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Abstract: When using a high concentration of reclaimed asphalt pavement (RAP) in a recycled
hot-mix asphalt mixture (RHMA), the degree of blending of the reclaimed asphalt binder significantly
affects the performance of the RHMA. Hence, it is essential to know the degree of blending of the
RAP and its effect on the performance and the environmental impact of RHMA in order to determine
the optimal mixing duration. To this end, the dispersion of reclaimed asphalt was observed using
artificial RAP and the image analysis method, and the blending of reclaimed asphalt in RHMA
with different mixing durations was also evaluated using physical properties tests, a rheometer
test, a Fourier-transform infrared spectroscopy (FTIR) test, a gel permeation chromatography (GPC)
test, and an atomic force microscope (AFM) test. The performance of RHMA with the different
mixing durations in the plant and in the laboratory was tested using a Marshall stability test, rutting
resistance test, freeze–thaw splitting test, and low-temperature bending beam test. In addition, the
environmental impact of RHMA at different mixing durations was evaluated, and the optimal mixing
duration was determined. The results showed that the mixing duration had a significant influence on
the dispersion and blending of reclaimed asphalt in RHMA. The longer the mixing duration was, the
higher the dispersion and the degree of blending of the reclaimed asphalt in the RHMA were. With
the increase in the mixing duration, the properties, chemical composition, and micromorphology of
the blended asphalt binder tended to become similar to those of reclaimed asphalt. The performance
of RHMA was improved with the increase in mixing duration; however, the energy consumption
and CO2 emissions for the RHMA increase significantly with the increase in mixing time. The
recommended optimal mixing durations in the mixing plant and in the laboratory were found to be
60 s and 90 s, respectively, considering the environmental impact, the RHMA production efficiency,
and the performance of the RHMA.

Keywords: reclaimed asphalt pavement (RAP); recycled hot-mix asphalt mixture (RHMA); reclaimed
asphalt; dispersion and blending; mixing duration

1. Introduction

In recent years, reclaimed asphalt pavement (RAP) has been widely used in pave-
ment preservation, maintenance, and reconstruction due to the significant economic and
environmental benefits [1–7]. In Europe, statistics from the European Asphalt Pavement
Association (EAPA) show that 47% of RAP was used to produce recycled hot-mix asphalt
mixture (RHMA) [8]. In the United States, the National Asphalt Pavement Association
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(NAPA) reports that 84% of RAP was used in asphalt applications [8]. In general, RAP
is widely used around the world and the percentage of RAP utilized in RHMA exceeds
30%, while in Europe, the United States, and Japan, it exceeds 80% [9]. Consequently, the
performance of RHMA must be considered in order to ensure its economic and environ-
mental advantages.

Hou et al. [10] concluded that RAP contains both aggregate and asphalt binder, and
the properties of asphalt deteriorate due to long-term aging during road operation. In
addition, the aged asphalt binder is very stiff compared to the fresh asphalt, and thus
causes a change in the performance of RHMA. It has been reported that RHMA containing
no more than 20% RAP has similar performances to conventional hot-mix asphalt (HMA).
When the proportion of RAP incorporated is greater than 20%, the low-temperature crack
resistance and anti-fatigue performance of RHMA deteriorate compared to HMA [11,12]. In
order to produce RHMA with higher RAP content, it is essential to improve the uniformity
of RAP dispersion and blending [10].

Currently, academics classify the blending of reclaimed asphalt in RHMA into three
categories: full blending, partial blending, and black rock [13]. In this context, researchers
have carried out series of studies considering the temperature, mixing process, RAP content,
etc., and the blending degree of aged and virgin asphalt in RHMA has also been evaluated
and calculated. Xu et al. [14] used the improved Hirsch dynamic modulus prediction model
to quantitatively characterize the degree of blending of RHMA and studied the effects
of mixing temperature and RAP contents on the degree of blending. The study revealed
that the degree of blending between the aged and virgin asphalt binder could not reach
100% at the different mixing temperatures and RAP contents studied. In addition, the
degree of blending influences the performance of RHMA. Ashtiani et al. [15] studied the
degree of blending of RHMA containing different proportions of RAP and recycled asphalt
shingles (RAS) using the Hirsch dynamic modulus prediction model and found that the
aged asphalt binder from RAS and RAP blended with the virgin asphalt at rates of less than
40% and 60%. Kaseer et al. [16] found that aged asphalt coatings on RAP blended at 50% to
95% under 140 ◦C and 150 ◦C, with higher mixing temperatures leading to higher degrees
of blending. Shirodkar et al. [17] studied the properties of blended asphalt binder and
proposed a method to assess the degree of blending using asphalt rheology. They suggested
that the degrees of blending of aged asphalt for 25% and 35% RAP by the weight of the
aggregates reached 70% and 96%. Further, many scholars have tested chemical components
and optical methods for determining RAP binder blend degrees, including FTIR, GPC,
AFM, SEM, FM, and CT scans. [10]. Vassaux et al. [18] used the attenuated total reflection
method to study the degree of blending of aged asphalt with various mixing temperatures
and durations. The study reported that longer mixing durations improved the binder
blending. Ding et al. [19] used FM to determine the blending degree of RAP and concluded
that partial blending occurred in the RAP and RHMA, and the warm-mix technology
showed a slightly higher blending degree compared to the hot mix. Bowers et al. [20]
studied the influences of mixing duration and temperature using GPC. The blending
degree was evaluated for a “fine” aggregate RAP and the test results showed that the
maximum blending degree for RAP was below 80%. Solaimanian and Chen [21] used AFM
to investigate the blending degree of RAP binder and virgin asphalt based on the surface
morphology and the Derjaguine–Muller–Toporov (DMT) modulus. Rinaldini et al. [22]
investigated the blending of recovered asphalt with fresh asphalt using CT and SEM and
found that the blending degree of RAP was not homogeneous throughout the sample.
Xu et al. [23] used the staged extraction method and the AFM imaging technique to study
the blending of RAP and virgin asphalt with different mixing temperatures and residence
times. The study found that the mixing temperature and residence time have significant
effects on the blending degree and the non-homogenous blending between RAP and virgin
binders. In general, the abovementioned studies show that the type of blending that RAP
undergoes in RHMA is partial blending.
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Previous studies have evaluated the blending degree of RAP in RHMA by considering
the mixing temperature, mixing duration, RAP content, and blending method. RHMA
and blended asphalt perform differently depending on the degree of blending of RAP.
However, only a handful of studies have considered the effects of RAP aggregate gradation
and RHMA gradation when used in practice. In addition, there are few studies that have
been conducted on both properties: the chemical components of blended asphalt and the
performance of RHMA considering the blending degree of RAP. There are also few studies
that have been conducted to determine the optimal mixing duration of RHMA in the plant
and in the laboratory that consider the performance and the environmental impact of
RHMA. Hence, the objectives of the study were to observe and evaluate the dispersion
and blending of reclaimed asphalt and to analyze its effect on the properties, chemical
composition, and morphology of blended asphalt, as well as the performance of RHMA. In
practice, the blending method, mixing temperature, and RAP content are constant, while
the mixing duration of RHMA can be adjusted. Therefore, this study considered the effects
of different mixing durations on the dispersion and blending of reclaimed asphalt with the
optimal temperature and mixing method. Furthermore, the optimal mixing duration of
RHMA in the plant and the laboratory, considering the performance and the environmental
impact, was determined. The framework of this study is summarized and illustrated in
Figure 1.
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2. Materials and Methods
2.1. Materials

