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Abstract: The dilation of concrete in the radial direction is crucial in understanding the failure process
and the key to predicting the confining level of passively confined concrete. To better understand
this problem, we established a mesoscale model of concrete by considering the random distribution
of coarse aggregate and the different properties between mortar and concrete. The model’s validity
was demonstrated by comparing with the stress–strain curves in code and the lateral–axial strain
curves in test. The simulation results show that the lateral dilation is non-uniformly distributed
along the specimen height and the circumferential direction of sections. Moreover, the deformation
mainly occurs in the middle part of the specimen ranging from 3/8 to 5/8. The strength of concrete
influences the stress ratio at maximum compressive strain, while it slightly influences the stress ratio
at zero volumetric strain. The secant strain ratio is about 0.5 as the compressive stress reaches the
strength of concrete. Compared with the simulation, the relationship between lateral strain and axial
strain proposed by Teng and Binici shows excellent performance on the dilation trend prediction of
plain concrete.

Keywords: dilation of concrete; lateral–axial strain relationship; secant strain ratio; mesoscale model;
finite element analysis

1. Introduction

As a composite material, concrete is widely used in buildings, bridges, tunnels, water
conservancies, and other engineering projects due to its advantages, such as economy,
convenience, high strength, and excellent durability. The economic and safe design of such
structures cannot be realized until a deep understanding of the mechanical behavior of
concrete is available. At present, the research mainly focuses on the analysis of concrete
in the longitudinal direction [1–10], while research on the dilation behavior of concrete
in the radial direction is relatively limited. Relevant research is crucial in understanding
the failure process of concrete. Moreover, it is also the key to predicting the mechanical
behavior of passively confined concrete, because the performance of the developed model
depends on how well it captures the dilation tendency of concrete.

The dilation of plain concrete under axial load has attracted the interest of several
researchers. Klink studied the distribution of dilation at the section of a concrete specimen
experimentally [11], and Allos investigated the influences of compressive strength and age
on the dilation of concrete [12]. The volumetric strain of concrete was analyzed in Ferretti’s
study [13], which was used to describe the biaxial behavior of concrete using damage
mechanics [14]. Although relevant studies have been carried out, no theoretical formula for
the dilation of plain concrete has been put forward in the above literature. In FRP-confined
concrete, the confinement enhances the strength and ductility of concrete [15–19]. The
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performance of the developed model depends on how well it captures the dilation tendency
of concrete. Thus, the dilation property of FRP-confined concrete has been investigated
by many scholars [20–27], and can be used to predict its mechanical behavior through an
iterative procedure. Harries et al. [24] developed a dilation ratio formula for FRP-confined
concrete, in which the ratio kept constant at the value of Poisson’s ratio before reaching
66% peak strain. After that, the ratio increased linearly until it reached a maximum value
at two times the peak strain. Beyond this point, the increase in this ratio stopped and
kept constant. A fractional equation was proposed by Mirmiran to describe the dilation
rate of a concrete specimen confined by FRP jacket [25], in which the rate decreased to an
asymptotic value after reaching a peak value. A similar conclusion was also obtained in the
studies of Pimanmas and Nguyen [26,27] because the increasing confining pressure will
inhibit the dilation of concrete. The authors believe that the increasing pressure makes the
dilation of concrete specimens confined by FRP jacket differ from that of plain concrete,
and thus, these formulas are not suitable for plain concrete. Based on the test data of plain
concrete and actively confined concrete, researchers [28–30] proposed the lateral–axial
strain relationship formula for concrete specimens confined by constant pressure. The
dilation behavior of plain concrete can be obtained when the confining pressure is set as
zero. However, the derived dilation curves of plain concrete are different in form and
values, because the test data of plain concrete in literature are limited. Moreover, the dilation
of plain concrete after reaching the peak stress has a large discreteness due to the local
failure and non-uniform distribution of strain. Therefore, dilation analysis of plain concrete
from limited experimental data is far from sufficient. The improvement in computing
power promotes the development of the mesoscale simulation in concrete, in which the
heterogeneity of concrete and the interaction among phases are considered [31–42]. As an
essential supplement to experimental research, numerical simulation of dilation behavior
will deepen our understanding of the concrete failure process.

