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Abstract: Conventional building energy models (BEM) for heating and cooling energy-consumption
prediction without calibration are not accurate, and the commonly used manual calibration method
requires the high expertise of modelers. Bayesian calibration (BC) is a novel method with great
potential in BEM, and there are many successful applications for unknown-parameters calibrating
and retrofitting analysis. However, there is still a lack of study on prediction model calibration. There
are two main challenges in developing a calibrated prediction model: (1) poor generalization ability;
(2) lack of data availability. To tackle these challenges and create an energy prediction model for office
buildings in Guangdong, China, this paper characterizes and validates the BC method to calibrate
a quasi-dynamic BEM with a comprehensive database including geometry information for various
office buildings. Then, a case study analyzes the effectiveness and performance of the calibrated
prediction model. The results show that BC effectively and accurately calibrates quasi-dynamic BEM
for prediction purposes. The calibrated model accuracy (monthly CV(RMSE) of 0.59% and hourly
CV(RMSE) of 19.35%) meets the requirement of ASHRAE Guideline 14. With the calibrated prediction
model, this paper provides a new way to improve the data quality and integrity of existing building
energy databases and will further benefit usability.

Keywords: building energy model; Bayesian calibration; sensitive analysis; automatic calibration
method

1. Introduction

With rapid urbanization, building energy consumption has attracted increasing atten-
tion globally. Building energy modeling (BEM) is widely used as the most effective method
to assess building energy efficiency. Generally, building energy models lack consideration
of the urban context and ae always based on over-simplification and strong assumptions,
thus leading to a prediction deviation of up to 90% [1]. To improve the confidence level of
models, calibration is an essential step in the modeling process.

Currently, two BEM calibration approaches can be adopted: the trial-and-error ap-
proach and Bayesian calibration (BC) [2,3]. The trial-and-error approach is an iterative
approach to adjusting unknown input parameters and assumptions [4]. It causes a big
challenge for the modeler because the accuracy of the model highly relies on the modeler’s
experience and knowledge in building and modeling. Due to the same reason, this method
requires incredible time and effort from both user and computer to achieve an accurate
result [5]. Additionally, it is adjusted to match historical energy data, leading to a weakness
in forecasting future energy.

The BC method alleviates the problems presented by the trial-and-error method.
Instead of adjusting model parameters and assumptions to match the prediction value with
measured data, the BC framework attempts to understand the model uncertainty and retain
the consistency between the simulation data and measured data [6]. It is an automated
calibration technique based on quantifiable evidence rather than experts’ intervention,
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which can significantly reduce the workload of the modeler [7]. Quality evidence (usually
established databases) can provide informative prior distributions for Bayesian inference
and initially determine the form of the result of calibrated parameters [8]. In addition,
BC can account for all sources of uncertainty, especially inherent uncertainty from the
model itself, which is always reflected by other calibration methods. In addition, BC can
determine the best estimation of the parameters, making BC better at predicting future
real-world observations [9,10]. Additionally, BC alleviates the over-fitting problem because
its objective is maximizing the likelihood function of model output, rather than reducing
the deviation between model output and measured values [11]. Compared with other
common-use training methods (i.e., the Levenberg–Marquardt method), the BC method
can more easily achieve a relatively stable model and reduce the possibility of the local
minimum solution [12].

There have been further attempts to apply BC to building energy models. The early
research focused on applying BC to the building energy model of existing buildings to
improve the model representation of the actual building. Its primary purpose was to
provide decision support for energy-saving retrofitting [13]. With the same initial pur-
pose, the method was optimized and promoted to a life-cycle analysis by Yuan et al. [14].
This method is effective for individual buildings, and high-temporal-resolution and high-
reading-resolution historical energy datasets can support more accurate model calibra-
tion [15]. Recently, the application of BC for building energy modeling has been expanding.
It has been applied for different building functions (i.e., residential buildings [16], com-
mercial buildings [17]) and different scales of buildings (individual buildings, building
clusters [18] and building stocks [19]). Additional focus was put on the statistic perfor-
mance of different emulators or surrogates under a BC framework [20]. Lim and Zhai [21]
compared five meta-models for BC and indicated that the Gaussian-process (GP) model
is relatively accurate. In terms of Markov Chain Monte Carlo (MCMC) algorithms, it was
found that the no-U-turn sampler is more effective for the Bayesian calibration of building
energy models as compared to random walk Metropolis and Gibbs sampling [22].

However, these studies applied BC to refine the output of a dedicated numerical model
without the relevant geometry, so that a calibrated model can only retell the energy profile
of a specific building/cluster. In many studies, the model is developed for calibrating un-
known parameters [23,24], but there is still a lack of research for the purpose of ‘prediction’.
In recent years, only Chen et al. [25] developed a BC model based on IES-VE building
energy software to predict district heat demand. It mainly focuses on material parameters
(U-value for different building components) and lacks consideration of the space layouts of
the district. Considering the geometry and material information of buildings, this research
developed a BC model with generalization ability to be applied to office buildings with
different space layouts and materials.

