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Abstract: Numerous studies have reported the effective use of artificial intelligence approaches,
particularly artificial neural networks (ANNs)-based models, to tackle tunnelling issues. However,
having a high number of model inputs increases the running time and related mistakes of ANNs.
The principal component analysis (PCA) approach was used in this work to select input factors for
predicting tunnel boring machine (TBM) performance, specifically advance rate (AR). A reliable
and precise forecast of TBM AR is desirable and critical for mitigating risk throughout the tunnel
building phase. The developed PCAs (a total of four PCAs) were used with the artificial bee colony
(ABC) method to predict TBM AR. To assess the created PCA-ANN-ABC model’s capabilities,
an imperialist competitive algorithm-ANN and regression-based methods for estimating TBM AR
were also suggested. To evaluate the artificial intelligence and statistical models, many statistical
evaluation metrics were evaluated and generated, including the coefficient of determination (R2).
The findings indicate that the PCA-ANN-ABC model (with R2 values of 0.9641 for training and 0.9558
for testing) is capable of predicting AR values with a high degree of accuracy, precision, and flexibility.
The modelling approach utilized in this study may be used to other comparable studies involving the
solution of engineering challenges.

Keywords: PCA; ANN; Artificial Bee Colony Algorithm; TBM advance rate; hard rock condition

1. Introduction

In mechanized tunneling designs, estimating the tunnel boring machine (TBM) perfor-
mance is considered a vital task before selecting the machine and conducting the project.
It is important for the project schedule, management of relevant issues, and cost estimation
of tunneling projects [1,2]. Many techniques/formulas have been proposed theoretically
and empirically by previous investigators for predicting different factors related to TBM
performance (e.g., penetration rate, PR and advance rate, AR) [3–8]. These empirical and
theoretical techniques mostly used one or two predictors relevant to rock material and mass
properties such as strength and joint conditions [9–11]. Hence, the mentioned techniques
according to previous studies [12–14] are not good or strong enough to provide a suitable
level of TBM performance prediction.
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Aside from empirical and theoretical techniques, statistical-based models such as mul-
tiple and simple regression have been employed for assessing TBM performance [15–17].
In simple regression models/equations, researchers evaluated TBM performance such as
PR using only one predictor, mainly from the rock mass and material properties (such as
rock strength or a rock mass classification system) [18,19]. In multiple regression mod-
els/equations, the use of a minimum of two effective parameters on TBM performance
was carried out by several researchers to predict TBM PR [15–17,20]. However, according
to several studies such as [17,21], statistical-based techniques cannot always investigate
complex systems. Additionally, the performance capacity of the mentioned models is not
at a satisfactory level [9,12], while a satisfactory and acceptable degree of prediction is
required for TBM performance in order to minimize the risks associated with tunneling
project costs.

Several scholars have presented different artificial intelligence (AI)-based and machine
learning (ML)-based techniques for solving TBM-related issues [2,13,22–25]. Some of the
techniques proposed in this regard are support vector machine (SVM), particle swarm
optimization (PSO), fuzzy inference system (FIS), and artificial neural network (ANN).
These methods have been generally utilized to approximate the TBM field penetration index
(FPI), TBM PR and TBM AR. The Athens Metro tunnel database was used by Benardos
and Kaliampakos [26] to develop an ANN-based model to calculate TBM AR. In another
project, Yagiz et al. [13] introduced an ANN approach for the estimation of the PR of TBM.
On the other hand, in the case of the same datasets, Mahdevari et al. [15] intended an ML
approach, namely support vector regression, to solve a TBM problem. In predicting FPI
values, Feng et al. [27] and Adoko and Yagiz [28] tried to solve this problem by proposing
deep learning and FIS techniques, respectively. A group of other authors tried to solve
performance of TBM using other single intelligent approaches like group modeling of
data handling, genetic-based and neuro-fuzzy [2,9,29–31]. On the other hand, some other
scholars developed advanced intelligent techniques for this problem which are based on a
combination of at least two different intelligent models [1,10,14,32,33]. In these combined
models, there is a base technique and an optimization algorithm for improving prediction
capacity of the base technique in estimating TBM performance. It is crucial to note that
AI and ML approaches have been highly employed to solve difficulties in science and
engineering [34–52].