The materials used in this study included #70 matrix asphalt (virgin asphalt), virgin
aggregate, and RAP. The performance indexes of #70 virgin asphalt according to the Chi-
nese specification entitled Standard Test Methods of Bitumen and Bituminous Mixtures
for Highway Engineering (JTG E20-2011) [24] are shown in Table 1. The virgin aggregate
was limestone with a particle size of 0~20 mm, which was sieved according to the sieve
size before being used in the preparation of recycled asphalt mixes. The performance
indexes of virgin aggregate were tested following the Testing Methods of Aggregate for
Highway Engineering (JTG E42-2005) [25], and Table 2 shows the results. In addition,
RAP was obtained from the AC-20 middle surface layer of the Sanming section of the
Fuzhou–Yinchuan Expressway in Fujian Province, China, and divided into three types
(0~6 mm, 6~12 mm, 12~16 mm) through crushing and screening. The gradation, asphalt
content, and performance indexes of RAP were obtained by following the Technical Specifi-
cations for Highway Asphalt Pavement Recycling (JTG T 5521-2019) [26] and are listed in
Tables 3 and 4. The performance indexes of all materials met the Technical Specifications
for Construction of Highway Asphalt Pavements (JTG F40-2004) [27].

Table 1. Performance indexes of #70 virgin asphalt.

Test Items Test Results Test Method

Penetration, 25 ◦C, 0.1 mm 74.9 T0604
Softening point, ◦C 50.1 T0606
Ductility, 15 ◦C, cm >100 T0605

Viscosity, 60 ◦C, Pa·s 225 T0620

RTFOT
Penetration ratio, % 71.2 T0604

Residual ductility, 10 ◦C, cm 32.5 T0605
Mass loss, % −0.03 T0610

Table 2. Performance indexes of virgin aggregate.

Aggregate Type Test Items Test Results Test Method

Coarse aggregate

Specific gravity 2.751 T0304
Flakiness and elongation particles, % 11.4 T0312

Crushing value, % 12.6 T0316
Los Angeles abrasion, % 13.7 T0317

Water absorption, % 0.5 T0304

Fine aggregate Specific gravity 2.715 T0328
Sand equivalent, % 70.1 T0334

Filler Specific gravity 2.648 T0352

Table 3. Gradation and asphalt content of RAP before and after extraction.

Sieve Size/mm
12~16 mm 6~12 mm 0~6 mm

Before After Before After Before After

16 100.0 100.0 100.0 100.0 97.9 100.0
13.2 100.0 100.0 100.0 100.0 60.1 78.5
9.5 100.0 99.9 85.2 92.2 4.9 32.6

4.75 74.5 96.8 6.6 26.0 0.4 18.4
2.36 35.6 62.9 1.9 17.4 0.1 13.3
1.18 19.6 45.8 1.0 14.9 0.1 10.9
0.6 9.3 36.4 0.5 12.3 0.1 9.5
0.3 2.8 26.1 0.2 9.6 0.1 7.4

0.15 1.2 19.2 0.2 7.5 0.1 5.7
0.075 0.3 14.9 0.0 6.0 0.0 4.5

Asphalt content, % - 2.32 - 3.16 - 7.86
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Table 4. Performance indexes of RAP.

Material Type Indicators Test Results Test Method

RAP
Moisture content, % 0.57

T0307 and T0334Sand equivalent, % 86.7

Asphalt in RAP

Penetration, 25 ◦C, 0.1 mm 28.5 T0604
Softening point, ◦C 71.2 T0606
Ductility, 15 ◦C, cm 23.1 T0605

Viscosity, 60 ◦C, Pa·s 1980 T0620

Coarse aggregate
Crushing value, % 14.7 T0316

Flakiness and elongation
particles, % 13.8 T0312

Fine Aggregate Angularity 32.1 T0345

2.2. Sample Preparation

Mixing durations of 30 s, 60 s, 90 s, and 120 s were studied to observe and evaluate
the dispersion and blending of reclaimed asphalt under the different mixing conditions.
First, the effect of mixing duration on the dispersion of aged asphalt on RAP surfaces was
investigated; then, the blending of aged asphalt and virgin asphalt with different mixing
durations was evaluated; lastly, the performance of the RHMA was evaluated.

During mixing, the aged asphalt on RAP surfaces adheres to the virgin aggregate
and disperses. In addition, Yang et al. [5] found that the agglomerated particles present in
RAP affect the dispersion of aged asphalt. Therefore, to better observe the dispersion of
aged asphalt containing agglomerated RAP during the mixing process, an artificial RAP
aggregate was produced using 12~16 mm RAP and 0~6 mm RAP asphalt mastic. The
particle size of the virgin aggregate used in the test was 9.5~26.5 mm, and the amount of
virgin aggregate was determined according to the proportion in the design gradation of
RHMA, as shown in Figure 2. To observe the dispersion of reclaimed asphalt with different
mixing durations, an asphalt mixture containing artificial RAP was produced at a mixing
temperature of 175 ◦C over 30 s, 60 s, 90 s, and 120 s after the virgin aggregate had been
heated by the oven at 190 ◦C for at least 2 h; the virgin asphalt was not added to the asphalt
mixture during mixing. Finally, the distribution of aged asphalt on the surface of the virgin
aggregate was photographed and observed for the different mixing durations, and the test
process is shown in Figure 3.
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Magnetite was used as a probe aggregate to determine the blend of reclaimed asphalt
with the different mixing durations and assess the blending of asphalt, and the blended
asphalt was extracted from magnetite aggregate using trichloroethylene as a solvent with
the centrifuge method and recovered from the solution with a rotary evaporator. In addition,
the particle size of the magnetite used in this study was 16~26.5 mm, and it was used to
replace a certain amount of the virgin aggregate in the RHMA. To investigate the blending
of reclaimed asphalt and virgin asphalt with different mixing durations, RHMA containing
40% RAP and 60% virgin aggregate was designed, and the asphalt content of the RHMA
was 4.4%. In accordance with the design grading (Figure 2), the mixing process for RHMA
was designed as follows: (1) RAP was dried in the oven at 130 ◦C for no more than 2 h,
and the virgin aggregate (including magnetite) and virgin asphalt were heated in the
oven at 190 ◦C and 150 ◦C for at least 2 h; (2) the RAP, virgin aggregate, magnetite, and
virgin asphalt were added to the mixer at 175 ◦C, and different mixing durations were
used; (3) lastly, the filler was added to the mix at 175 ◦C for 30 s, and the RHMA was
produced. Figure 4 illustrates the workflow which involved testing, sampling, and then
testing again. Based on the above experiment, the blended asphalt containing reclaimed
asphalt and virgin asphalt was recovered, and its performance and chemical composition
could be tested.