Additionally, poor building-design parametric sources are a significant challenge for
BC applications [8]. With the rapid development of energy-monitoring technology and
data-storage technology [26], it is gradually possible to record detailed historical energy-
consumption data. Still, there are fewer corresponding records for building structural-
design parameters, which leads to an imbalance between building structure and energy in
the database [27]. Another situation is that the current dynamic BEM method, e.g., Energy-
Plus, is usually ‘over-parameterized’, which means plenty of inter-reliance parameters are
compulsory to the model [28]. Scarce supply in databases and excessive demand in models
combined to cause a lack of accessibility to the building design parameters.

This paper aims to develop a dedicated BC model based on quasi-dynamic BEM with
the ability to deal with diverse inaccurate geometry parameters and material data. This
calibrated model is generalized and can be applied to predict the heating and cooling
energy consumption of office buildings. The novelty of this research is mainly expressed
in the following two points: (1) To improve the generalization ability of the model, this
research used a comprehensive dataset including geometry information and material
information of 11 various office buildings, taking as its input those parameters generated
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by a Bayesian calibrated model with generalization ability. It can not only retell the energy
profile of the original buildings (included in the training set) but also predict energy
consumption for other buildings (not included in the training set) with their space layout
and geometry information. (2) Instead of dynamic simulation tools, this paper investigates
the effectiveness of BC in giving results within the ASHRAE required margin when dealing
with models with fewer input parameters from the quasi-dynamic simulation method. With
the improvement in generalization ability, this calibration simulation method discovered a
new way of solving the data quality and integrity issues of the existing building energy
databases, which will greatly improve the usability of the existing big-data resource.

In conclusion, this paper shows that the quasi-dynamic simulation method can achieve
a similar accuracy level as the dynamic simulation method after BC. It also effectively
improves the generalization ability of the calibrated model by using a comprehensive
dataset, including geometry information, so that it can be applied to general office buildings.
With this improvement, this paper can also contribute to improving the quality and integrity
of the existing building energy database.

2. Methodology
2.1. Research Framework

This paper aims to develop a dedicated BC model based on quasi-dynamic BEM, which
can (1) deal with diverse inaccurate geometry parameters and material data, and (2) predict
the heating and cooling energy consumption of office buildings. To achieve the objective,
this study collected energy data and building information from 10 office buildings located
in Guangdong, China. Another building (with the same data structure) is recorded in
a separate dataset to carry out a case study for testing the performance and feasibility
of BC prediction model. These buildings were selected according to the building scale,
including both open and unit office buildings. A total of 8 key parameters (shown in
Table 1) were surveyed to generate the building geometry. Two years of hourly historical
energy data and corresponding weather data were gathered to form the energy dataset.
With the collected information, this paper calibrated quasi-dynamic BEM ISO 13790 [29]
with the BC method [6].

The preparation work has three parts:

1. A pre-calibration primary model based on ISO 13790 was developed;
2. A comprehensive energy dataset containing simulation data of primary model and

real-world measured data;
3. A dedicated hypothesis for Bayesian inference was made for the proposed calibration.

The main calibration contains 5 steps:

1. Use sensitivity analysis(SA) to identify sensitive parameters to construct the calibra-
tion parameter Θ;

2. Assume prior probability density function at weakly informative level;
3. Combine measured data z (collected from office buildings in Guangdong, China) and

simulation data y (generated by ISO 13790) in a Gaussian process (GP) emulator to
generate the prior distribution;

4. Explore the posterior distributions of the calibration parameter Θ, the location pa-
rameter β and the hyper-parameter φ by using the Gibbs sampling approach for the
MCMC sampling;

5. Evaluate the performance of the calibrated model for both convergences for multiple
MCMC chains and prediction accuracy.

Finally, a case study was carried out to analyze the calibrated model. The whole
methodology framework of applying BC to ISO 13790 is shown in Figure 1.
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Figure 1. BC framework for building energy model.

2.2. Simulation tool:ISO 13790

This paper uses ISO 13790 instead of EnergyPlus as a simulation tool to mitigate the
problem of over-parameterization and reduce the difficulty of data collection. This step
aims to develop a primary energy prediction tool using ISO 13790 and further understand
the essential parameters in this model for generating high-quality simulation data. The ISO
13790 calculation method [29] iterates the building thermal mass temperature in specific
time steps by modeling the thermal gains and loss balance of the building. It is simulated
in an equivalent three-node (surface node, internal air node, and thermal mass node)
resistance-capacitance network (5R1C model). The schematic of the 5R1C model is shown
in Figure 2.