The purpose of this study was to propose a new method to predict the dilation
behavior of concrete. To achieve this goal, a mesoscale model was first established based
on random distribution theory, in which concrete was divided into the mortar, aggregate,
and interfacial transition zone (ITZ). After validation of the proposed model, the dilation
of plain concrete subjected to axial compression was analyzed. Finally, we compared the
predictions of the existing theoretical formulas with the simulation results.

2. Mesoscale Model of Concrete
2.1. Generation of the Coarse Aggregate

In this paper, the Fuller curve [31] was adopted to describe the particle gradation
of coarse aggregate, which was proposed based on the theory of maximum density. The
cumulative percentage P of the coarse aggregate that passes through the sieve is shown by
the following equation.

P = 100 × (d/dmax)
n (1)

where d is the sieve size; dmax is the maximum diameter of coarse aggregate; n is a constant
value ranging from 0.45 to 0.70, and 0.5 was used herein. Therefore, the aggregate volume
Vp in size range of ds + 1 to ds is shown by Equation (2).

Vp =
P(ds)− P(ds+1)

P(dmax)− P(dmin)
× vp × V (2)

where V is the total volume of the specimen and vp is the volume ratio of coarse aggregate.
Similar to the studies in the literature [32–34], the spherical aggregate particles were

used in the simulation. The random distribution of coarse aggregate was fulfilled by
adopting the Monte Carlo method in MATLAB (version 2016, MathWorks, Natick, MA,
USA) until the aggregate content in each size range had been determined. To improve the
computational efficiency, coarse aggregate less than 5 mm was assumed as the mortar phase,
and a relatively lower aggregate percentage of 30% was used, which was also demonstrated
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by other studies [35–37]. In the mesoscale model, 10 mm and 20 mm were used as the
equivalent diameter representing the aggregate in size range of 5–15 mm and 15–25 mm,
respectively. Moreover, all coarse aggregates are in the range of specimen volume and do
not intersect with each other.

2.2. Determination of the Three Phases

The specimen was divided into hexahedra elements of the same size using the mapping
mesh method, and the attribute of each element can be determined according to the
coordinates of element nodes and the center of spherical aggregate. The classification
principle of each phase is shown in Figure 1.
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Figure 1. Classification principle of each phase.

Figure 1 shows the classification principle of each phase, and the principle of classi-
fication is as follows. (1) If 0–2 nodes of the hexahedra element are inside the spherical
aggregate, the property is defined as the mortar phase. (2) If 3–5 nodes are inside the
spherical aggregate, the property is defined as the interface phase. (3) If 6–8 nodes are
inside the spherical aggregate, the attribute is defined as the aggregate phase.

Based on the studies in the literature [38–40], the actual size of ITZ is about 10–50 µm,
and the variation in element size in the range of 0.5–2 mm only has a slight influence on the
stress–strain curve of concrete. Thus, 2 mm was used as the element size in the mesoscale
simulation to reduce the computational cost, and the same method was also adopted by
previous scholars [41,42]. The numerical model is shown in Figure 2.
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In Figure 2, the numerical concrete column is subjected to axial compression, where
the coarse aggregate, the mortar, and interfacial transition zone (ITZ) are represented by
green, gray, and red colors, respectively.
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2.3. Damage Plasticity Model of Concrete

The damage plasticity model established by Lubiliner and Lee et al. [43,44] has been
widely used to describe the property of concrete, which accounts for the tension cracking
and compression crushing of concrete. The stress–strain relationship of concrete under
axial load can be defined by Equations (3) and (4), in which dt, εt, and ε̃

pl
t represent the

damage coefficient, the total strain, and plastic strain under axial tension, respectively. The
subscript c represents the variables under axial compression.