After reviewing the related AI and ML works, it was found that the ANN model is one
of the frequently used techniques in evaluating and predicting TBM performance. However,
the ANN model is connected with several limitations that lead to a low-performance
prediction for this model. These limitations include slow learning rate [53,54]. Therefore,
this study aims to increase the prediction model’s ability by training the ANN using the
artificial bee colony (ABC) algorithm. The capability of the ABC-ANN model is compared
with another hybrid ANN and statistical-based models to choose more accurate techniques
in the area of TBM AR. It is significant to note that the principal component analysis (PCA)
is applied to reduce the number of input parameters for predicting TBM AR. As far as
the authors know, this is the first time using the PCA in the area of TBM performance to
make a more straightforward technique. Then, the PCA-ANN-ABC model results will be
discussed and compared at the end of this research.

2. Methodology Background
2.1. ANN

Among many ANN structures studied, the most common use is the hidden multi-layer
feed-forward network structure. The main structure of a feed-forward (FF) model usually
consists of three distinct layers [55]. Each layer is made up of nodes called neurons. In an FF
model, data travels in only one direction, from input to output neurons, through the hidden
nodes. Each artificial node of the network receives the signal and passes the signal through
an activation function to estimate the output. Every neuron’s output will be the input for
the subsequent neuron. An ANN can be trained multiple times to improve its performance



Buildings 2022, 12, 919 3 of 21

capacity. During the data training, the architecture of an ANN and its connection weights
are altered iteratively to reduce imperfections of the predicted data [56,57].

When the architecture of an FF neural network is defined, the parameters include the
activation function, layer No. and the neuron No. per layer; in the next step, there is a need
to adjust the ANN weights and biases. These parameters should be intended perfectly
to receive the best prediction capacity (i.e., highest performance prediction). A complete
explanations about ANNs and their process in performing prediction tasks can be found in
previous investigations [58–61].

2.2. ABC

A colony-based optimization algorithm, namely ABC, was proposed by Tereshko [62]
which works according to bee colony behavior in real life. In this optimization technique,
there are two different behaviors for bee colonies: source abandonment and food source
recruitment [62,63]. According to Tereshko [62], the basic components of ABC can be
described in the following:
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Employed forager: an employed forager works in the food source from which it
currently feeds. The responsibility of the employed forager is to share the food
supplier information with other bees waiting in the hive [63,64].

In the ABC algorithm, when there are values for several parameters such as the
quantity of nectar and the position of the food source, an optimization process for finding
the possible answers for the problem can be performed [64]. A random number of bees
will be selected in the ABC algorithm, where they are searching within the search space for
possible and practical solutions. Independent artificial bees work together and exchange
information to find/optimize more accurate results/solutions [65]. Actually, these bees,
using knowledge and sharing data, focus on promising areas and gradually leave low-hope
areas. Overall, in each iteration of the ABC algorithm, the artificial bees will improve their
capabilities in finding more accurate solutions [66]. The process of the ABC algorithm
will continue until the best answers/solutions that the user can define from the beginning.
The role of this algorithm in a combined ABC-ANN is actually to optimize the ANN
weights and biases, which will increase the performance capacity of the hybrid system.
The general process of the ANN technique optimized by the ABC algorithm is shown
in Figure 1.

2.3. Principal Component Analysis (PCA)

PCA’s main idea is to diminish the number of interdependent variables to preserve
their variations in the set of remaining parameters. This result is achieved using a principal
components transformation function on the main parameters. Principal components are
not related to each other and are arranged to contain the highest variance of the main
variables [67,68]. One of the most critical aspects of the PCA approach is choosing the
number of PCs. This approach defines the accuracy according to the data and the desired
results. Then the total changes in the number of principal components are selected based
on the cumulative percentage. The expected accuracy is deemed to be 80% to 90% of the
overall variations. The rate of incremental changes is defined from Equation (1), where lk is
the eigenvalue [67].

Percent o f variation =
lk

∑
p
j=1 lk

(1)
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3. Materials and Methods
3.1. Case Study and Data Collection

To predict TBM AR in this study, a tunnel site and project in Malaysia were selected
to be studied. This tunnel aims to transfer water from one state (i.e., Pahang) to another
(i.e., Selangor). The primary rock type in the research area was granite, and the tunnel has
an overburden range of 100–1400 m. The total length of this tunnel is 44 km which was
excavated using 2 different construction techniques namely (1) drilling and blasting and
(2) mechanized excavation or TBM. In the case of mechanized excavation, three TBMs were
used to excavate approximately 35 km of the tunnel with a diameter of 5.2 m.