Based on the schematic of the 5R1C model (Figure 2), the heating/cooling energy loads
calculation requires 5 heat transfer rates (Hve, Htr,is, Htr,w, Htr,em, and Htr,ms), 2 heat gains
(φsol and φint) and 4 temperatures (θH,set, θC,set, θext, and θt−1). The calculation model for
ISO 13790 is shown in Figure 3. In the first part, necessary building properties were used in
dataset establishment, and the specific values will be described in Section 2.3, Table 1. In the
second part, 19 input variables were used in SA, and relative information will be introduced
in Section 2.5, Table 2. In the third part, process variables were involved in the simulation,
but these calculation processes can be regarded as black boxes and will not be discussed
in the calibration process. The meaning of process variables is shown in Table 3. Finally,
the model accessed the simulation result as heating and cooling energy consumption.
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Figure 2. The schematic of 5R1C model [29].

Figure 3. Calculation model for ISO 13790.
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Table 1. List of necessary building properties for ISO 13790 calculation model. (Necessary building
properties in Figure 3).

Catalogue Properties

GFA Scale- Range from 5000 to 63,000 m2

Exterior wall material
‘Brick’
‘Concrete’
‘Lime–sand brick’

Building thermal insulation system ‘Internal insulation’
‘External insulation’

Glazing material
‘Clear’
‘Coated’
‘Low-e’

Window framework ‘Plain metal window framework’
‘Heat insulation metal window framework’

Window–wall ratio Scale range from 0.2–0.8

Heating system ‘Radiator’
‘Air conditioner’

Cooling system
‘Centralized air-conditioning system’
‘Fan coil fresh-air system’
‘Split air conditioning system’

Heating and cooling energy consumption 2 × 8760 matrix-
Two years’ hourly energy consumption data

Table 2. List of input variables for ISO 13790 calculation model. (Input variables in Figure 3).

Num. in Num in Symbol Meaning Unit Range
1st SA 2nd SA Max Min

1 - GFA * Gross floor area m2 1.8× 105 8× 103

2 1 L Building length m 80 15
3 2 W Building width m 80 15
4 3 h Story height m 3.9 3
5 4 WWR Average window–wall ratio - 0.8 0.2
6 5 Orie Orientation - ◦ 45 0
7 6 Uwindow Exterior window U-value W/m2· K 6 1
8 7 Uwall Exterior wall U-value W/m2· K 1.5 0.6
9 8 Uroo f Roof wall U-value W/m2· K 1.5 0.6

10 9 VenM Mechanical ventilation h−1 6 0
11 10 DHI Diffuse horizontal irradiance kW/m2 581 0
12 11 DNI Direct normal irradiance kW/m2 795 0
13 12 θext External temperature ◦C 37 6
14 - θt−1 * Last-hour room temperature ◦C 12 35
15 13 θH,set Heating setpoint ◦C 22 18
16 14 θC,set Cooling setpoint ◦C 267 22
17 15 DayNum Day of year - 365 1
18 16 HourNum Hour of day - 23 0
19 17 φint Internal heat gain W 20 0

* is used for the scene classification of SA and is not part of xM . - The definition of orientation is the angle between
normal direction of main façade and the south.
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Table 3. List of process variables and their meaning for ISO 13790 calculation model. (Process
variables in Figure 3).

Symbol Meaning

Hve Heat transfer rate by ventilation
Htr,is Heat transfer rate between building surface and internal air
Htr,w Heat transfer rate through the window
Htr,em Heat transfer rate between external air to the building mass
Htr,ms Heat transfer rate between building mass and internal surface
φsol Solar heat gain
φint Internal heat gain

θH,set Heating setpoint
θC,set Cooling setpoint
θext External Temperature
θt−1 Last-hour room temperature

2.3. Dataset Establishment

The entire dataset contains two datasets: measured dataset Dm and simulation dataset
Ds. The measured dataset Dm is a combination of variable inputs matrix x and calibration
target z, including the building design information and corresponding energy data of
10 office buildings collected from Guangdong, China. The specific index is shown in
Table 1.

Variable inputs matrix x = (x1, x2, · · · , xq1), which contains ‘q1’ non-sensitive param-
eters, was determined by collecting building design information. The calibration target
defined as z = (z1, z2, · · · , zn)T has ‘n’ measured energy data and each element in z is one
hour measured heating and cooling energy consumption. According to Table 1, for each
building, there is a 2× 8760 matrix for each building energy record. With 10 office buildings
integrated composing the Dm, the number of ‘n’ in vector z should be n = 10× 2× 8760.
For better understanding, data points in z are illustrated in Figure 4.

The structure of the measured data set Dm is:

Dm = [x, z] =


x1,1 x2,1 · · · xq1,1 z1
x1,2 x2,2 · · · xq1,2 z2

...
...

. . .
...