Buildings 2022, 12, x FOR PEER REVIEW 7 of 26 
 

Magnetite was used as a probe aggregate to determine the blend of reclaimed as-
phalt with the different mixing durations and assess the blending of asphalt, and the 
blended asphalt was extracted from magnetite aggregate using trichloroethylene as a 
solvent with the centrifuge method and recovered from the solution with a rotary evap-
orator. In addition, the particle size of the magnetite used in this study was 16~26.5 mm, 
and it was used to replace a certain amount of the virgin aggregate in the RHMA. To in-
vestigate the blending of reclaimed asphalt and virgin asphalt with different mixing du-
rations, RHMA containing 40% RAP and 60% virgin aggregate was designed, and the 
asphalt content of the RHMA was 4.4%. In accordance with the design grading (Figure 
2), the mixing process for RHMA was designed as follows: (1) RAP was dried in the ov-
en at 130 °C for no more than 2 h, and the virgin aggregate (including magnetite) and 
virgin asphalt were heated in the oven at 190 °C and 150 °C for at least 2 h; (2) the RAP, 
virgin aggregate, magnetite, and virgin asphalt were added to the mixer at 175 °C, and 
different mixing durations were used; (3) lastly, the filler was added to the mix at 175 °C 
for 30 s, and the RHMA was produced. Figure 4 illustrates the workflow which involved 
testing, sampling, and then testing again. Based on the above experiment, the blended 
asphalt containing reclaimed asphalt and virgin asphalt was recovered, and its perfor-
mance and chemical composition could be tested. 

 
Figure 4. The process of blending asphalt with different mixing durations. 

To evaluate the effects of the various mixing durations on the performance of 
RHMA when blended with reclaimed asphalt, a Marshall stability test, rutting resistance 
test, moisture sensitivity test, and the bending test was conducted based on the afore-
mentioned material composition of RHMA. 

2.3. Methods 
2.3.1. Image Analysis Method 

The dispersion images of aged asphalt covered in RAP were obtained with different 
mixing durations, as shown in Figure 3. From the image, it can be seen that the aged as-
phalt covered the virgin aggregate surface, and the difference was significant. To evalu-
ate the dispersion of aged asphalt with different mixing durations, five images were ob-

Figure 4. The process of blending asphalt with different mixing durations.



Buildings 2022, 12, 1057 7 of 24

To evaluate the effects of the various mixing durations on the performance of RHMA
when blended with reclaimed asphalt, a Marshall stability test, rutting resistance test,
moisture sensitivity test, and the bending test was conducted based on the aforementioned
material composition of RHMA.

2.3. Methods
2.3.1. Image Analysis Method

The dispersion images of aged asphalt covered in RAP were obtained with different
mixing durations, as shown in Figure 3. From the image, it can be seen that the aged asphalt
covered the virgin aggregate surface, and the difference was significant. To evaluate the
dispersion of aged asphalt with different mixing durations, five images were obtained,
and the regions covered with aged asphalt on the surface of the virgin aggregate were
distinguished using Image Pro Plus software. This process was performed by converting
the original digital images to grayscale images, and the aged asphalt could be identified
by using a grayscale threshold of 0 to 52. In addition, the areas of virgin aggregate and
those where aged asphalt covered the virgin aggregate were used to evaluate the degree
of dispersion with the different mixing durations, which was calculated as shown in
Equation (1):

AR =
Aaged asphalt

Avirgin aggregate
× 100 (1)

where AR refers to the area ratio of the distribution of the aged asphalt in the virgin
aggregate (%); Aaged asphalt refers to the area of the aged asphalt covered in the virgin
aggregate (cm2); and Avirgin aggregate refers to the total area of the virgin aggregate (cm2).

2.3.2. Asphalt Binder

Investigation into the performance of asphalt binder recovered from RHMA with
different mixing durations was conducted based on physical properties tests and rheometer
tests. In addition, the microscopic composition of the asphalt binder was tested using a
Fourier-transform infrared spectroscopy test, gel permeation chromatography test, and
atomic force microscopy test.

Physical Properties Tests

The penetration, softening point, and ductility were used to evaluate the physical
properties of the recovered asphalt, and these tests were conducted using an automated
test device according to the JTG E20-2011 standard [24].

Rheometer Test

A DHR-1 dynamic shear rheometer was used to determine the rheological properties
of the blended asphalt. Angular frequencies between 0.1 and 100 rad/s were tested at 15,
25, and 35 ◦C. In addition, the asphalt samples were tested using a parallel plate with a
diameter of 8 mm and gap of 2 mm. Based on the fact that the complex modulus of the
asphalt binder decreased to 95% of its initial value before the frequency sweep tests, strain
sweep tests were conducted to determine its linear viscoelastic region. After obtaining the
limited strain, the frequency sweeps tests were carried out. In addition, the rheological
master curve was established at 25 ◦C (the representative temperature of asphalt pavement
in the service cycle is 25 ◦C [28]) based on the test results. A sigmoidal model was used to
construct the modulus master curve, and a double-logistic mathematical function was used
to model the phase angle master curve [29].

The low-temperature rheological properties of the blending asphalt were examined by
using a TE-BBR bending beam rheometer from Canon Company, and the bending creep
stiffness S and creep rate m of the blending asphalt were calculated by using a bending
creep test. Four parallel tests were conducted for each group at −12 ◦C and −18 ◦C
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with the length, width, and height of asphalt specimens being 127 mm, 12.7 mm, and
6.35 mm, respectively.