In this study, the database was prepared based on the previous suggestions/investigations.
The mentioned database, which comprises 1286 datasets, covers laboratory test results and
field observations. In terms of laboratory tests, uniaxial compressive strength (UCS) and
Brazilian tensile strength (BTS) tests were conducted and their results were recorded. In this
case, more than 100 rock block samples were transferred to the laboratory and the samples
for the mentioned tests were prepared and tested. These laboratory tests were carried out
according to ISRM guidelines [69]. In the tunnel site, several rock mass properties, i.e.,
rock mass rating (RMR), rock quality designation (RQD), and weathering zone (WZ)
were measured for each panel which is 10 m of the tunnel site. Various values were
obtained for the mentioned parameters. For example, as presented in Table 1, minimum
values of 10%, 45.4 MPa, 46, and 4.69 MPa were obtained for RQD, UCS, RMR and BTS
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parameters, respectively, while their maximum values were measured as 95%, 193 MPa,
95 and 15.68 MPa. In terms of WZ, three zones were observed as fresh with a grade of 1 in
the analysis, slightly weathered with a grade of 2 in the analysis, and moderately weathered
with a grade of 3 in the analysis. As shown in Table 1, revolutions per minute (RPM) and
thrust force per cutter (TFPC) were recorded by the TBMs in the tunnel and used in this
study as two important machine parameters. The system output based on Table 1 is TBM
AR or AR which is in the range of 0.20–2.57 m/h. It is significant to note that the database
description in Table 1 is not considered as 1286 datasets, and it is only 1205 data samples.
The difference in datasets is related to outliers (or unusual values in the data) that the
authors attempted to identify and remove. This is considered as a mandatory task when
there is a large amount of data, i.e., several data samples in this research. Outliers are able
to increase the variability in the database, which produces an amount of modeling error
(i.e., difference between measured AR and predicted AR) and decreases statistical power.

Table 1. Characteristics of the system inputs and output in this investigation.

Factor Unit Type Max Min Average STD

RQD % Input 95 10 53.79 27.85
UCS MPa Input 193 45.4 134.68 44.30
RMR - Input 95 46 72.74 15.71
BTS MPa Input 15.68 4.69 10.26 4.04
WZ - Input 3 1 1.68 0.69

TFPC kN Input 497.67 91.34 303.26 77.76
RPM rev/min Input 11.95 4.54 8.91 2.26

TBM AR m/h Output 2.57 0.20 1.08 0.57
Max: maximum; Min: minimum; STD: standard deviation.

A total of 81 data samples were identified as outliers from the whole data (i.e., inputs
and output) through the use of boxplot rules [70]. Boxplots are a simple way to depict a
five-number summary, including the lowest (min), highest (max), first (Q1), second (Q2),
and third quartiles (Q3). This technique calculates the range (Max–Min) and IQR (Q3
Q1), which can help us distinguish normal data from outliers. The statistical information
presented in Table 1 is based on the whole database after removing outliers.

In statistical terms, correlation or dependence is defined as any statistical association
(causal or non-causal) between two arbitrary variables or bivariate data. Generally, any
statistical association can be implied as a correlation; yet, it usually denotes the degree of a
linear correlation between a pair of parameters [71]. A correlation matrix is demonstrated
as a table that reflects the correlation coefficients between different variables in which each
cell depicts the correlation between a pair of variables. A correlation matrix summarizes
data that can be utilized as input data for more complex analyses and as a diagnostic tool
for advanced analyses [72]. Table 2 and Figure 2 show the correlation matrix values for the
input parameters.

Table 2. Correlation matrix for input variables.

Name UCS BTS RQD RMR WZ TFPC RPM

UCS 1
BTS 0.8 1
RQD 0.71 0.67 1
RMR 0.77 0.73 0.77 1
WZ −0.12 −0.11 −0.22 −0.23 1

TFPC −0.72 −0.67 −0.64 −0.72 −0.05 1
RPM −0.76 −0.78 −0.68 −0.69 0.02 0.68 1
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3.2. Study Steps

The flowchart of the study and its different steps to solve problems related to TBM
AR are presented in Figure 3. According to this flowchart, the model’s inputs and output
were measured in the laboratory and the tunnel site after investigating the data needed.
Then, to propose a simpler model of interest and importance, the PCA technique was
used to generate new input parameters. The new inputs are actually a combination of the
other inputs presented in Table 1. After that, the modeling stage of this study was started
by constructing the feed-forward ANN and ANN optimized by ABC models to predict
TBM AR.