...
x1,n x2,n · · · xq1,n zn

 (1)

The simulation dataset Ds also has three parts: the variable inputs matrix x , cali-
bration input Θ, and corresponding simulation results y. The x and Θ come from input
variables of the ISO 13790 calculation model, which is divided according to the sensitive
analysis result. The variable inputs x = (x1, x2, · · · , xq1), which include ‘q1’ non-sensitive
parameters, will have determined values for each simulation process. The calibration
input Θ = (Θ1, Θ2, · · · , Θq2), which include ‘q2’ sensitive parameters, will be supposed
to take unknown values that need to be calibrated. The simulation result is defined as
y = (y1, y2, · · · , yN), including ‘N’ times simulation runs (N = 100 in this study). The
mapping relationship between simulation input and result is denoted as η(x, Θ). Thus,
yj = η(xj, Θj). The structure of the simulation dataset Ds is:
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Ds = [x, Θ, y] =



x1,1 · · · xq1,1 Θ1,1,1 · · · Θq2,1,1 y1,1
x1,2 · · · xq1,2 Θ1,2,1 · · · Θq2,2,1 y2,1

...
. . .

...
...

. . .
...

...
x1,n · · · xq1,n Θ1,n,1 · · · Θq2,n,1 yn,1
x1,1 · · · xq1,1 Θ1,1,2 · · · Θq2,1,2 y1,2
x1,2 · · · xq1,2 Θ1,2,2 · · · Θq2,2,2 y2,2

...
. . .

...
...

. . .
...

...
x1,n · · · xq1,n Θ1,n,2 · · · Θq2,n,2 yn,2

...
...

...
x1,1 · · · xq1,1 Θ1,1,N · · · Θq2,1,N y1,N
x1,2 · · · xq1,2 Θ1,2,N · · · Θq2,2,N y2,N

...
. . .

...
...

. . .
...

...
x1,n · · · xq1,n Θ1,n,N · · · Θq2,n,N yn,N



(2)

Therefore, the dataset to be analyzed is a combination of y and z: DT = [yT , zT ].

Figure 4. Illustration of 2 years’ hourly heating and cooling energy consumption per building area
for 10 buildings in Guangdong, China.

2.4. Bayesian Inference

BC [6] represents all unknown inputs as the parameter Θ. The posterior distribution of
Θ is calculated using the measured data, and the uncertainty of Θ is quantified. Then, the
calibrated model can obtain the prediction distribution based on the posterior distribution
of Θ. The preparation of calibration includes: (1) model hypothesis and (2) model analysis.

2.4.1. Model hypothesis

Based on Kennedy and O’Hagen’s formulation, the uncertainty of ISO 13790 can
come from four aspects: parameter uncertainty, model inadequacy, residual variability,
and observation error. The relationship between y = η(x, Θ) and z can be represented as
Equation (3):

zi = ζ(xi) + ei = ρη(xi, Θ) + δ(xi) + ei (3)

where, ζ(xi) is the true process for ith set of variable input x;
ei is the observation error for ith sample;
ρ is the regression parameter of simulation model;
δ(xi) is the model inadequacy function, which is independent of the simulation result
η(xi, Θ).
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2.4.2. Model Analysis

The observation error ei, which considers the residual variability as well, can be
assumed as an independent normal distributionN [0, λe] (λe is an unknown variable which
is one of the hyperparameters that needs to be calculated in the next step). It is not related
to the variable input x, and, further, it is equal for the true process ζ(xi) and simulation
process η(xi, Θ), so that Equation (3) can be simplified as:

ζ(xi) = ρη(xi, Θ) + δ(xi) (4)

As in Equation (3), η(xi, Θ) and δ(xi) are independent in (4).

2.5. Step 1: Sensitive Analysis

Under the ideal situation, all the uncertain parameters in the BEM calculation model
should be calibrated [20]. However, due to the data quantity/quality limitation, it is a
common practice to identify the uncertain parameters using the SA technique [30]. Tian [31]
conducted a comprehensive review of various SA strategies in BEM and stated the input
parameters and their range should be defined based on the research purpose. This study
chose Sobol method [32] for ISO 13790 to figure out which parameters need to be calibrated.
Assuming that all inputs are independently and uniformly distributed within their range,
the ranges of input variables are determined according to the measured building properties.
The model of ISO 13790 is taken as a black box function with a ‘d’ dimensions input vector
XM and a scaled output YM (the subscript M means model).

A total of 19 input variables for the ISO 13790 calculation model and their range are
shown in Table 2. At the first attempt, the SA was conducted with ‘d = 19’. For a more
detailed analysis and further clarification of the influence of each variable, the two most
influential parameters GFA and θt−1 were used to divide the situation. The SA was again
conducted for different building scales (GFA = 10 k, 50 k, 100 k, 150 k (m2)) and different
initial temperatures (θt−1 = 10, 20, 30 (◦C)), respectively. Therefore, the dimensions of input
vector XM is 17 (d = 17) for 2nd SA.