FTIR Test

The reaction of the reclaimed asphalt with virgin asphalt was accompanied by a change
in the concentrations of the functional groups, including carboxylic acids, sulfoxides,
ketones, and anhydrides [30]. Molecular functional groups are atomic groups within
molecules that possess unique properties, regardless of the presence of other atoms [31]. In
this test, the chemical functional groups of blended asphalt shared between reclaimed and
virgin asphalt were identified based on the absorption intensities using an FTIR test, and the
degree of blending was evaluated. To conduct the test, the four blending asphalt samples
recovered from magnetite were placed on the crystal using a metal spatula. The spectra test
range was 4000–600 cm−1, and a resolution of 4 cm−1 was used with 24 scans. Previous
studies [32,33] show that the C=O bond (carbonyl region) and S=O bond (sulfoxide) e
change with the aging of the asphalt, and aged asphalt has higher C=O and S=O peaks
while virgin asphalt has a lower peak. Hence, in this study, the C=O and S=O functional
groups were used to indicate the degree of blending of reclaimed and virgin asphalt with
different mixing durations. To quantify the C=O and S=O functional groups based on the
FTIR curve, the carbonyl index (CI) and sulfoxide index (SI) were proposed and calculated
using Equations (2) and (3). In addition, it should be noted that all spectra were normalized
to the band with the highest intensity in the bitumen spectrum; i.e., the aliphatic band
at 2920 cm−1. Min-max normalization in the range from 3007.946 to 2766.898 cm−1 was
carried out, which reduced the impact of any errors coming from the FTIR crystal [34].
Equations (2) and (3) are as follows:

CI =
AC=O

AReference
× 100 (2)

SI =
AS=O

AReference
× 100 (3)

where CI represents the carbonyl index (%); SI represents the index of the sulfoxide
group (%); AC=O represents the area of the C=O functional group at the wavelengths
from 1722.357 to 1672.210 (cm−1); AS=O represents the area of the S=O functional group at
the wavelengths from 987.112 to 1057.611 (cm−1); and AReference represents the area of a
reference position at wavelength from 3007.946 to 2766.898 (cm−1) [31,35].

GPC Test

The GPC test was used to determine the molecular weight distribution for the asphalt
binder. Previous studies have shown that the molecular weight of asphalt binder can be
separated into three major fractions: large molecule size (LMS), medium molecule size
(MMS), and small molecule size (SMS) [20]. Therefore, the change in the blending asphalt
can be characterized by the molecular weight due to the difference in the molecular weight
between reclaimed and virgin asphalt. A Waters 1515 gel permeation chromatograph
was used to conduct the test and the chromatogram was obtained. According to the
chromatogram, which was divided into 13 slices, the first 5 segments had LMS, segments
6–9 had MMS, and segments 10–13 had SMS. In addition, the LMS percentage was used to
quantitatively evaluate the influence of the blending asphalt binder with different mixing
durations, and the calculation is shown in Equation (4):

ILMS =
ALMS

AC
× 100 (4)

where ILMS represents the macromolecular content index (%); ALMS indicates the basis
of the area beneath the chromatogram curve; and AC represents the total area of the
chromatogram regions containing different molecule sizes.
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AFM Test

The AFM imaging technique was used in this study to capture the topography of
the different blended asphalts and to analyze the degree of blending of the reclaimed and
virgin asphalt with the different mixing durations. In this test, the surface topography
was observed using a Bruker Icon atomic force microscope. The peak force, feedback
gain, and probe scan rate were 30 nN, 20, and 1 Hz, respectively. To prepare samples,
various asphalt binders were first heated, and a small amount of asphalt binder was put
on a slide; next, the slide was heated in an oven at 110 ◦C for 2 min, and then stored at
25 ◦C ambient temperature and 25% relative humidity for another 24 h [36]. Finally, three
parallel tests were carried out for each group and the microscopic image was recorded with
a 20 µm × 20 µm scan size and a pixel resolution of 512 ppi × 512 ppi.

In previous studies, bee-like structures have been observed in asphalt AFM images,
which were influenced by the composition of the saturate, aromatic, resin, and asphaltene
(SARA) components) [37]. Therefore, to quantitatively represent the effect of asphalt blend-
ing using AFM images, the density and average area index of the bee-like structures were
calculated with NanoScope Analysis software and computer-imaging analysis software
and analyzed in two-dimensional images. Following our previous study [38], the image
processing and the calculation process are shown in Figure 5.
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2.3.3. Asphalt Mixture
High-Temperature Resistance Test

The Marshall stability test and the rutting test were carried out to determine the
performance of the RHMA under high temperatures.

The Marshall stability test was performed using Marshall stability equipment accord-
ing to the specification of the JTG E20-2011 standard [24], and the Marshall stability and
flow value of the specimen were tested. The Marshall stability was tested under a loading
rate of 50 mm/min at 60 ◦C after the specimens of 100 mm diameter and 63.5 mm height
were immersed in a water bath at a temperature of 60 ◦C for 30~40 min. In addition, the
Marshall stability was regarded as the maximum load of the specimen that would cause
the failure of the specimen, and the flow value was determined as the vertical deformation
of the specimen under the point of failure.

A rutting resistance test was conducted to determine the dynamic stability of the
RHMA. In addition, three rutting samples (300 mm × 300 mm × 50 mm) of the mix-
tures were produced for the RHMA with different mixing durations. The rutting test
was carried out according to the JTG E20-2011 standard [24], and the deformation of the
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specimen was recorded during the test. The dynamic stability index was calculated using
the following equation:

DS =
(t2 − t1)× N

d2 − d1
(5)

where DS refers to the dynamic stability of mixes (cycles/mm); the value of t1 was 45 min;
that of t2 was 60 min; N is the rotation speed of the wheel (42 rpm/min); d1 is the rutting
depth at t1 (mm); and d2 is the rutting depth at t2(mm).

Moisture Sensitivity Test

A freeze–thaw splitting test was conducted to determine the moisture sensitivity of the
RHMA. Six specimens were prepared and equally divided into unconditioned and condi-
tioned groups, and the test was conducted according to the JIG E20-2011 standard [24]. The
tensile strengths of the specimens before and after conditioning were calculated according
to Equations (6) and (7):

TS =
0.006287 × PT

h
(6)

where TS represents the tensile strength (MPa); PT represents the maximal loading pres-
sure (N); and h represents the height of the specimen (mm).

TSR =
TSa f ter

TSbe f ore
× 100 (7)

where TSR represents the freeze–thaw splitting tensile strength ratio (%); TSa f ter represents
the average tensile strength of the specimen after being vacuumed at 0.9 MPa for 15 min
and transferred into a bath for 24 h at 60 ◦C, after which the tensile strength was tested after
2 h in the water bath at 25 ◦C (MPa); and TSbe f ore represents the average tensile strength
after the specimen was placed into the water bath for 2 h at 25 ◦C (MPa).