On the other hand, a multiple regression model and an ANN-imperialist competitive
algorithm (ICA) technique were built for comparison purposes. The developed models
were evaluated and the more accurate predicted model was selected and introduced for
AR estimation. Finally, the effects of all model predictors were investigated and reported
using another statistical technique.
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3.3. Research Methodology

The number of input parameters used is seven, and the output parameter is the actual
AR (m/h). Given that many input parameters in ANNs increase the error, PCA can be
employed to orthogonalize the input variables relative to each other. The input density
diagram is shown in Figure 4. MINITAB version 14.0 software was utilized to analyze the
input parameters using PCA. The effects of the parameters are shown in Table 3. The graph
of the effect of PCA parameters, which expresses the eigen analysis correlation matrix,
is shown in Figure 5.
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According to Table 3, the conversion of seven input parameters into four variables
of PCA 1 to PCA 4 using PCA results in approximately 91% of the data; due to data
convergence, better results can be reached. The resulting input variables using PCA are
listed in Table 4. Considering that the number of input parameters has decreased, PCA’s
resulting four input parameters were used to model the ANN (Table 4). Also, considering
that AR output data’s statistical behavior should be evaluated, its histogram is plotted in
Figure 6. This indicates that 966 samples from the sample set are in the range of 0.2 to
1.56; approximately 80% of the data volume falls within this range. The probability plot
diagrams for determining the normal distribution of the AR parameter (see Figure 6) show
that their statistical behavior’s AR output parameter follows the normal distribution.

Table 4. Relationship between the principal components and input parameters.

Variable Unit PCA 1 PCA 2 PCA 3 PCA 4 PCA 5 PCA 6 PCA 7

RQD (%) 0.397 0.138 0.369 0.737 0.048 0.331 0.181
UCS (MPa) 0.424 −0.031 −0.151 −0.159 −0.433 0.433 −0.629
RMR (-) 0.417 0.128 0.317 −0.019 −0.338 −0.766 −0.092
BTS (MPa) 0.412 −0.035 −0.517 −0.129 −0.293 0.056 0.675
WZ (-) −0.074 −0.941 0.07 0.23 −0.21 −0.083 0.009

TFPC (kN) −0.388 0.235 −0.499 0.573 −0.383 −0.202 −0.174
RPM (rev/min) −0.405 0.146 0.469 −0.185 −0.648 0.256 0.276
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In this research, the new feed-forward ANN is selected and used. To start the modeling,
the data should be randomly classified into two groups to reduce the effects of excessive
errors. Of the 1205 data samples, 70% (844 samples) were chosen and applied for training,
and 30% (361 samples) were chosen for network testing. This is in line with some of the
previous studies [73–76]. In the proposed model, four input parameters were obtained
through the PCA technique. Thus, the trained ANNs in the input layer have four nodes,
while in the output layer, it has only one node (Figure 7). Hidden two-layer networks
have been used for modeling. For an ANN model, the No. of hidden layers and the
No. of neurons in the hidden layers vary on the problem. Accordingly, the trial-and-
error technique was applied to obtain the ideal structure (i.e., the structure that best
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represents the data). A standard heuristic method for the maximum No. of nodes is given
in Equation (2) [77]:

NH ≤ 2NI + 1 (2)

where: NH is the No. of nodes in hidden layer, and NI is the No. of model inputs.
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Based on Equation (2), the total No. of NH should be equal to or less than 9. There-
fore, different architectures have a maximum of two hidden layers and a maximum of
nine trained neurons. The employed architectures are given in Table 5 which include a
total number of 20 models. In all models, the hyperbolic tangent stimulation function
and the Levenberg–Marquardt training algorithm were used. In optimizing the ANN
weights, the ABC algorithm as a strong optimization model was applied to optimize the
ANN weights and ANN biases. ABC produces the least calculation error for the trained
architecture. The properties of the ABC algorithm parameters are displayed in Table 6.

Table 5. The trained ANN architectures.