The sensitivity of input parameters was estimated by first-order indices Si and total-
effect index STi, which is calculated by the following equations:

First-order indices:

Si =
VarXi (EX∼i (Y|Xi))

Var(Y)
(5)

Total-effect index:

STi =
EX∼i (Varxi (Y|X∼i))

Var(Y)
(6)

where,
Xi is ith elements in the vector XM;
X∼i is all elements in XM except Xi;
Y is the heating and cooling energy consumption calculated by the input vector XM.

With the (quasi) Monte Carlo method, both indices can be estimated with generated
sample matrix [33]. Two N × d sample matrix XA and XB were firstly developed with
Sobol sequence. Then, ‘d’ N × d sample matrix XABi (with i = 1, 2, · · · , d) were built with
ith column of XB, and XA without ith column. Correspondingly, YA, YB, and YABi were
calculated by running ISO 13790.

For Si calculation, Varxi (EX∼i (Y|Xi)) can be estimated as:

VarXi (EX∼i (Y|Xi)) ≈
1
N

N

∑
j=1

YB j(YABi j −YA j) (7)
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For STi calculation, EX∼i (VarXi (Y|X∼i)) can be estimated as:

EX∼i (VarXi (Y|X∼i)) ≈
1

2N

N

∑
j=1

(YA j −YABi j)
2 (8)

The Si and STi were compared with the threshold, and the parameters exceeding the
threshold were defined as sensitive parameters which need to be calibrated.

2.6. Step 2: Assume Prior Distributions of Calibrated Parameters

Three different informative levels (non-informative, weakly informative, specific infor-
mative) can be used to assume prior distributions. Referring to the available information
in the measured dataset, there is no strong evidence supporting that calibrated parameter
is close to a specific value. Therefore, weakly informative priors (a normal distribution
with a standard deviation of 0.2) are recommended rather than highly constrained specific
informative priors [34]. These prior probability distributions were defined according to
the normalized range [0, 1] of the calibration parameters Θ. The mean value of the prior
distribution is determined by the average value of normalized calibrated variables.

2.7. Step 3: Prior Distribution (Gaussian-Process Emulator)

A Gaussian process based on a multivariate normal vector was adopted to denote
η(xi, Θ) and δ(xi) as two normal distributions. The parameters of the multivariate Gaussian
distribution are mean value vector m and covariance function c.

Adopting the linear model with weak prior distribution, m can be expressed as
mη = hη

T βη and mδ = hT
δ βδ, with p(βη , βδ) ∝ 1 . For brevity, βη and βδ were combined

in location parameters β = (βT
η , βT

δ )
T

In terms of covariance function c, this can be calculated by:

cη,ij =
1

λη
exp{−

q1

∑
k=1

βη,k(xik − xjk)
2 −

q2

∑
k′=1

βη,q1+k′(Θik′ −Θjk′)
2} (9)

and,

cδ,ij =
1

λδ
exp{−

q1

∑
k=1

βδ,k(xik − xjk)
2} (10)

Then, the covariance function of the z can be specified as follows:

cz = cη +

[
cδ + ce 0

0 0

]
, in which ce = Ie/λe (11)

This formulation introduces several unknown hyper-parameters to the calibration and
inference process: the precision hyperparameters (λη and λδ), and two sets of correlation
hyperparameters, (βη and βδ). Then, parameters related to the covariance functions (λη ,
λδ, βη and βδ) were combined and denoted as hyperparameter ϕ.

L(d|Θ, β, λ) ∝ (cz)
1
2 exp{−1

2
(z− µ)T(cz)

−1(z− µ)} (12)

All hyperparameters (ρ, λ and ϕ) are combined as hyperparameters φ. Therefore,
the complete set of parameters comprises the calibration parameter Θ, the location pa-
rameter β and the hyperparameter φ. It is a reasonable expectation that the calibration
parameter Θ is independent of others, so the prior distribution is:

p(Θ, β, φ) = L(d|Θ, β, φ)× p(Θ)p(φ) (13)
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2.8. Step 4: Posterior Distribution (Gibbs Sampling Approach)

To solve the multivariate distribution, the MCMC algorithm was used to compute
the probability density function of the calibration parameters considered. Gibbs sampling
approach is one of the MCMC algorithms. To assess the posterior distribution function
p(d|Θ, β, φ), a high-dimension Gibbs sampling algorithm was applied to obtain the sample
sequence, which will form the Markov chain. As Markov Chain can only move along the
axes in the sample space during the second step, the final sample p(Θ, β, φ) is converged
to a common stationary distribution.

2.9. Step 5: Evaluation and Validation

The performance of the calibrated model needs to be evaluated and validated. The eval-
uation criterion is the matching degree, i.e., accuracy and convergence, between the model
predicted energy consumption and the actual measured energy consumption.