Low-Temperature Bending Beam Test

The low-temperature crack resistance of the RHMA was evaluated using a low-temperature
bending beam test according to the JTG E20-2011 standard [24]. Six bending beam speci-
mens with sizes of 250 mm × 30 mm × 35 mm were prepared and the test was conducted
using a UTM-100 at −10 ◦C. The flexural tensile failure was calculated using Equation (8):

εB =
6 × h × d

L2 (8)

where εB refers to the maximum flexural strain after specimen failure (µε); h refers to the
height of the transverse section at the mid-span of the testing beam (mm); d refers to the
deflection at the mid-span of the specimen during failure (mm); and L refers to the span of
the specimen (mm).

3. Results and Analysis
3.1. Reclaimed Asphalt Dispersion with Different Mixing Durations

Figure 6 shows the dispersion of the aged asphalt on the virgin aggregate surface
with different mixing durations. It is obvious that the variation in the area of the aged
asphalt coating on the surface of the virgin aggregate increased with the increase in the
mixing duration. In addition, the values of AR were calculated as 22.9%, 37.6%, 53.7%,
66.5%, and 86.1% respectively, and the standard deviations were 2.1%, 5.7%, 5.6%, 6.2%,
and 9.2%, respectively. Therefore, the mixing duration significantly affected the dispersion
of the aged asphalt in the RAP over the virgin aggregate, and the longer mixing durations
allowed the aged asphalt to spread sufficiently during the mixing process.
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3.2. Performance and Chemical Composition of Blended Asphalt with Different Mixing Durations
3.2.1. Physical Properties Tests

Figure 7 presents the test results for the physical properties of the asphalt binder with
different mixing durations. It is evident that the virgin asphalt significantly improved
the physical properties of the aged asphalt. In addition, the penetration and ductility
of the blended asphalt decreased with the increase in mixing duration compared to the
virgin asphalt, while the softening point showed the opposite trend. According to the
aforementioned results, the mixing duration affected the degree of dispersion of the aged
asphalt during mixing, resulting in the physical properties of the blended asphalt becoming
close to those of aged asphalt. Furthermore, the physical properties of the blended asphalt
exhibited a lower range of changes with the increase in the mixing duration, indicating that
the properties of the blended asphalt were becoming stable.
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Figure 7. Test results for physical properties of asphalt binder.

3.2.2. Rheometer Test

The test results for the complex shear modulus and phase angle at the reference
temperature of 25 ◦C for virgin asphalt, aged asphalt, and blended asphalt with different
mixing durations are shown in Figure 8.
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Figure 8. Rheological properties: (a) complex modulus master curves at 25 ◦C for blended asphalt
with different mixing durations; (b) phase angle master curves at 25 ◦C for blended asphalt with
different mixing durations.

As can be seen from Figure 8a, the maximum and minimum complex moduli were
represented by aged asphalt and virgin asphalt, respectively, and the complex modulus of
the blended asphalt increased with the increase in the mixing duration compared to virgin
asphalt, indicating that the blended asphalt was gradually aging, and the blended asphalt
was more resistant to rutting and had better high-temperature stability. It can also be seen
from Figure 8a that, on a log scale, the increase in the complex modulus of the blended
asphalt was more significant at a mixing duration of 30 s compared to the virgin asphalt,
and the rate of increase decreased with the increase in the mixing duration. Figure 8b shows
that the phase angle of the blended asphalt decreased with the greater mixing duration
compared to virgin asphalt. In addition, the reductions in the phase angle decreased with
longer mixing durations, which was consistent with the variation law of the modulus.
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As the mixing duration increased, the stiffness modulus of the blended asphalt in-
creased compared to the virgin asphalt (Figure 9). This indicates that the mixing duration
resulted in the hardening of the blended asphalt and the low-temperature bending behavior
weakened. In terms of the different mixing durations at different test temperatures, the
growth range of the stiffness modulus decreased with increasing mixing durations. As the
test temperature increased, the stiffness modulus S of the blended asphalt binder decreased,
and the lower the temperature, the weaker the creep resistance of the asphalt was. The
SHRP specify that the asphalt binder stiffness modulus should be lower than 300 MPa to
ensure the low-temperature performance of an asphalt mixture. The mixtures of asphalt
studied here had excellent properties at −12 ◦C and −18 ◦C, except for the asphalt binder
recovered after 120 s of mixing.
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Figure 9. Variation in asphalt stiffness modulus S with different mixing durations at different temperatures.

According to Figure 10, the asphalt binder was more prone to breaking under stress at
lower temperatures. The results of the tests showed that the blended asphalt’s creep rate m
decreased as the mixing duration increased and the asphalt’s degree of aging increased,
resulting in the low-temperature crack resistance decreasing. However, when the mixing
duration was increased, the range of decline of the creep rate m decreased. In addition, the
SHRP suggest that the creep rate m should be higher than 0.3. Thus, the asphalt binder
including virgin asphalt, aged asphalt, and blended asphalt met the requirements at −12 ◦C;
however, the blended asphalt with various mixing durations did not meet the specifications
at −18 ◦C.
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3.2.3. FTIR Test

Figure 11 demonstrates the test results for the infrared spectra of the different asphalts
obtained with FTIR. The vibration peaks at 748 cm−1, 811 cm−1, 873 cm−1, 1027 cm−1,
1375 cm−1, 1454 cm−1, 1602 cm−1, 1697 cm−1, 2354 cm−1, 2856 cm−1, and 2920 cm−1 are
apparent. In addition, the number of vibrational peaks shows that no new functional
groups were produced during the fusion of the old and new asphalt. Based on the trend
in the vibrational peaks, it is clear that there was a significant difference between the
C=O (absorption peak at the wavelength of 1697 cm−1) and S=O (absorption peak at
the wavelength of 1027 cm−1) curves of the different asphalts, and the intensity of the
absorption peaks increased with the increase in the mixing duration. The absorption
peak of the aged asphalt was the highest, followed by those of the blended asphalt and
virgin asphalt.
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Figure 11. Infrared spectra of the asphalt binder with different mixing durations.

