve a good model performance. The main difference between the two
performance metrics is that, since RMSE squares errors before they are averaged, it gives a
high weight to large errors and it is a better indicator of undesirable large errors. RMSE
would significantly increase in the case with the variance of the frequency distribution of
error magnitudes. Since in this application field error peaks are better to be detected and
penalised, RMSE was used to tune models and to identify the most suitable ones.

The metrics definitions are described by the following equations.

RMSE =

√
1
n ∑n

j=1(yj − ŷj)
2 (1)

MAE =
1
n

n

∑
j=1
|yj − ŷj| (2)

Performance metrics are calculated on both the validation set and the test set to
provide an unbiased evaluation of the fitted model, previously trained on another part of
the dataset.

The high complexity of the building requires as much training data as possible, so the
training set consists of the first 9 months’ forecasts from the first floor. The remaining data
from the first floor are used to validate the model, tune, and set parameters. Importantly, the
original sequence of measurements over time is maintained to test the ability of the models
to handle forecasts for different periods of years. The models are therefore tested on data
recorded on the second and third floors throughout the year. Splitting the chosen dataset
allows us to test whether the model can identify sufficient patterns in the training data to
handle each floor heat transfer dynamic and whether it can predict indoor temperatures at
different times of the year for each of them. The adopted split rule is summarised in the
table below Table 2.
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Table 2. Database split recap for generalised model.

Dataset Percentage Records

Training set Around 70% Around 23,000 (i.e., 9 months of observations from first floor)
Validation set Around 30% Around 4000 (i.e., 2 months of observations from first floor)
First Test Set 100% Around 23,000 (i.e., 11 months of observations from second floor)

Second Test Set 100% Around 23,000 (i.e., 11 months of observations from third floor)

Each plan dataset is divided into a training set, a validation set and a test set using
the following rule of thumb Table 3. In this case, tuning will be aimed at increasing
accuracy and at the same time avoiding the risk of overfitting, which is considerably
high when developing a model only on single plan data. In this case, the tuning will be
aimed to increase accuracy while at the same time avoiding the risk of overfitting, which is
considerably high when developing a model on single floor data only.

Table 3. Database split recap (one floor only) for models tailored on one floor.

Dataset Percentage Records

Training set Around 70% Around 23,000 (i.e., 8 months of observations)
Validation set Around 15% Around 4000 (i.e., 1–5 months of observations)

Test set Around 15% Around 4000 (i.e., 1–5 months of observations)

3. Results
3.1. Model Tuning

The tuning of the models trained on data from all three floors of the building is detailed.
The parameter space chosen for the grid search ranges from 32 up to 256 neurons for the
first layer and the hidden layer, including some arbitrarily chosen intermediate values.
Tuning was performed using a model that includes a single hidden layer, together with the
input and output layers. In fact, as Huang et al. [23] also stated, an accurate ANN model
does not necessarily have to be large, to the extent that oversized networks can lead to
large prediction errors with high-frequency noise. Looking at the figures below (Figure 8),
it becomes clear that the more complex is the model, the more it is likely to overfit instead
of staying adaptable to differing datasets. The increase in the number of neurons in model
layers worsens performances on unknown datasets, to the point that the 256 neurons model
completely fails with the validation set. It follows that it is convenient to choose 128 as
the best suitable number of neurons, as the error hits a local minimum in that area. The
average RMSE in this instance results to be around 0.1, which was considered acceptable
for two reasons: it is similar to several results achieved in literature studies that leverage
comparable approaches or models. Moreover, this misprediction would go unnoticed by
building occupants since the human body is not sensitive to change in terms of ◦C decimal.

The learning rate, a very significant parameter, is set to 0.00001. The parameter was
decreased until the training loss and validation loss on the training epochs became stable, as
shown in Figure 9. It is only below this threshold that the learning curves stop fluctuating
and the detection of the minimum loss function is successful.

Two kinds of loss functions were taken into consideration: MAE and MSE. As shown
in Figure 10, the second one manages to reduce the average RMSE for the validation set.

Among the optimisers tested, Adam systematically provides the best performance
for shorter forecast horizons. However, this may no longer be true when it comes to
longer time horizons because, unlike Adagrad and SGD, Adam’s performance deteriorates
with longer periods, as shown in Figure 11. When it comes to the time parameter, it
becomes immediately clear that it is one of the most performance-impacting variables.
This is confirmed also by Attoue et al. [21] that reported the same pattern, obtaining for
the prediction horizon of 4 h an R = 0.8370 and MSE = 1.23783 versus an R = 0.9109 and
MSE = 0.89078 for the 2 h forecasting. Fang et al. [24], chose the Adam optimiser for
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their model because of its excellent performance in handling LSTM training dynamics
and its rapid convergence speed, and tried to predict internal temperatures up to 7 days
in advance, they observed a similar deterioration in prediction quality as time passed,
especially after the first 48 h. Figure 11 shows that the Adam average RMSE continues to
grow while enlarging the prediction time step so that a sort of turning point is reached
and a change of optimiser is required to keep the average error around the reference value
of 0.1 Celsius degrees. As mentioned before, in fact, Adagrad and especially SGD prove
to better handle wider prediction time ranges. Therefore, for the longer forecast horizon,
Adagrad is preferable.
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Figure 11. Average RMSE trend for bidirectional structure horizon prediction by the optimiser for
the validation set.