2.9.1. Evaluation of Convergence for Multiple MCMC Chains

Gelman and Rubin’s approach [35] was applied to assessing the convergence of
multiple MCMC chains. The convergence is indicated by an overestimated scale reduction
factor R̂. For ‘m’ sets of ‘n’ simulated observations, the indicator R̂ was calculated using
between sequence variance B/n and the within sequence variance W:

R̂ =
V̂
W

=
m + 1

m
σ̂2
+

W
− n− 1

mn
(14)

where,

σ̂2
+ =

n− 1
n

W +
B
n

(15)

When the R̂ is close to 1, the potential for variance σ̂2
+ to be further decreased is limited,

and each of the ‘m ’ sets of ‘n’ simulated observations are close to the target distribution.
For convergence, R̂ should be approximately 1± 0.1.

2.9.2. Validation of Prediction Accuracy

The performance of the model was evaluated by using mean bias error (MBE), coeffi-
cient of variation of root mean square error (CV(RMSE)), and mean absolute percentage
error (MAPE). A total of 25% of samples in the measured dataset Dm were originally
extracted as the testing dataset and used for validation.

MBE = ∑(Ys−Ym)
∑ Ym , is the sum of deviation and reflects the overall over-estimation/

under-estimation of the model.
CV(RMSE) =

√
∑(Ys−Ym)2

∑ Ym , was determined by the RMSE, which is not affected by
the sign of the deviation. It reflects the variability in agreement between the simulated
results and measured values.

MAPE = 1
n ×∑

∣∣∣Ys−Ym

Ym

∣∣∣ reflects the percentage of error for each prediction.
Model performance was evaluated on different time scales (hourly, monthly). For ev-

ery signal time scale, a dedicated statistical threshold was set in line with the ASHRAE
guideline [36], details are shown in Table 4.

Table 4. Threshold limits of statistical metrics for model evaluation [36].

Statistical Metrics Hourly Prediction Monthly Prediction

MBE (%) ±10 ±5
CV(RMSE) (%) 30 15
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3. Results
3.1. Result of Step 1: Input Variable and Calibration Variable

For the first attempt, SA on 19 input variables in the calculation model (the number
of the variables was same as the series shown in Table 2) was conducted with the Sobol
method, and the results are shown in Figure 5. It can be seen from Figure 5 that the Si
and STi of variable 1 (GFA) and variable 14 (θt−1) are too large, leading to difficulties in
analyzing the sensitivity of the remaining 17 variables. Therefore, GFA and θt−1 were used
to make a reasonable division of the situation and conduct a further SA in detail.

For the remaining 17 parameters shown in Table 2, SA was conducted under 12 cases
with different building scales (GFA = 10 k, 50 k, 100 k, 150 k (m2)) and different initial
temperatures (θt−1 = 10, 20, 30 (◦C)); the results (Si, and STi) are shown in Figure 6.

Figure 5. Sensitive analysis results for input variables in ISO 13790 calculation model. (Correspon-
dence between numbers and variables can be seen in Table 2—‘Num. in 1st SA’).

Figure 6. Sensitive analysis result for 17 parameters with different GFA and θt−1. (Correspondence
between numbers and variables can be seen in Table 2—‘Num. in 2nd SA’).
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This paper defines the threshold as 0.05 (the dashed line in the figure), and the
parameters exceeding the threshold are defined as sensitive parameters. As the GFA of
the building can always be achieved as true value, it is not considered as a calibrated
variable. Therefore, Last-hour room temperature θt−1 and parameter 1 (L), 2 (W), 4 (WWR),
10 (DHI), 11 (DNI), 12 (θext), 13 (θH,set), 14 (θC,set), 16 (HourNum) were, together, defined as
Θ = (Θ1, Θ2, · · · , Θ10) for BC. According to the results of SA, 19 input parameters of ISO
13790 were redivided into input variable x (with q1 = 9) and calibration variable Θ (with
q2 = 10). Detailed information is displayed in Table 5a and Table 5b, respectively.

Table 5. Parameters of input variable x and calibration variable Θ.

(a) Input variable x

Parameter Meaning

x1 Gross floor area
x2 Day of year
x3 Story height
x4 Exterior window U-value
x5 Exterior wall U-value
x6 Roof wall U-value
x7 Orientation
x8 Mechanical ventilation
x9 Internal heat gain

(b) Calibration variable Θ

Parameter Meaning

Θ1 Initial temperature
Θ2 Hour of day
Θ3 External temperature
Θ4 Diffuse horizontal irradiance
Θ5 Direct normal irradiance
Θ6 Building length
Θ7 Building width
Θ8 Average window–wall ratio
Θ9 Heating setpoint
Θ10 Cooling setpoint

3.2. Result of Step 2: Priors Distribution of Model Calibrated Parameters

The prior distribution functions of calibrated parameters were assumed at the weakly
informative level (a normal distribution with a standard deviation of 0.2). These prior
probability distributions were defined according to the normalized range [0, 1] of the
calibration parameters Θ. The mean value of the prior distribution was determined by the
average value of normalized calibrated variables. The detailed information is shown in
Table 6.

Table 6. Selected prior probability distributions for calibrated parameters.