To evaluate the degree of blending of the asphalt binder containing aged and virgin asphalt
in the FTIR test, the bond index (CI and SI) was calculated using Equations (2) and (3). Figure 12
shows that the carbonyl index CI and sulfoxide index SI were significantly increased after
mixing at different times, with an increase of 116.4% and 218.3%, respectively, compared
to the virgin asphalt. The carbonyl index CI and sulfoxide index SI in the virgin asphalt
were the smallest, while the aged asphalt had the highest indexes. In addition, the range of
increase of the carbonyl index CI and sulfoxide index SI in the blended asphalt decreased
with the increase in the mixing duration.
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3.2.4. GPC Test

Figure 13 shows the relative molecular mass distributions for aged asphalt, blended
asphalt, and virgin asphalt, with the horizontal axis representing the logarithm of the
average heavy molecular weight (Mw) and the vertical axis representing the asphalt content
(M). The higher the degree of aging of the asphalt was, the larger the area of the curve
distribution for the larger scale of molecular weight was, as shown in Figure 13. As
Figure 14 shows, the LMS content in the asphalt binder was calculated to quantitatively
evaluate the change in the asphalt molecular weight during mixing. According to Figure 14,
aged asphalt had the highest LMS content while virgin asphalt had the lowest. When the
mixing duration increased, the LMS content in the blended asphalt increased, suggesting
that the aging asphalt was more prevalent in the blended asphalt.
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Figure 13. Chromatograms of the asphalt binder with different mixing durations.
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3.2.5. AFM Test

AFM images of the virgin asphalt binder, aged asphalt binder, and blended asphalt
binder recovered from magnetite aggregate are displayed in Figure 15. As can be seen
from Figure 15a–f, the surface morphology of the different asphalt binders mainly had a
bee-like structure, and the areas and numbers were different with different mixing duration.
The number of bee-like structures decreased with the increase in the mixing duration,
which shows that the components of the blended asphalt changed during the mixing
process due to the bee-like structure being affected by the asphalt components (saturated
fraction, aromatic fraction, resin, and asphaltene) [39,40]. In addition, the number of
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bee-like structures in the virgin asphalt was the highest, while that of aging asphalt was
the lowest.

Buildings 2022, 12, x FOR PEER REVIEW 17 of 26 
 

 
Figure 14. LMS content in the asphalt binder with different mixing durations. 

3.2.5. AFM Test 
AFM images of the virgin asphalt binder, aged asphalt binder, and blended asphalt 

binder recovered from magnetite aggregate are displayed in Figure 15. As can be seen 
from Figure 15a–f, the surface morphology of the different asphalt binders mainly had a 
bee-like structure, and the areas and numbers were different with different mixing dura-
tion. The number of bee-like structures decreased with the increase in the mixing dura-
tion, which shows that the components of the blended asphalt changed during the mix-
ing process due to the bee-like structure being affected by the asphalt components (sat-
urated fraction, aromatic fraction, resin, and asphaltene) [39,40]. In addition, the number 
of bee-like structures in the virgin asphalt was the highest, while that of aging asphalt 
was the lowest. 

    

 

 

 

Figure 15. AFM image test and analysis results: (a) virgin asphalt binder; (b) blended asphalt 
binder under the 30 s mixing duration; (c) blended asphalt binder under the 60 s mixing duration; 

Virgin asphalt
30 s 60 s 90 s 120 s

Aged asphalt0

1

2

3

4

5

6

7

8

Pe
rc

en
ta

ge
/%

 LMS

Mixing duration

Virgin asphalt
30 s 60 s 90 s 120 s

Aged asphalt
0.00

0.05

0.10

0.15

D
en

si
ty

/(n
um

be
r/u

m
2 )

  Density index of bee-like structures

Mixing duration

(g)

1.0

1.2

1.4

1.6

1.8

2.0

  Average area index of bee-like structures

Av
er

ag
e 

ar
ea

/u
m

2

Figure 15. AFM image test and analysis results: (a) virgin asphalt binder; (b) blended asphalt
binder under the 30 s mixing duration; (c) blended asphalt binder under the 60 s mixing duration;
(d) blended asphalt binder under the 90 s mixing duration; (e) blended asphalt binder under the
90 s mixing duration; (f) aged asphalt binder; (g) Variation of density and average area of bee-like
structures of blended asphalt with the different mixing duration.

To quantitatively evaluate the influence of mixing duration on blended asphalt binder
in the mixing process, the density and the average area of the bee-like structure under
different mixing duration were calculated respectively. In Figure 15g, the density of the
bee-like structure of virgin asphalt is the largest and the average area is the smallest, while
the aging asphalt is the opposite. In addition, it is evident from Figure 15g that the density
of the bee-like structures in the blended asphalt decreased with the increase in the mixing
duration, while the average area of the bee-like structures showed the opposite trend.
Therefore, the mixing duration had a significant effect on the blending of the virgin and
aged asphalt during the mixing process.

3.3. Performance of RHMA with Different Mixing Durations
3.3.1. High-Temperature Resistance Test

Figure 16 shows the Marshall stability and flow for RHMA with different mixing
durations. According to Figure 16a, the Marshall stability and flow of the RHMA were
both affected by the mixing duration, the Marshall stability increasing with the increase in
the mixing duration, while the growth trend for the flow decreased with the increase in the
mixing duration. Figure 16b shows the rutting test results for RHMA with different mixing
durations. As the mixing duration increased, RHMA’s dynamic stability increased, and its
growth trend decreased with increasing mixing durations, which was consistent with the
Marshall stability test results. All the RHMA samples also met the requirements of the JTG
F40-2017 specification [27] in terms of the Marshall stability and flow.
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Figure 16. High-temperature resistance test: (a) Marshall stability and flow results; (b) rutting
test results.

3.3.2. Moisture Sensitivity Test

As shown in Figure 17, the splitting tensile strength and splitting tensile strength
ratio for the RHMA varied before and after freeze–thawing. Figure 17 shows that the
splitting tensile strength before and after the freeze–thaw cycle was affected by the mixing
duration. With the increase in the mixing duration, the splitting tensile strength of both
the conditioned and unconditioned groups of RHMA samples also increased. In addition,
the splitting tensile strength ratio (TSR) for the RHMA increased with the increase in the
mixing duration, and the growth trend for the TSR decreased with the increase in the
mixing duration. The TSR should be greater than 70% for RHMA containing virgin asphalt
according to the JTG F40-2017 specification [27]; therefore, the longer mixing duration was
beneficial for RHMA to guarantee moisture stability.
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Figure 17. Freeze–thaw splitting results.

3.3.3. Low-Temperature Bending Beam Test

Figure 18 shows that, with an increase in the mixing duration from 30 s to 120 s, the
maximum flexural strain of the RHMA increased accordingly. Therefore, the low-temperature
crack resistance of the RHMA can be improved by increasing the mixing duration. In
addition, the specifications of the JTG F40-2017 standard [27] require a maximum flexural
strain not less than 2000 µε. As shown in Figure 18, the RHMA mixed over 30 s, 60 s, and
90 s did not meet the low-temperature performance requirements. Therefore, it is necessary
to consider the low-temperature performance of RHMA during the design of the material
composition and the mixing process.
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Figure 18. Low-temperature cracking test results.

