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Abstract: Current studies lack probabilistic evaluations on the performance of fault-crossing bridges.
This paper conducts seismic fragility analyses to evaluate the fragility of cable-stayed bridges with
the effects of fault ruptures. Synthetic across-fault ground motions are generated using existing
simulation methods for the low-frequency pulses and high-frequency residuals. Incremental dynamic
analysis is utilized to generate the seismic responses of the bridge. The optimal intensity measure (IM)
for a cable-stayed bridge that crosses a fault is identified based on the coefficient of determination
(R2). Root-mean-square velocity (Vrms) is found to be the best IM for cable-stayed bridges traversed
by fault ruptures, instead of the commonly used ones such as peak ground acceleration or velocity
(PGA or PGV). Fragility curves for the critical components of fault-crossing cable-stayed bridges,
including pylons, cables, and bearings, are developed using the IM of Vrms, and are subsequently
compared with those for the cable-stayed bridge near faults. Results show that the bearings on
transition piers are the most vulnerable component for fault-crossing cable-stayed bridges because
of the rotation of their girder. Compared to cable-stayed bridges near faults, pylons and bearings
are more vulnerable in the transverse direction for cable-stayed bridges crossing faults, whereas the
vulnerability of cables is comparable.

Keywords: cable-stayed bridge; crossing faults; synthetic ground motions; intensity measure;
fragility analysis

1. Introduction

The large velocity pulse and large ground displacement in near-fault regions usually
lead to significant damage to bridges traversed by fault ruptures. These two devastating
effects, known as “forward directivity” and “fling-step”, have been shown in previous
earthquakes [1,2]. In order to avoid bridges suffering from undesirable calamities, many
seismic design codes recommend preventing the construction of bridges that traverse
crossing faults. However, it is sometimes inevitable to construct fault-crossing bridges [2,3].
As a result, it is crucial to study the seismic behavior of bridges crossing fault ruptures.

Although considerable research has been conducted on the seismic performance of
fault-crossing girder bridges [3–11], there is limited research on evaluating the responses
of fault-crossing long-span bridges [12,13]. Zeng et al. [14] studied the seismic responses
of a cable-stayed bridge, and they found that the magnitude of the permanent ground
displacement can significantly affect the bridge’s responses. Gu et al. [15] evaluated the
seismic responses of cable-stayed bridges that cross faults. However, most of the previous
studies on fault-crossing bridges utilize a deterministic method with a few ground motions
as the input, and thus cannot account for the uncertainties of both bridges and earthquakes.
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A major challenge that limits scholars from probabilistic analyses on fault-crossing
bridges is the lack of actual motions recorded on both sides of the fault rupture. Researchers
have made great efforts to address this issue. Generally, the approaches to obtaining ground
motions with distinct characteristics of pulse-like earthquakes can be divided into two
categories: (1) performing baseline corrections to raw records and (2) generating ground
motions using numerical models.

For the first approach, the main objective is to preserve the permanent ground static
offset from actual records. Wu et al. [16] developed an improved baseline correction method
by modifying the models proposed by Iwan [17] and Boore [18]. The improved method is
applied to the Chichi and Chengkung earthquake data to compute the coseismic displace-
ments, and the results show favorable agreement with GPS measurements. Lin et al. [19]
proposed a new baseline correction scheme to obtain ground motions with target final
displacements. By considering six simulated fling-step ground motions, Zhang et al. [11]
studied the seismic behavior of girder bridges crossing faults.

For the second approach, the main objective is to build an artificial across-fault ground
motion with directivity or fling pulse. Various researchers have proposed low-frequency
pulse models. Menun [20] developed an analytical model defined by five parameters
for ground motions in the fault-normal (FN) direction. Mavroeidis et al. [21] introduced
a mathematical model and calibrated that the model can capture the characteristics of
near-fault motions. Makris et al. [22] demonstrated that a one-cosine acceleration pulse
causes the velocity pulse. Hoseini Vaez et al. [23] presented a new model to simulate
the velocity pulses. Kamai et al. [24] simulated the velocity pulses with a half-period
sine wave. Burks et al. [25] defined the fault-parallel (FP) fling by a ramp function and
derived a predictive model for the parameters. Yadav et al. [26] modeled the fling-step
velocity pulse using a function related to the pulse’s amplitude, duration, and location.
Hamidid et al. [27] used the Green function to simulate the ground motions. In particular,
the model proposed by Mavroeidis et al. [21] successfully simulates the FN and FP pulses
of the ground motion across a strike-slip fault [28]. In addition to the low-frequency
pulse models, the specific barrier model [29] and stochastic model [30–34] are proposed to
represent the high-frequency content of the motions.