The bidirectional model structure was tested along with the traditional one, both
paired with MSE function loss that resulted in the best one in the tuning so far. As
shown in Figure 12, bidirectional structure performance is comparable with traditional
structure ones, but it seems to be less affected by prediction horizon length. On the other
hand, the bidirectional structure turns out to be less effective for the shortest prediction
horizon considered.
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As mentioned in Section Materials and Methods, many input features are correlated
with the predicted variable. The temperature of the return air from inside the building is the
most correlated variable. An additional test was carried out on the model to explore if it can
predict the return air temperature as input. Figure 13 confirms that the considered feature
plays a significant role in the prediction since while it is missing the model performance
slightly worsens, but that it is not essential, as errors are still under the acceptability
threshold –0.15 ◦C.
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3.2. Test

The models defined for each time horizon were tested on second- and third-floor data
over all the available periods. The outcomes are reported in Figure 14.
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Although the temperatures of the third floor may be more unpredictable, probably due
to its peculiarities, for example, the roof being made of other materials than the remaining
parts of the building, the performance seems to be homogeneous between the floors. With
the optimiser adjusted for a 24 h forecast horizon, homogeneous performance can be
achieved. This is verified by the average RMSE of each floor, which is around the target of
0.1 degrees Celsius. The tests were repeated by changing the type of approach. The MISO
approach makes it possible to predict the internal temperature of office R40 alone on all
three floors. Comparing the MISO result with the R40 office temperatures provided by the
MIMO model for the validation and test sets, as shown in Figure 15, it can be observed that
the MISO approach is not necessarily more accurate: actually, it provides less precise results
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for two of the three available floors. Similar evidence was reported by Huang et al. [23]
who concluded that the multi-zone approach was able to provide predictions closer to the
actual values.
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The single-office predicted temperatures using chosen models for each time horizon
are summarised in the table below (Table 4).

Table 4. RMSE for each office and time horizon using a generalised model.

Office and Prediction Horizon 2 h 5 h 24 h

P1-R40 0.0879 0.0878 0.0771
P1-R38 0.1070 0.0942 0.0945
P1-R39 0.1220 0.1086 0.1011
P1-R42 0.1182 0.1108 0.1120
P1-R45 0.1248 0.1071 0.1177
P2-R40 0.0926 0.0920 0.0900
P2-R38 0.0875 0.0801 0.0836
P2-R39 0.0902 0.0817 0.0914
P2-R42 0.0846 0.0717 0.0721
P2-R45 0.0945 0.0886 0.0807
P3-R40 0.1315 0.1291 0.1245
P3-R38 0.0768 0.0789 0.0806
P3-R39 0.1594 0.1571 0.1650
P3-R42 0.0785 0.0689 0.0726
P3-R45 0.0892 0.0836 0.0751

Predictions for office R-40 over the three storeys and the three prediction horizons are
plotted in comparison with actual values in the figures below (Figures 16–23).
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3.3. Tailored Models

The plans were considered separately to explore what the minimum achievable error
is and whether attempts at generalisation justify the imprecision of the difference. The fine-
tuning, in this case, was performed considering a validation set on all planes. The number
of neurons in the input layer and the hidden layer was set to 256, due to the performance
improvement obtained by increasing the complexity of the model, as shown in the following
figure (Figure 24). However, the higher the number of neurons, the longer the calculation
time, so it is convenient to stop at the number 256, where the RMSE no longer decreases
linearly, so any further increase in model complexity would not provide a proportional
benefit in terms of accuracy. In this way, we can achieve the highest possible accuracy
without risking overfitting and without significantly increasing the calculation time.
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set on 2 h prediction horizon.