σc = (1 − dc)E0

(
εc − ε̃

pl
c

)
(3)

σt = (1 − dt)E0

(
εt − ε̃

pl
t

)
(4)

In the software of ABAQUS (version 6.14, Dassault Simulia, France), the plastic
strain of concrete under compressive and tensile load depends on the definition of in-
elastic strain ε̃in

c and cracking strain ε̃ck
t of concrete. The relationship can be described by

Equations (5) and (6). Meanwhile, the inelastic strain and cracking strain can be obtained
until the constitutive model of the material is available, as shown by Equations (7) and (8).
The characteristic length le is set as 2 mm, and the symbol w represents the
cracking displacement.

ε̃
pl
c = ε̃in

c − dc

1 − dc

σc

E0
(5)

ε̃
pl
t = ε̃ck

t − dt

1 − dt

σt

E0
(6)

ε̃in
c = εc −

σc

E0
(7)

ε̃ck
t =

w
le

(8)

Based on the theory of energy equivalence in the literature [45–47], the damage
coefficient of concrete under axial load can be expressed by Equation (9), which reflects the
stiffness degradation of the material.

d = 1 −
√

σ

E0ε
(9)

2.4. Constitutive Model of Each Phase

Compared with the mortar and ITZ phase, the aggregate particles have a higher
strength, and the fracture of aggregate in normal concrete is usually ignored. Therefore,
it was assumed as an elastic body in the mesoscale simulation. The difference between
aggregate and mortar in mechanical and thermal properties results in higher porosity and
water–cement ratio in ITZ. Nevertheless, the ITZ can be regarded as the mortar with weak-
ened mechanical properties, considering that they have a similar material composition [48].
Thus, the key to the mesoscale model lies in the definition of the constitutive model of
the mortar.

Based on the test data and analysis in the literature [49–51], it was found that there
existed great differences between the mortar and concrete in aspects of peak strain, elas-
tic modulus, and decreasing index. The authors [52] conducted a parameter analysis
to investigate the influence of these parameters on the properties of concrete, and then
proposed three correction coefficients to consider the difference. Finally, a constitutive
model of the mortar under axial compression and tension was proposed, as shown by
Equations (10) and (11) and Equations (12)–(14), respectively. The stress-cracking relation-
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ship rather than the stress–strain relationship was used in the tension definition, which can
reduce the mesh size dependency in simulation [53,54].

y =

{
2x − x2

xr
r−1+xr

x ≤ 1
x > 1

(10)

εm0 = 1260 + 310
√

fm (11)

where y = σm/ fm, x = εm/εm0, r = Em/
(
Em − Ep

)
, Em = 4000

√
fm, and Ep = 1.44 fm/εm0.

σt =

{
ft

(
1 − w

w0

)
w ≤ w0

0 w > w0
(12)

ft = 0.26(1.25 fc)
2/3 (13)

Gf = (1.25dmax + 10)( fc/10)0.7 × 10−3 (N/mm) (14)

2.5. Validation of the Mesoscale Model

The concrete studied in this work is made up of conventional cement and additives,
and the compressive strength of the mortar instead of the water–cement ratio was taken
as the basic parameter in the mesoscale simulation. This is because the mesoscale model
is not able to describe the interaction between water and cement. Figure 3a depicts the
stress–strain relationship of the concrete specimen with varying mortar strengths. To reflect
the accuracy of the simulation results, the stress–strain curves derived from code GB50010-
2010 are also added to this figure. The comparison shows that the mesoscale model
can make a satisfactory estimation of the properties of concrete under axial compression.
Figure 3b shows the relationship between the mortar strength and peak values of concrete.
It can be noticed that the peak stress and peak strain increase linearly with the increase in
mortar strength, and the strength relationship between mortar and concrete is shown by
Equation (15), which can be utilized to simulate the concrete with different strengths in the
following sections.

fc = 2.7 + 0.67 fm (15)
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Figure 3. Mechanical properties of concrete specimens with varying mortar strengths: (a) stress–strain
curve; (b) peak values.