4. Environmental Impacts

According to findings concerning the energy consumption and carbon emission in the
virgin material production stage, transportation stage, mixing stage, and construction stage,
the mixing duration can significantly affect the energy consumption and carbon emission
of RHMA during the mixing stage. Therefore, the study only compared the difference
in energy consumption and carbon emissions during the mixing stage of RHMA. In the
context of engineering practice, the Mariani MAT440 and Tietuo TSEC4020 intermittent
mixing plants are used to produce RHMA, and the forms of energy consumed in the
production process are natural gas and electricity. Statistics show that the natural gas and
electricity consumption in the mixing plant can be calculated using Equations (9) and (10),
considering an 80% filling rate for the mixer [41]:

Vg = −468.731 + 13.193tm + 2.386Ta + 1.622mr (9)

Ce =
PE × tm

60
(10)

where Vg represents the amount of natural gas used in the production of RHMA (m3); tm
represents the total mixing duration for the production of RHMA (min); Ta represents the
discharge temperature of RHMA (◦C); mr represents the total mass for the production of
RHMA (ton); PE represents the total operating power (kW).

Drawing on previous studies [42,43], Table 5 shows the energy consumption and
carbon emission equivalents for different types of energy. According to the investigation,
the duration of the production cycle for HMA in the plant is 45 s, of which the dry mixing
duration is not less than 5~10 s. Therefore, the standard mixing duration for the asphalt
mixture can be considered to be 45 s. In addition, the total installed power in the Tietuo
TSEC4020 plant is 960 kW. To compare the energy consumption and carbon emissions for
RHMA with different mixing durations, their values were calculated for mixing durations
of 30 s, 45 s, 60 s, 75 s, and 90 s using Equations (9) and (10), and the results are shown
in Table 6. It can be seen that the energy consumption and CO2 emissions for RHMA
increase significantly with increasing mixing durations. Comparing the mixing durations
of 60 s, 75 s, and 90 s with the standard mixing duration (45 s), the energy consumption for
RHMA during the mixing stage increased by 21.5%, 43.3%, and 65.1%, respectively, and
the carbon emissions increased by 24.0%, 48.1%, and 72.4%, respectively. Therefore, the
optimal mixing duration should be determined considering the energy consumption and
carbon emissions at the mixing stage in the plant, as well as the performance of the RHMA.
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Table 5. Energy consumption and the CO2 emissions for different types of energy.

Energy Type Energy Consumption CO2 Emissions

Natural gas 38.931 MJ/m3 2.162 kg/m3

Electricity 3.597 MJ/(kW·h) 0.997 kg/(kW·h)

Table 6. Energy consumption and CO2 emissions for RHMA produced in a plant with different
mixing durations.

Mixing Duration, s Productivity, t/h Natural Gas
Consumption, m3/t

Electricity
Consumption,

(kW·h)/t

Energy
Consumption, MJ/t CO2 Emissions, kg/t

30 480 3.14 2 129.44 8.78
45 320 3.96 3 164.96 11.55
60 240 4.78 4 200.48 14.32
75 192 5.61 5 236.39 17.11
90 160 6.44 6 272.30 19.91

5. Evaluating the Performance of RHMA with Different Mixing Durations in the Plant

To evaluate the performance of RHMA produced in the plant with different mixing
durations, an asphalt pavement maintenance project along the Sanming section of the
Fuzhou–Yinchuan Expressway in Fujian Province, China, was selected. Considering the
operability of different mixing durations in the production of RHMA, the 45 s, 60 s, and
75 s mixing durations were selected for the study, including a dry mixing time of 10 s. The
hot mixing duration studied in this work is based on the process used in the intermittent
plant mentioned. In RHMA production, the mixing procedure is: (i) RAP premixing for
10 s, (ii) RAP + new aggregates + virgin asphalt mixing for 20 s; and (iii) addition of filler
mixture for another 15 s, 30 s, or 45 s. In addition, the material composition of the RAP, the
RAP content (40%), and the asphalt content (4.4%) in the RHMA, as well as the aggregate
gradation, were consistent with the process in the abovementioned plant. Moreover, the
discharge temperature of the RHMA produced in the plant is 170 ◦C and the compaction
temperature for the different test specimens was 155 ◦C. The performance of the RHMA
obtained with different mixing durations was tested, as shown in Figure 19.
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Figure 19. Performance test results for RHMA: (a) Marshall stability and flow test; (b) rutting test;
(c) freeze–thaw splitting test; (d) low-temperature cracking test.
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Regarding the results from Figure 19, the Marshall stability and flow, dynamic stability,
freeze–thaw splitting strength ratio, and maximum flexural strain of the RHMA increased
with the increase in the mixing duration. However, the growth rate of the different perfor-
mance indexes decreased with the increase in the mixing duration. In addition, when the
mixing duration was 60 s, the performance of the RHMA met the JTG F40-2017 specification
requirements. However, the performance of the RHMA did not meet the requirements
with the standard mixing duration (45 s). Therefore, to ensure the acceptable performance
of RHMA, it is necessary to extend the mixing duration of RHMA compared to virgin
asphalt mixture.

6. Discussion of the Results

In this study, the dispersion of reclaimed asphalt and the blending of reclaimed
asphalt and virgin asphalt were observed, and the performance of RHMA mixed with
different mixing durations was evaluated. In addition, the environmental impact of RHMA
produced in a plant with different mixing durations was analyzed, and the performance of
RHMA produced in a plant was also evaluated. Furthermore, the optimal mixing duration,
taking into account both laboratory tests and the plant, was proposed by considering the
environmental impact and the performance of RHMA.

Based on the initial experimental results, the aged asphalt coated on the surface of
RAP disperses during the mixing process, and the degree of dispersion increases with
the increase in the mixing duration. It was revealed that the mixing process increases the
probability of contact between RAP and different virgin aggregates, and the softened, aged
asphalt binder coated on the surface of RAP is transferred to the virgin aggregate under the
action of adhesion during the mixing process. Therefore, the area of aged asphalt adhering
to the surface of virgin aggregate increases with the increase in mixing duration, indicating
a more uniform dispersion of RAP during the mixing process. However, this study only
qualitatively analyzed the dispersion of RAP in the mixing process without considering the
addition of virgin asphalt. According to a previous study [44], when RHMA is added to
virgin asphalt, the virgin asphalt tends to attract the smaller RAP particles and coats them
first, causing an agglomeration phenomenon for RAP particles during mixing and affecting
the RAP dispersion. Hence, the performance and chemical composition of blended asphalt
were used to further evaluate the dispersion of RAP.