Parameter Meaning Prior Probability Distribution

Θ1 Initial Temperature N(0.412, 0.2)
Θ2 Hour of day U(0, 1)
Θ3 External Temperature N(0.553, 0.2)
Θ4 Diffuse horizontal irradiance N(0.144, 0.2)
Θ5 Direct Normal Irradiance N(0.085, 0.2)
Θ6 Length N(0.5, 0.2)
Θ7 Width N(0.5, 0.2)
Θ8 Average window–wall ratio N(0.335, 0.2)
Θ9 Heating setpoint N(0.5, 0.2)
Θ10 Cooling setpoint N(0.5, 0.2)
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3.3. Result of Step 3: Prior Distributions of Hyperparameters in Gaussian Process Emulator

The hyperparameters of the GP model include: βδ,1, βδ,2, · · · , βδ,q1
; βη,1, βη,2, · · · , βη,q1

;
βη,q1+1, βη,q1+2, · · · , βη,q1+q2

; λη ; λδ; λe. The detailed prior distribution assumptions for
each hyperparameter are given in Table 7.

Table 7. Selected prior probability distributions for hyperparameters of the GP model.

Parameter Meaning Prior Probability Distribution

βδ Correlation strength parameter for model inadequacy B(1, 0.4)
βη Correlation strength parameter for model emulator B(1, 0.5)
λη Precision parameter for model inadequacy Γ(10, 0.3)
λδ Precision parameter for model emulator Γ(10, 10)
λe Precision parameter for observation error Γ(10, 0.03)

3.4. Result of Step 4: Posterior Distributions of Model Calibrated Parameters

Figure 7 shows the prior and posterior distributions of the 10 calibrate variables. It can
be seen that using the weakly informative prior distribution can initially determine the form
of the posterior distribution. Meanwhile, the shift in the posterior distribution from the
prior distribution indicates that the measured data can affect the posterior distribution. The
good combination of information from the prior distribution and measured data enables
the prior distribution to exclude unreasonable parameter values, but is not strong enough
to exclude meaningful values in the measured dataset.

Figure 7. The prior and posterior distributions of 10 calibration parameters.

3.5. Result of Step 5: Validation of Model Accuracy and Convergence

The Gelman–Rubin statistic R̂ was used to check for adequate convergence, and its
value should be approximately 1 in this model. R̂ values are within 1 ± 0.1 for all calibration
parameters and hyperparameters of the GP model, which means every parameter in the
model is well-converged. Regarding model accuracy validation, the training-set and testing-
set results are shown in Table 8. According to the threshold set by ASHRAE Guideline
14, the model can be considered well-calibrated and satisfies the accuracy requirement.
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Furthermore, low CV(RMSE) and MBE indicate good consistency between calibration
prediction and measurement results.

Table 8. Comparison of model performance between before calibration and calibrated model.

Metrics Training Dataset Testing Dataset
Monthly Hourly Monthly Hourly

MAPE (%) * 0.26 - 0.18 -
MBE (%) 0.00 0.00 0.03 0.03

CV(RMSE) (%) 0.59 19.35 0.79 23.50
* MAPE metrics cannot be applied for hourly prediction data due to the denominator being 0 for several samples.

4. Discussion and Case Study

To demonstrate the performance of the calibrated model, an additional office-building
historical energy data was used as a new data set (not included in the previous training
set or test set) to carry out a case study. It is an office building with a GFA of 63,960 m2.
The specific properties of this building are shown in Table 9.

Table 9. The properties of the case study office building.

Catalogue Properties

GFA 63,960 m2

Exterior wall material ‘Brick’
Building thermal insulation system ‘Internal Insulation’
Glazing material ‘Clear’
Window framework ’Non-insulated metal’
WWR 0.3
Heating system ‘Radiator’
Cooling system ‘Centralized air-conditioning system’

The overall performance of the calibrated model is shown in Table 10. As can be seen
from the table, the monthly CV(RMSE) is 0.73%, and the hourly CV(RMSE) is 20.97%, which
is obviously improved from 33.13% and 153.98% in the uncalibrated model. Furthermore,
it satisfy the ASHRAE Guideline 14 accuracy requirements.

Table 10. Comparison of model performance between before calibration and calibrated model.

Metrics
Monthly prediction Hourly Prediction

Uncalibrated Calibrated Threshold Uncalibrated Calibrated Threshold

MAPE (%) * 30.34 0.64 - - -
MBE (%) −7.20 −0.03 ±5 −7.20 −0.03 ±10

CV(RMSE) (%) 33.13 0.73 15 153.98 20.97 30

* MAPE metrics cannot be applied for hourly prediction data due to the denominator being 0 for several samples.