To further illustrate the validity of the established mesoscale model, the lateral–axial
strain curves of plain concrete with six strengths were collected from the existing litera-
ture [55–59], as shown in Figure 4. The strength of concrete is 26 MPa, 35.8 MPa, 40 MPa,
50 MPa, 60 MPa, and 68 MPa, respectively, while the corresponding strength of the mortar
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in the mesoscale simulation is 34.8 MPa, 49.4 MPa, 55.7 MPa, 70.6 MPa, 85.5 MPa, and
97.5 MPa, according to the strength relationship shown by Equation (15).
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Figure 4 shows the comparison of the lateral–axial strain relationship between the
simulation and test results in the middle section of the specimen. The established model
can make an adequate prediction of the development trend of the lateral–axial strain curve.
Although there are some differences in specific values, the model is still deemed effective
considering the sensitivity and discreteness of the strain measurement.

In sum, a mesoscale model of concrete was established in this section, which can be
utilized to investigate the dilation properties of plain concrete. Based on this, the dilation
law of concrete under axial compression is discussed in the following section.

3. Results
3.1. Failure Process of the Concrete Specimen

The properties of concrete specimens subjected to axial compression were studied
through parameter analysis, and it was found that they had a similar failure process.
Figure 5 shows the schematic diagram of axial strain and lateral strain. In the simulation,
the axial displacement ∆h and radial displacement ∆r were extracted and divided by the
height h and diameter r of the specimen, respectively, as shown in Equations (16) and (17),
and the axial strain εv of the specimen and lateral strain εh at the middle section could
be obtained. The secant strain ratio is the ratio between lateral strain and axial strain, as
shown in Equation (18).

εv =
∆h
h

(16)

εh =
∆r
r

(17)

µs =
εh
εv

(18)
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less than 1000 με, because the cracks in the specimen grow slowly in the elastic stage. The 
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Figure 5. The axial and lateral strain of the specimen.

Figure 6 depicts the development of the stress–strain curve and secant strain ratio–
strain curve. It shows that the secant strain ratio increases slowly when the axial strain is
less than 1000 µε, because the cracks in the specimen grow slowly in the elastic stage. The
result is consistent with the study conducted by Spoelstra and Marques [60,61]. With the
increase in axial strain, the secant strain ratio increases rapidly.
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Figure 6. Secant strain ratio of concrete under axial load.

The axial stress is close to concrete strength as the secant strain ratio reaches 0.5. The
secant strain ratio increases slowly after the axial strain reaches 4000 µε, which may be
related to the larger value of the current axial strain. The residual stress is about 1/3 of the
concrete strength as axial strain reaches 6000 µε. At this time, the cracks in concrete have
been fully developed and the secant strain ratio is about 2.5, which is close to the statistical
results in the literature [28].

3.2. Distribution of Lateral Strain in the Specimen

Seven sections were selected on the specimen to study the distribution of lateral strain
along the specimen height, as shown in Figure 7a. The specimen height is designed as
200 mm, and the spacing of each section is 25 mm. Based on Equation (17), the lateral strain
of each section can be obtained by extracting the radial displacement. Figure 7b reflects the
distribution of lateral strain along the specimen height. It shows that the lateral strain is
relatively uniform along the specimen height when the axial strain is less than 1000 µε. The
lateral strain at the middle section increases sharply as the axial strain increases. The main
reason is that the middle region of the specimen is less affected by the end constraint and
the crack development is intensive. This phenomenon is also observed in Figure 8, where
the radial displacement field at axial strains of 1000, 2000, and 4000 µε is depicted. The
figure shows that the dilation of concrete mainly occurs in the middle part of the specimen
ranging from 3/8 to 5/8, where the stiffness degradation of the material is the most serious,
as shown in Figure 8d.
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To study the distribution of lateral strain along the circumferential direction, the lateral
strains of 50 points along the middle section of the specimen were extracted, as shown in
Figure 9.
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One can see from Figure 9 that the lateral strain at the middle section is evenly
distributed along the circumferential direction when the axial strain is less than 2000 µε.
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As the axial strain reaches 3000 µε, the lateral strain along the circumferential direction
begins to fluctuate, which shows that the strain starts to distribute non-uniformly. This is
because the extended cracks pass through different positions at the middle section in this
stage, resulting in differences in radial displacement.