The learning rate is a significant parameter and is set at 0.00001. It is only below
this threshold that the learning curves stop fluctuating and the detection of the minimum
of the loss function is successful, as indicated in the previous subsection. Abandonment
regularisation is not exploited here, because each tested abandonment rate causes the
model to fail to predict correctly and gradually increases the loss since the critical threshold
is exceeded in each case (Figure 25).
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The bi-directional LSTM structure is preferred over the traditional one for the second
and third floors because it offers a slight performance improvement. In addition, the
bidirectional structure benefits from a shorter computation time, about 2/3 compared to the
traditional one. However, as mentioned in the previous subsection, the bi-directional struc-
ture is more sensitive to the enlargement of the time horizon, making it convenient to switch
to the traditional structure for the larger time interval considered (i.e., 24 h, Figure 26).
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By contrast, there is no such clear trend in the loss function. Overall, performance is
comparable (Figure 27).
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Similar to the previous observation, considering that the prediction performance of the
Adam optimiser deteriorates with the length of the prediction horizon (Figure 28). However,
unlike the generalised model, Adam continues to outperform the other optimisers, but
by broadening the forecast horizon we may be faced with a tipping point after which it is
convenient to change optimisers, as was the case with the development of the previous
generalised model.
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The alternative approach attempted (MISO) appears to systematically present more
accurate predictions, but on the other hand, is not as comprehensive as MIMO. It is evident
that these models, due to their limited capacity for generalisation, perform slightly better
when applying the MISO approach, probably due to its lower complexity (Figure 29).

While the relative position of each office does not seem to influence the corresponding
forecasts, the errors are significantly higher for the second and third floors than for the first,
in agreement with the results reported in the previous subsection (Figure 30).
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4. Discussion

To summarise, the errors of the model are approximately between 0.11 ◦C and 0.1 ◦C,
whereas by creating a different model for each plane, we obtain an RMSE between 0.08 and
0.06 ◦C, as shown in Figure 31. The performance gap is negligible enough to validate the
models. Users could take advantage of the models’ ability to adapt to each plane, without
losing too much accuracy compared to what could have been achieved by developing
a single model for each circumstance.

On the other hand, the tests showed some results:

• Increasing the size of the time horizon has a worse impact on the performance of
the model if the optimiser is of the type indicated by Adam; the ability to predict
variables well in advance would be vital in cases such as prolonged sensor failure, but
this type of prediction would be less reliable if the performance of the optimiser is
not monitored.

• The MISO scenario does not necessarily guarantee smaller errors in predictions, be-
cause it explores a simplified scenario. On the other hand, the MIMO approach
ensures completeness in representing the future state of the building. A model that
can generalise sufficiently, however, can also achieve better results by running MIMO
scenarios, as demonstrated in the Model Tuning subsection and also reported in other
similar studies.

• It must be considered that each floor has different levels of complexity because it is
defined by different dynamics. The third floor, for example, has the particularity of the
roof, while the second is influenced by the proximity of the other two floors, whose
influences are not considered by the input variables. When treating each floor as
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a single thermal zone, the model’s predictions for the first floor are the most accurate
compared to those for the second and third floors, whereas when the model is trained
to generalise more, it does not seem to be influenced much by the floor considered.

• The traditional structure works well for short-term forecasts, but performance may
deteriorate as the forecast horizon is extended, to the point that for a longer period the
two-way structure is preferable; this is the case both considering the plans as separate
areas. Thus, the length of the horizon appears to be a parameter that affects performance.

• The chosen learning rate ensures error constancy during the training phase and is
very low (i.e., 0.000001); at the same time, since the preferred optimiser is often of
the Adam type, known to have the fastest convergence rate, calculation times are not
unacceptable, and similarly when the chosen optimiser is of the Adagrad or SGD type.

• The highest tested numerosity (i.e., 256 neurons) is the one that guarantees the best
performance when the model is perfectly adapted to the reference area as far as possi-
ble. Otherwise, a model that must remain versatile may become too complex and the
ideal number of neurons is much lower, around 128, resulting in a simpler structure.
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Comparison with Similar Studies

The proposed solution is twofold: specific models seem to be a good solution for
stakeholders interested in managing air-conditioning systems only on a single floor while
minimising the margin of error, while a generalised model is the most suitable when the
need is to act on the control system in a centralised manner and may also prove reliable
when tested on other buildings. The proposed solution is validated by comparing it with
some previous studies existing in the literature, already listed in this study as references.
Among them, a couple of ANN models can be compared because they deal with similar
buildings, climate zones and forecast horizons. Soleimani-Mohseni et al. [17] predicted the
operating temperature using a feed-forward ANN. The structure of the network (3-10-1)
included only one hidden layer, just like the model proposed in this study. This network
provided a value of MAEE = 0.1543 for the training data and a MAEE = 0.1770 for the test
data. Attoue et al. [21], starting from a dataset consisting of parameters recorded every five
minutes for two summer months, were able to obtain reliable estimates up to two hours
in advance, although the forecast horizons tested varied from 0.5, 1, 2 and 4 h. The MSE
increased with time, from a value of 0.0701 to 1.053, which was considered unsatisfactory. In
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the latter case, about 68% of the forecast errors were less than 1 ◦C. Huang et al. [23] based
the training process of their ANN model on the MSE loss function (and in the meantime
relied on Bayesian regularisation as a training method) and developed an effective multi-
zone predictor over a time range of 1 to 4/5 h, to the extent that even six-day simulations
were found to maintain an RMSE of 0.2–0.4 ◦C for most of the zones tested.