Num Topology Num Topology Num Topology Num Topology Num Topology

1 1-1 5 2-1 9 3-1 13 4-1 17 5-1
2 1-2 6 2-2 10 3-1 14 4-2 18 5-2
3 1-3 7 2-3 11 3-3 15 4-3 19 5-3
4 1-4 8 2-4 12 3-4 16 4-4 20 5-4

Table 6. The initialization parameters used in the ABC algorithm.

Number of Bees Source Number of Bees Max of Cycle Number Onlooker Number

10 5 50 5

Among the trained models to determine the AR output parameter, the model with
the 4-5-4-1 topology based on RMSE, R, and other statistical indices has been selected as
the best model in Equations (3)–(5). The characteristics of the said model are provided
in Table 7. The results of the best approach in the training and test sections are shown in
Table 8. The statistical indices employed for the performance evaluation of the topologies
include Root Mean Squared Error (RMSE), Average Absolute Error (AAE), and Variance
Account Factor (VAF), which are defined according to Equations (3)–(5) [78].

RMSE =

[
1
n

n

∑
i=1

(Pi −Oi)
2

] 1
2

(3)
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AAE =

∣∣∣∑n
i=1

(Oi−Pi)
Oi

∣∣∣
n

× 100 (4)

VAF =

[
1− var(Oi − Pi)

var(Oi)

]
× 100 (5)

Table 7. Neural network characteristics as the best model.

Neural Network’s Features

Number of
Inputs

Number of
Outputs

Number of
Hidden
Layers

Number of
Nodes in

Hidden Layers

Transfer
Function

Training
Algorithm

5 1 2 5-4 tansig Translim

According to Table 8, PCA-ABC-ANN 2L (5-4) networks have the lowest error in
RMSE, AAE, and VAF indices and have the highest value of R2. For networks with the 4-5-
4-1 topology, the values of R2 in training, testing, and all modes for the two AR outputs are
0.9641, 0.9558, and 0.9617, respectively. The error criteria for training and test samples were
computed using data rates in the main range of parameters and not in the normal range
[−1, +1], which is sometimes used in the literature. Figure 8 illustrates the PCA-ABC-ANN
cost graph. The ANN performance is demonstrated in Figures 9 and 10 for the three phases
of training, validation, and testing.

Table 8. Statistics of the best ANNs combined with the ABC algorithm using the 4-5-4-1 topology.

Step Statistical Index PCA-ABC-ANN 2L (5-4)

Train
RMSE 0.11
AAE 0.12

VAF% 96%

Test
RMSE 0.12
AAE 0.13

VAF% 96%
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Figure 10. ANN results related to training phase.

The model’s predicted values against their values from experiments for the training
and test data are shown in Figures 11 and 12 to visualize the performance of the PCA-ABC-
ANN 2L (5-4). As a result, the values predicted by the PCA-ABC-ANN model are very
close to the line y = x, indicating a high accuracy capacity of this model.
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Figure 11. Predicted vs. experimental values of the AR output for the PCA-ABC-ANN model using
training data.
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Figure 12. Predicted vs. experimental values of the AR output for the PCA-ABC-ANN model using
testing data.

In most published articles on ANN models, it is common for the authors to provide
the optimal ANN technique without any data about the proposed ANN weight values.
Any structure without the ANN model’s final weight values is of little value to experi-
enced researchers and engineers. A proposed ANN architecture must be accompanied
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by (quantified) weight values to be useful [63]. After finding a stable and final model in
determining the AR output parameter, it is necessary to generate an information table for
weights and biases so that the final modeling can be determined at any time, even with new
data. Table 9 displays the ABC algorithm’s final weight and bias for both hidden layers.

Table 9. Final bias and weight values of the developed PCA-ABC-ANN technique.

IW b1

1.0000 0.0048 −1.0000 −0.6979 −0.3815
−0.7198 0.0175 −0.0788 −0.6253 0.9675
−1.0000 0.1828 −0.8656 −0.4221 −0.6311
−1.0000 0.1674 1.0000 0.5205 0.7721
−0.4443 0.3115 1.0000 −0.5144 0.5210

LW1 b2

−0.8369 0.6940 1.0000 −0.0327 0.1430 0.9120
−0.4156 0.0648 1.0000 0.4767 −0.3320 −0.4661
−0.0545 0.6210 −1.0000 −0.6569 0.3856 0.6196
1.0000 −1.0000 −0.0477 1.0000 0.7499 0.1558

LW2 b3

0.3997 0.4148 −0.5161 −0.0175 0.1067
IW: Weight values for the input layer, LW1: Weight values for the first hidden layer, LW2: Weight values for the
second hidden layer, b1: Bias values for the first hidden layer, b2: Bias values for the second hidden layer, b3: Bias
values for the output layer.