3.3. Lateral–Axial Strain Relationship for Plain Concrete

The cracks mainly concentrate in the middle part of the specimen, and the lateral
strain develops quickly in this area. Thus, the average strain at the sections of 3/8, 1/2,
and 5/8 is taken as the lateral strain of the specimen, and the ratio between lateral strain
and axial strain is defined as the secant strain ratio. Figure 10 shows the lateral strain–axial
strain curves and secant strain ratio–axial strain curves of concrete with different strengths
under axial compression. It shows that the development of lateral strain and secant strain
ratio can be divided into three stages. The lateral strain is small and the secant strain ratio
increases slowly from 0.2 in the first stage, because the fracture development is less in this
stage. When the axial strain exceeds 1000 µε, the internal cracks continue to accumulate,
leading to a rapid increase in lateral strain and secant strain ratio. Moreover, the lateral
strain and the secant strain ratio of concrete with higher strength are smaller than those
with lower strength. The lateral–axial strain relationship is approximately linear in the last
stage as the axial strain exceeds 4000 µε. At the same time, the secant strain ratio grows
slowly and approaches its critical value with the increase in axial strain.
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The volumetric strain is an important parameter to illustrate the failure process of con-
crete, and its definition is shown by Equation (19). Figure 11a depicts the stress–volumetric
strain relationship of the specimens with different strengths under axial compression. One
can see that the volume of the specimen decreases slowly due to the compression, and then
expands rapidly with the development of internal cracks.

Figure 11b depicts the stress ratio at maximum compressive strain and zero volumetric
strain, where stress ratio represents the ratio between stress at a certain strain and the
maximum stress. It shows that the stress ratio at maximum compressive strain increases
from 0.64 to 0.82 when the mortar strength varies from 20 MPa to 80 MPa, illustrating that
the initiation of cracks starts later in concrete specimens with higher strength. The volume
of concrete changes from compression to dilation when the volumetric strain reaches zero,
and the stress ratio at this point is approximately equal to 1.0. That is to say, the secant strain
ratio is about 0.5 when the axial stress reaches the concrete strength, which is consistent
with the literature [28,60,61].

εvol = εv + 2εh = (1 − 2µs)εv (19)
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In sum, the development trend of secant strain ratio, the distribution of lateral strain,
and the lateral–axial strain relationship of plain concrete under axial compression were stud-
ied in this section, which deepens our understanding of the dilation behavior of concrete.
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4. Comparison with Current Formulas

Currently, several formulas are available for determining the lateral–axial strain re-
lationship of concrete specimen. To illustrate the accuracy of the formulas for different
strengths of concrete, three formulas, namely, the Binici model [28], Teng model [29], and
Lim model [30], are utilized to make a comparison.

Equation (20) was proposed by Binici [28] to describe the secant strain ratio of concrete
under axial compression. In the elastic stage, the secant strain ratio keeps constant at the
value of Poisson’s ratio, which is between 0.15 and 0.2. With the increase in axial strain,
the secant strain ratio increases nonlinearly. The authors believe an ultimate strain ratio
exists as the axial strain becomes much larger, and the critical value can be calculated by
Equation (21). The diameter φ is the ratio between the confinement pressure and concrete
strength, and the value is set as zero for plain concrete.

µs =

{
µ0 ε ≤ εe

µl − (µl − µ0) exp
[
−
( εv−εe

∆
)2
]

ε > εe
(20)

∆ =
εco − εe√
− ln β

β =
µl − µp

µl − µ0
µl = µp +

1

(φ + 0.85)4 (21)

where µ0 represents Poisson’s ratio of concrete, and 0.2 is adopted here; µp represents the
secant strain ratio as axial strain reaches peak strain, and 0.5 is set as the value; µl represents
the critical secant strain ratio when the axial strain is much larger.