Xu et al. [22] exploited the potential of LSTM for forecasting purposes and obtained
an RMSE between 0.3 ◦C and 0.5 ◦C with two months of collected data and forecast horizons
from 5 to 30 min. The results listed are generally in the same range in terms of error,
bearing in mind that a fair comparison is rendered impossible by significant differences, for
example, in the availability of training data, the forecast horizons chosen and the building
areas. In conclusion, this result suggests that the proposed model provides satisfactory
forecast accuracy for the periods considered. Consequently, optimised management of the
controlled variables based on the forecasts obtained could support a valuable service and
represent an advantage in terms of energy savings.

5. Conclusions

This study allowed us to exploit one of the most popular models in time series
prediction (i.e., an LSTM neural network) on a huge dataset consisting of measurements
taken from summer 2019 to summer 2020 inside a real three-story building located in
Turin (Italy). Our aim is to predict the indoor temperature for each office included in the
considered area of the building. The significant size of the dataset allowed us to unlock the
potential of LSTM and we decided to train and validate the model on the first-floor data only,
to verify its ability to adapt to different floors and, in general, to different building scenarios.
In addition, the dataset was divided according to its original chronological sequence, so
the model was only trained on certain months of the year, to assess the model’s ability
to recognise patterns regardless of the period of the year considered. The results were
obtained through two different scenarios. The MISO approach provides only the indoor
temperature from office R-40, while the MIMO approach outputs the indoor temperatures
of all offices in the area considered. The latter not only provides more comprehensive
results but also performs better in most cases. The main success criterion adopted is the
RMSE metric. The architecture and parameters of the neural network were identified after
a large number of tests, aimed at identifying the most suitable parameters for short-term
(2 and 5 h in advance) and long-term (24 h in advance) forecasting. The established models
shared a small structure (i.e., only one hidden layer), similar to some previous examples
in the literature, and a number of 128 neurons in the input and hidden layers, while in
the output layer the number of neurons was set equal to the predicted variables. The
performance was finally validated against that obtained from similar models trained on
each plane, finding that the differences in terms of errors recorded could be considered
negligible. It can therefore be concluded that the models developed can generalise and
handle new data satisfactorily for both short-term and long-term forecasts. Models trained
and tested on only one floor are more accurate, but may not be easily reusable, either
between floors or between offices, as MIMO models show a systematic decrease in accuracy
compared to MISO models. The current results were compared with those obtained in
other studies. Although an equal comparison is not possible because the models were
developed under different conditions, overall the results, ranging between 0.1 and 0.15 in
terms of RMSE considering all the prediction horizons tested, proved to be comparable to
the proposed options. The prediction error in terms of degrees Celsius is far removed from
the values perceptible on the human body.

As future work, this study can be extended by adapting current models to predict
the building’s internal temperature over longer time horizons to manage energy demand.
Similar to other studies, such as that of Fang et al. [24] and Attoue et al. [21] this work could
be extended by exploring the role of other characteristics, for example, occupancy, planned
indoor activities or user behaviour, which could be measured, for example, through the
presence of carbon dioxide in the air or the energy use of appliances. Furthermore, further
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studies could consist of producing models with controlled variables, such as radiant panel
flow temperatures, based on predictions of observed variables (e.g., indoor temperatures)
and driven by setpoint temperatures. An MPC system based on the developed model could
be created and eventually tested, as reported by Huang et al. [23].
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Nomenclature

◦C Celsius degree
AHU Air Handling Unit
ANN Artificial Neural Networks
ARMA AutoRegressive Moving Average
ARMAX AutoRegressive Moving Average with eXogenous inputs
ARX AutoRegressive time series with eXogenous inputs
avg average
BP Back Propagation
ELM Extreme Learning Machine
EU European Union
h hour(s)
HVAC Heating Ventilation Air Conditioning
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MAEE Mean Absolute Error Estimation
MIMO Multi Input Multi Output
MISO Multi Input Single Output
MSE Mean Squared Error
NARX Nonlinear AutoRegressive with eXternal input
ODE Ordinary Differential Equation
R correlation index
RC Resistance-Capacitance
ReLU Rectified Linear Unit
RMSE Root Mean Squared Error
SVM Support Vector Machine
WRT With Respect To
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