Since various numerical models have been developed so far, it is possible to investigate
fault-crossing bridges with probabilistic seismic-risk assessment approaches. Developing
structure fragility curves is one practical and effective tool for probabilistic seismic-risk
assessments. In the past two decades, much research has been carried out to evaluate
the vulnerability of bridges. However, most previous studies focused on girder bridges.
Pang et al. [35] performed a vulnerability analysis of cable-stayed bridges considering vari-
ous uncertainties. Zhong et al. [13,36–38] studied cable-stayed bridges’ fragility in selecting
optimal intensity measures and the effect of spatially distributed motions. Wu et al. [39]
conducted the fragility of a concrete cable-stayed bridge subjected to far-field motions.
Wang et al. [40] utilized the vulnerability to estimate the effect of an innovative bearing on
the performance of a cable-stayed bridge subjected to ground motions with velocity pulses.
The fragility curves are established using the incremental dynamic analyses (IDA) method.
Li et al. [41] assessed the fragility of a cable-stayed bridge adopting synthetic offshore
multi-support ground motions. Wei et al. [42] conducted seismic fragility analysis of a
multipylon cable-stayed bridge with super-high piers. Nevertheless, fragility assessments
for fault-crossing cable-stayed bridges are still insufficient.

This study aims to conduct the fragility assessment of cable-stayed bridge crossing
faults. First, using the existing mathematical models, fling-step motions are simulated
by superimposing the long-period pulses and their high-frequency residuals. Then, a
numerical model is constructed with the OpenSeesPy platform [43]. The synthetic ground
motions are adopted as inputs to perform nonlinear analysis. Subsequently, the appropriate
intensity measure is selected for cable-stayed bridges crossing faults, and the fragility
curves are developed. Moreover, the vulnerability of cable-stayed bridges subjected to
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fling-step and velocity pulse motions are compared. Finally, several conclusions of this
study are presented.

2. Seismic Fragility Methodology

Seismic fragility is a conditional probability that gives a bridge’s likelihood to meet or
exceed a certain level of damage for a given intensity measure (IM) [44]. Assuming both
the demand (D) and capacity (C) follow lognormal distributions, the fragility function can
be represented as follows:

P = P[D ≥ C |IM ]= Φ

 ln(D)− ln(C)√
β2

D+β2
C

 (1)

where D and C are the mean values of demand and capacity, respectively; βD and βC
are the logarithmic standard deviations, and Φ[·] is the standard normal cumulative
distribution function.

To develop the fragility curves, it is necessary to obtain the demand (D) beforehand.
D is estimated using a probabilistic seismic-demand model (PSDM) in fragility analysis.
PSDM expresses the relationship between the demand D and the IM. Conventionally, D
and IM are assumed to exhibit a linear regression relationship in the logarithmic space as:

ln(D)= a ln(IM)+b (2)

where a and b are regression coefficients. Alternatively, Pan et al. [45] apply a quadratic
regression to fit the data. Zhong et al. [13] used quadratic regression to obtain the PSDM
for a cable-stayed bridge. The quadratic PSDM takes the form:

ln(D)= a ln2(IM)+b ln(IM)+c (3)

where a, b, and c are the regression coefficients. Thus, once the damage state and component
capacity SC are determined, the fragility curve can be derived by using Equation (1).

3. Simulation of the Ground Motions

This study generates synthetic across-fault ground motions by combining the simu-
lated coherent (long-period) and incoherent (high-frequency) components. Specifically,
the high-frequency components in horizontal directions (FN and FP directions) are simu-
lated with a stochastic model proposed by Dabaghi et al. [32–34], whereas the long-period
components are simulated according to the pulse model proposed by Mavroeidis et al. [21]

3.1. Ground-Motion Models

Dabaghi et al. [32] pointed out that the residual of a velocity pulse motion after removal
of the pulse is generally a broadband time series. A model proposed by Rezaeian et al. [30,31]
and adopted by Dabaghi et al. [32–34] can be used to describe these broadband motions. The
expression of this MFW model is:

aMFW= q(t)
{

1
σh(t)