Based on the test data of plain concrete and confined concrete, Teng et al. [29] proposed
a lateral–axial strain curve for confined concrete, which can be used to study the properties
of FRP confined concrete. The equation is shown as follows:

εv

εco
= 0.85

(
1 + 8

p
fco

){[
1 + 0.75

(
εh
εco

)]0.7
− exp

[
−7
(

εh
εco

)]}
(22)

where p is the confining pressure; its value is zero for plain concrete.
After that, Lim et al. [30] also proposed a lateral–axial strain curve for concrete based

on statistical test data shown by Equation (23). The strain relationship for plain concrete
can be obtained when the confining pressure is set as zero. A parameter n was introduced
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in this formula to consider the influence of concrete strength on initial turning point of the
curves, and its value is defined by Equation (24).

εv =
εh

µ0

[
1 +

(
εh

µ0εco

)n]1/n + 0.04εh
0.7

[
1 + 21

(
p

fco

)0.8
]

(23)

n = 1 + 0.03 fco (24)

Figure 12 compares the secant strain ratio–axial strain relationship between simula-
tion and formula predictions. The comparison illustrates that the simulation results are
consistent with those predicted by formulas of Teng et al. and Binici et al. [28,29] when the
axial strain is less than 2000 µε. At this stage, the stress–strain curve of concrete is in the
ascending branch. However, the formula proposed by Lim et al. [30] makes a relatively
more significant difference due to the longer constant stage. The stress–strain curve of
concrete enters the descending branch as the axial strain exceeds 2000 µε, and a certain
degree of difference occurs between the simulation and formulas proposed by Teng et al.
and Binici et al. [28,29]. Nevertheless, the simulation result is in the range of the theoretical
results, which demonstrates the validation of the mesoscale model in predicting the dilation
of plain concrete. Therefore, the mesoscale simulation is an efficient tool to investigate the
dilation behavior of concrete.
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5. Conclusions

In this work, we established a mesoscale model of concrete by considering the random
distribution of coarse aggregate and the different properties between mortar and concrete.
The validity of the proposed model was demonstrated by code curves and test data; then,
the failure process of the concrete, the distribution of lateral strain, and the lateral–axial
strain relationship of concrete were analyzed. The main conclusions are summarized
as follows:

(1) The lateral strain is non-uniformly distributed along the specimen height, and the
lateral deformation mainly occurs in the middle part of the specimen ranging from
3/8 to 5/8, where the stiffness degradation is the most serious. Moreover, the lateral
strain along the circumferential direction becomes non-uniform as axial strain reaches
3000 µε.

(2) The development of lateral strain and secant strain ratio can be divided into three
stages. In the first stage, the lateral strain is small and the secant strain ratio increases
slowly from 0.2. In the second stage, the lateral strain and the secant strain ratio
increase rapidly as the internal cracks continue to accumulate. In the third stage, the
lateral–axial strain curve is approximately linear, and the secant strain ratio grows
slowly and approaches its critical value.
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(3) The strength of concrete influences the stress ratio at maximum compressive strain,
and the stress ratio varies from 0.62 to 0.82 when the mortar strength varies from
20 MPa to 80 MPa, illustrating that the initiation of cracks starts later in concrete with
higher strength. Moreover, the secant strain ratio is about 0.5 as the stress reaches the
concrete strength.

(4) The secant strain ratio–axial strain curves in the simulation are consistent with the
results predicted by the formulas of Teng et al. and Binici et al. in the ascending
branch of the stress–strain curve of concrete. When the stress–strain curve of concrete
enters the descending branch, the simulation of the secant strain ratio is in the range
of the theoretical results, which demonstrates the validation of our mesoscale model
in predicting the dilation of plain concrete.

We have proposed a new method to predict the dilation behavior of concrete, and the
relevant analysis will deepen our understanding of the failure process of concrete. The
content in this manuscript is part of our current work, based on which we are trying to
investigate the dilation of concrete columns under varying confining pressures, and then
propose a formula that can be applied to both unconfined and confined concrete.
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