This study investigated the variation in performance and chemical composition of
blended asphalt with different mixing durations. It is known from the literature [31,45,46]
that the performance of aged asphalt, in terms of penetration, ductility, phase angle, and
creep rate m, are lower compared to virgin asphalt, while the softening point, complex
modulus, and stiffness modulus are higher, and both of these trends are due to the change
in chemical composition during the aging process. In addition, a previous study [32,33]
also revealed that the C=O bond (carbonyl region), S=O bond (sulfoxide), molecular weight
distribution, and number of bee-like structures in aged asphalt are affected by the SARA
components. As asphalt contains more unsaturated bonds than saturated molecules, small
molecules (saturated and aromatic components) break more easily during aging. After
the structures of small molecules are broken, they polymerize to form macromolecules
(asphaltenes), the molecular weight and modulus of which are greater than those of
saturated and aromatic components [47]. Due to the increase in macromolecules, the
adhesion and modulus of the asphalt increase. Therefore, the C=O bond, S=O bond, LMS,
and area of the bee-like structures have higher peaks as the degree of aging of the asphalt
increases. Hence, as the aged asphalt becomes increasingly dispersed into the RHMA
during the mixing process, the properties and chemical components of the blended asphalt
move closer to those of virgin asphalt. In the practical context, it was observed that the
aged asphalt on the RAP surface showed significant dispersion during the mixing process,
and the degree of dispersion increased with increasing mixing durations.

Furthermore, it is worth noting that the mixing duration affects the RHMA perfor-
mance and that the high-temperature stability, moisture sensitivity, and low-temperature
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crack resistance of RHMA increase with increases in the mixing duration. In addition, it
was observed that the best performance for the RHMA was obtained at a mixing dura-
tion of 120 s. Wu et al. [48] reported that a longer mixing duration results in significant
age-hardening in both RAP and virgin asphalt binders, as well as a stronger blend of RAP
and new binders, meaning that more RAP binder contributes to the viscoelastic properties
of RHMA. Therefore, the high-temperature rutting resistance and the moisture sensitivity
of RHMA increase. In addition, a longer mixing duration promotes homogeneity in the
blending of the aged and the virgin asphalt, and the stress concentration at the interface
between the aged and virgin asphalt affecting the crack resistance is reduced, resulting
in the low-temperature crack resistance of RHMA increasing with the increase in the
mixing duration.

To achieve a higher degree of dispersion of aged asphalt and to guarantee the per-
formance of RHMA, prolonged mixing durations are required during the mixing process.
However, in practice, extending the mixing duration of RHMA significantly increases the
energy consumption and CO2 emissions during the RHMA production stage (as shown
in Table 6), as well as increasing production costs. Therefore, it is impossible to achieve a
sufficient mixing duration, such as 120 s, in the practical production process of RHMA. Al-
though increasing the mixing duration improves the performance of RHMA, it is necessary
to consider the actual situation to determine the optimal mixing duration for such projects.
In addition, the correlation between the RHMA performances with laboratory and plant
mixing durations should be considered to avoid over-evaluation of the performance of the
RHMA produced in plants due to the long mixing time used in the laboratory. Thus, it is
recommended to balance the performance of RHMA and the environmental benefits of the
mixing process to determine an optimal mixing duration. According to the test results for
the RHMA produced in the plant (as shown in Figure 19), the optimal mixing duration
in the plant is 60 s, considering the environmental impact and the RHMA production
efficiency and performance. Furthermore, the optimal mixing duration in the laboratory
was determined to be 90 s based on the consistency of the performance of the RHMA
mixing in the plant with that of RHMA mixing in the laboratory with different mixing du-
rations. In addition, Haghshenas et al. [46] reported that the mixing temperature affects the
dispersion of RAP during the mixing process, and the degree of dispersion increases with
the increase in mixing temperature. Karlsson and Isacsson [49] showed that a rejuvenator
can promote the dispersion of aged asphalt in RAP during the mixing process. Hence, the
abovementioned factors can be considered to improve the degree of RAP dispersion and
the performance of recycled asphalt mixes with a limited mixing duration. In addition, the
distribution of RAP particles in RHMA during the mixing process is also an interesting
topic and its influence on the properties of RHMA should be considered.

7. Conclusions

This study investigated the dispersion and mixing of reclaimed asphalt, evaluated
RHMA produced in plants and laboratories, and analyzed the energy consumption and
carbon emissions for RHMA with different mixing durations. The dispersion of aged
asphalt on the RAP surface with different mixing durations was observed. The performance
and chemical composition of blended asphalt recovered from RHMA with different mixing
durations were evaluated using physical properties tests, a rheometer test, an FTIR test,
a GPC test, and an AFM test. In addition, the performance of RHMA was also evaluated
using the Marshall stability test, a rutting resistance test, a freeze–thaw splitting test, and a
low-temperature bending beam test. Based on the results, an optimal mixing duration can
be proposed. The following conclusions can be drawn for this study:

(1) The dispersion of aged asphalt over the RAP surface in RHMA was significantly
influenced by the mixing duration, and the degree of dispersion increased with the increase
in the mixing duration. In addition, the mixing duration of RHMA affected the degree
of blending of aged and virgin asphalt; the lower the mixing duration was, the lower
the degree of blending was. When the mixing duration was increased, the properties
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and the chemical composition of the blended asphalt approached those of aged asphalt,
indicating that the dispersion of aged asphalt on the RAP surface was greater in the
longer mixing process. Furthermore, the high-temperature resistance, moisture sensitivity,
and low-temperature crack resistance of RHMA were improved by increasing the mixing
duration. In general, the mixing duration affects the dispersion of RAP in RHMA and
the blending of the old and new asphalt during the mixing process, thus affecting the
performance of the recycled asphalt mixture.

(2) The energy consumption and CO2 emissions at the production stage of RHMA
increased significantly with the increase in the mixing times. In addition, the performance
of the RHMA produced in the plant increased with the increase in mixing time. The
recommended optimal mixing durations in the mixing plant and laboratory are 60 s
and 90 s, respectively, considering the environmental impact and the RHMA production
efficiency and performance.

(3) In this study, we considered a single concentration of RAP and the degree of aging
of RAP in RHMA, but the results may differ when considering different RAP concentrations
or degrees of aging. In order to determine the impact of RAP content and the degree of
aging on RHMA performance, it is recommended that these tests be repeated.
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