3.4. Validation of the Developed Model

Multiple linear regression models were used to validate the ANN-based techniques.
In the multiple regression approach, two or more individual variables have a significant
influence on the dependent variable (Equation (6)) [79]:

y = f (x1, x2, . . .)→ y = a0 + a1x1 + a2x2 + · · · (6)

where y is the dependent or output parameter; x1, x2, . . . are the model inputs or predictors;
and a1, a2, a3, . . . are the coefficients related to each input [79–81]. A series of regression
equations were investigated for input and output variables. These equations are shown
in Table 10 with one to seven independent variables. Among all the equations, the most
appropriate coefficients of the multiple linear regression model for the AR output parameter
involve an equation with seven parameters presented in Equation (7). Also, the statistical
indices for the best multiple linear regression model for all the samples are given in Table 11.

Table 10. Multiple linear regression equations with independent parameters.

Models R2% Parameters Equation Numbers

AR = 0.6405 − 0.002603 RQD − 0.001639 UCS − 0.006375 RMR − 0.00789 BTS −
0.00058 WZ + 0.002999 TFPC + 0.04854 RPM 91.79 7 (7)

AR = 0.6373 − 0.002600 RQD − 0.001639 UCS − 0.006364 RMR − 0.00788 BTS +
0.003002 TFPC + 0.04858 RPM 91.68 6 (8)

AR = 0.4662 − 0.002889 RQD (%) − 0.007356 RMR − 0.01365 BTS + 0.003159
TFPC + 0.05414 RPM 91.39 5 (9)

AR = 0.4266 − 0.009943 RMR − 0.01539 BTS + 0.003239 TFPC + 0.06152 RPM 90.66 4 (10)
AR = 1.7366 − 0.016681 RMR − 0.02506 BTS + 0.09089 RPM 82.45 3 (11)

AR = 0.5165 − 0.05625 BTS + 0.12752 RPM 73.29 2 (12)
AR = −0.7618 + 0.20618 RPM 67.04 1 (13)
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Table 11. Statistical results of bee algorithms, colonial competition, and multiple linear regression
model for all samples.

Step Statistical Index PCA-ABC-ANN 2L (5-4) PCA-ICA-ANN 2L (5-4) MLR 7

All
RMSE 0.11 0.16 0.16
AAE 0.12 0.17 0.16

VAF% 96% 92% 92%

For another evaluation of the model, the colonial competition algorithm is combined
with an ANN. The colonial competition approach is a random population-based technique
inspired by the idea of humans’ socio-political evolution. In this algorithm, several colo-
nial countries, together with their colonies, search for finding the best answers to solve
problems [82,83]. The initial answers in ICA algorithm are also known as “country”. Like
ABC, in ICA, these countries try to improve themselves for finding better results/solutions.
They are able to search within the search environment similar to the ABC technique. Since
the main purpose of this study is not proposing a model based on ICA, the authors decided
to stop explaining about this technique herein. The full description of this algorithm is
available elsewhere [82,84–86].

For using ICA instead of ABC in the hybrid system, the same ANN with a 4-5-4-1
topology was used and the TBM AR values were predicted through the system. A series
of PCA-ICA-ANN models with several values of important parameters in ICA (e.g., No.
of countries and No. of imperialists) were built. The mentioned analyses and modeling
were conducted using a trial-and-error process. According to the obtained results in this
regard, the best parameters of ICA were investigated as presented in Table 12. It can be seen
that the best PCA-ICA-ANN model has values of 500, 50 and 250 for the No. of countries,
the No. of imperialists and No. of decades, respectively. In addition, RMSE, AAE, and VAF
values related to the developed models in this study to estimate TBM AR are presented
in Table 11.

Table 12. Characteristics of the imperialist competitive algorithm in the ANN model.