Figure 8 compares monthly prediction before and after calibration with the measured
data, which can provide a basic understanding of calibration performance. Figure 9
demonstrates the corresponding monthly absolute percentage error (APE) for a more
detailed illustration. As shown in Table 10, the MAPE for monthly prediction of the
calibrated model is 0.64%, which is calibrated from MAPE 30.34% in the uncalibrated
model. In addition, from Figure 9, it can be seen that all APE is within 2.5%, which means
the APE performance of the model is stable for every month. It is worth noting that the
prediction error for February is slightly higher than that of other months, which can also be
seen from Figure 10. It is speculated that the sample number of mixed cooling and heating
months is not enough in the sample data, so the calibrated model cannot make a perfectly
accurate prediction.
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Figure 8. Comparison of predicted result and measured data.

Figure 9. Monthly absolute percentage error.
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For hourly prediction, the annual average hourly prediction CV(RMSE) is 20.97%,
and MBE is −0.03%, which are in line with ASHRAE Guideline 14. The detailed hourly
prediction performance in each month is shown in Figure 10.

Figure 10. Hourly prediction performance over 12 months.
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In Figure 10, the hourly prediction CV(RMSE) for all typical days, except 15 February
and 15 October, are less than 30%.

The weaker performance in February and October may be attributed to the fast
switching of cooling and heating conditions in these two months. The insufficient sample
in the dataset leads to the model’s simulation accuracy of mixed heating and cooling
months being slightly lower than that of purely heating or cooling months.

Figure 11 shows the hourly prediction performance of the calibrated model on design
day. In this case study, the winter design day is 21 January, and the summer design day
is 21 July. It can be seen from the figure that the calibrated model is very successful in
predicting the energy consumption of the summer design day. It successfully corrected
the daily maximum and minimum energy consumption and achieved high accuracy with
a CV(RMSE) of 5.55%. The prediction of the winter design day also has a large improve-
ment compared with the uncalibrated model, and the overall trend is correct. Although
the biggest difference between prediction and measurement is up to 52.39% (at 14:00),
the average CV(RMSE) is still within 30% of the day.

Figure 11. Model performance on design day.

Based on the result of the case study, the findings can be summarized as follows: Data
set with building energy consumption data combined with building geometry information
and material information is useful for BC calibrated prediction model. The calibrated quasi-
dynamic simulation method can predict the energy consumption of other buildings not in
the training set. The effect of calibration is obvious: it greatly improves the performance
of the model for the three metrics (MAPE, MBE, and CV(RMSE)). Meanwhile, both the
CV(RMSE) and MBE of the model satisfied the requirement of ASHRAE Guideline 14.

5. Conclusions

This paper provides a well-calibrated office-building prediction BEM using the BC
method based on the established historical energy dataset, including geometry information,
in Guangdong, China. It demonstrates the process of applying the BC to ISO 13790 based
on a comprehensive dataset of real energy data from office buildings in Guangdong, China.
Based on the result of the case study, this paper also shows the prediction result is in-line
with the requirement of the hourly prediction model in ASHRAE Guideline 14.

Step-by-step results and key findings are listed as follows:
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1. The Sobol method was used as the SA method. With the threshold of 0.05, 10 of
the 19 input values in the ISO 13790 energy calculation method were determined as
calibration variables.

2. With less confidence in measured building geometry and material data, the prior
probability hypothesis can take a weakly informative level. Taking the weakly infor-
mative level prior to distribution can lead to a good combination of information from
the prior distribution and measured data, resulting in a proper posterior probability
density function with accurate prediction results.

3. A calibrated building energy model was established that meets the accuracy thresholds
set by ASHRAE [36], with hourly prediction CV(RMSE) as 20.97% and MBE as−0.03%,
which is less than 30% and 10%.

4. The Gelman–Rubin statistic R̂ was used to evaluate the model convergence and check
the posterior distribution mixing and gathered on a common stationary distribution.

With the previously mentioned findings, the conclusion can be stated. The quasi-
dynamic simulation method can achieve a similar accuracy level as the dynamic simulation
method after BC. The generalization ability of the calibrated model can be improved with a
comprehensive database, including geometry information and material information. The
new model can be applied to the office buildings not included in the training set and can
satisfy the prediction requirement set by ASHRAE. With this improvement, this calibrated
prediction model can also be applied to improve the quality and integrity of the existing
building energy database.
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Nomenclature

Symbols
Θ Calibration input matrix
x Variable inputs matrix
z Calibration target vector
φ Heat flow rate/thermal power
θ Temperature
H Heat transfer coefficients
Subscripts
M Model
C Cooling
H Heating
em Between external air and building mass
ext External
int Internal is between internal air and building surface
ms Between building mass and building surface
set Set point
sol Solar
t−1 Last hour
tr Transmission
ve Ventilation
w Through the window
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Superscripts
m Measured
s Simulation
Abbreviations
BC Bayesian calibration
BEM Building energy model
CV(RMSE) Coefficient of variation of root mean square error
GP Gaussian process
MAPE Mean absolute percentage error
MBE Mean bias error
MCMC Markov chain Monte Carlo
SA Sensitivity analysis
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