Models’ Name
Employed Initialization Parameters in ICA

Number of
Countries

Number of
Imperialists

Number of
Decades

PCA-ICA-ANN 2L (5-4) 500 50 250

The results of PCA-ABC-ANN, PCA-ICA-ANN, and MLR models are shown in
Figures 13–15 for the AR prediction. According to these figures and Table 11, the results
show that the ABC-optimized ANN model has higher accuracy than the ICA-optimized
ANN and multiple linear regression models. It was found that by developing the PCA-ICA-
ANN model, the performance capacity of the developed MLR equation can be improved
for approximately 0.01 of R2. It means that the difference between these models is very low
and there is no point in setting the PCA-ICA-ANN model by spending much effort and
having sufficient AI knowledge. However, in case of the PCA-ICA-ANN model, the story is
different. The more significant difference and higher performing capacity can be achieved
by proposing this technique. R2 of 0.9617 was obtained for the selected model and it is ob-
viously better than the other proposed models in this study to predict TBM AR. The Taylor
diagram was also used to evaluate and select the best model (Figure 16). According to the
diagram, the accuracy of the PCA-ABC-ANN model is higher than the other models. This
model is a combination of PCA technique and a hybrid ANN algorithm and can enjoy the
advantages of all mentioned models in predicting TBM AR.
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Figure 13. Predicted vs. experimental values of AR output for the PCA-ABC-ANN model using
all data.
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Figure 14. Predicted vs. experimental values of AR output for the PCA-ICA-ANN model using all
data.
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Figure 15. Predicted vs. experimental values of AR output for MLR model using all data.
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4. Sensitivity Analysis (SA)

Considering the PCA-ABC-ANN model exhibited superior performance compared
to the PCA-ICA-ANN and regression models, an SA was conducted using the model to
identify the relative impact of each predictor parameter on the TBM AR in granitic rock
mass. In this way, Lek’s proposed profile method [87,88] was applied in MATLAB version
2018 software. The method attempted to analyze each input while considering other values
as constants. Details on the theory and implementation of the method are available in the
literature [87,88]. In this work, a total number of 1205 data samples were used to analyze
the effects of each PCA on the TBM AR. According to Figure 17, all four combined and
generated parameters from the input data, including RQD, UCS, RMR, BTS, WZ, TFPC,
and RPM, have a desirable effect on the network output. It is important to note that the
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results obtained from this analysis are in line with some of the previous studies in this
field [89–91].
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5. Conclusions

The following conclusion remarks can be extracted from this study:

• Increasing the number of inputs in the ANN increases the number of errors. PCA
reduces the inputs, which improves the results in the combined PCA-ANN-based
models for determining AR output.

• After using the PCA results to reduce the ANN inputs, in order to optimize the
weights of the ANN, the ABC algorithm was used to select the best structure for
the ANNs and produce the least errors in the models. For this purpose, 20 models
with different topologies were used, and the model with the 4-5-4-1 topology offered
acceptable results.

• The PCA-ABC-ANN model combined with the Levenberg–Marquardt learning algo-
rithm and the hyperbolic tangent transfer function were more capable and accurate in
predicting TBM AR values. In this model, the R2 values for TBM AR in the training
and test stages were as 0.9641 and 0.9558, respectively, indicating the model’s high
accuracy. On training data, RMSE, AAE, and VAF% of the PCA-ABC-ANN model
for TBM AR values were 0.11, 0.12 and 96%, respectively, while in testing data, they
were 0.12, 0.13, and 96%. The statistical indices of VAF, AAE, and RMSE presented
in Table 7 indicate the model’s negligible error.

• To assess the accuracy of the ABC-optimized technique, it is compared with the ICA
algorithm. For the PCA-ICA-ANN model on all data, RMSE, AAE, and VAF% for
TBM AR values were 0.16, 0.17, and 92%, respectively.

• The authors have used a statistical model with seven input variables. For the MLR
model on all data, RMSE, AAE, and VAF% for TBM AR values were 0.16, 0.16,
and 92%, respectively.

• According to the evaluation results, the ABC algorithm received a higher accuracy
level than the ICA algorithm followed by the MLR model.

• The modeling procedure introduced in this study regarding reducing the number of
inputs using PCA can be implemented in the other similar fields.
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• The models in this study were developed for a granitic rock mass, which includes
simple geological conditions. Therefore, these models should be used in very similar
conditions if very close performance is needed. Of course, the error is higher if different
geological conditions are examined.
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