∫ t

−∞
h[t − τ, λ(τ)]w(τ)dτ

}
(4)

where w(t) is a white-noise process, σh(t) is the standard deviation of the process defined
by the integral, q(t) is a time-modulating function that characterizes the root-mean-square
of the acceleration process, and h[t − τ, λ(τ)] is the unit-impulse response function (IRF) of
a linear filter with the time-varying parameter λ(τ) = [wf(τ), ξf(τ)], given as follows:

h[t− τ, λ(τ)] =

 ωf(τ)√
1−ξ2

f (τ)
e−ξf(ø)ωf(τ)(t−τ) sin

[
ωf(τ)

√
1− ξ2

f (τ)(t− τ)

]
, τ ≤ t

0, elsewhere
(5)
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where τ is the time of the pulse, ξf(τ) is the filter damping that represents the bandwidth of
the acceleration process (regarded as a constant), and ωf(τ) is the filter frequency:

ωf (τ)= 2π
[

fmid+f ′(τ − t mid
)]

(6)

where f mid is the filter frequency at the middle of the motion tmid, and f’ is the frequency
change rate with time.

For the modulating function q(t), a four-parameter piecewise function is presented as:

q(t) =


0, t ≤ t0,q

c
(

t−t0,q
tmax,q−t0,q

)ff
, t0,q < t ≤ tmax,q

ce[−β(t−tmax,q)], tmax,q < t

(7)

where t0,q is the starting time, tmax,q is the time that the modulating function arrives at its
peak, α is the order of the polynomial at the start of the function, β is the decaying rate
of an exponential function in the end phase of the function, and c controls the amplitude
of the modulating function. These four parameters (tmax,q, α, β, c) are related to the Arias
intensity of the motion.

The model put forward by Mavroeidis et al. [21] (M03 model) has been widely em-
ployed for generating the long-period pulse of near-fault motions. Currently, when simu-
lating the fling of the motion, the M03 model is adopted with its original form as follows:

vpul(t) =

{Vp
2

[
1 + cos

(
2π

γTp
(t− t0)

)]
cos
[

2π
Tp
(t− t0)+υ

]
, t0 − γ

2 Tp< t ≤ t0 +
γ
2 Tp

0, otherwise
(8)

where Vp is the pulse magnitude, Tp is the period, γ is a variable controlling the oscillation
number of a pulse, ν is the phase angle, and t0 is the epoch of the peak of the envelope.

For the simulation of the velocity pulse, the form of the MP model proposed by
Dabaghi et al. [32] is adopted:

vpul(t) =

{{Vp
2 cos

[
2π
(

t−tmax,p
Tp

)
+υ
]
− Dr

γTp

}{
1 + cos

[
2π
γ

(
t−tmax,p

Tp

)]}
, tmax,p − γ

2 Tp < t ≤ tmax,p + γ
2 Tp

0, elsewhere
(9)

where t0 in Equation (8) is replaced by tmax,p, and Dr is a permanent displacement repre-

sented with Dr= VpTp
sin(ν+γπ)− sin(ν−γπ)

4π(1−γ 2)
.

Additionally, the FN component of the simulated motions is checked, adopting the
criteria put forward by Baker [46] to ensure that it contains a velocity pulse. The three
criteria can be found in [46] and are given here for convenience:

(1) The equation of the pulse indicator (larger than 0.85) is given as:

Pulse indicator =
1

1 + e−23.3+14.6(PGV ratio)+20.5(energy ratio)

where the PGV ratio is defined as the PGV of the residual record divided by the
original record’s PGV and the energy ratio with a similar definition.

(2) The pulse occurs at the early stage of the motion, as indicated by the time when the
original record reaches 20% of its total cumulative squared velocity (CSV) and is
greater than the time at which the pulse reaches 10% of its CSV.

(3) The PGV of the motion is larger than 30 cm/s.

3.2. Determination of the Input Parameters of the Models

Input parameters of the models for high-frequency components and the forward-
directivity pulse are determined through linear predictive equations developed by
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Dabaghi et al. [32–34], according to the source and site characteristics. Specifically, seven
parameters are selected for the predictive equations, including the type of faulting (F),
the moment magnitude (M), the depth to the top of the rupture plane (ZTOR), the closest
distance from the site to the fault rupture (RRUP), the shear-wave velocity of the top 30 m of
soil at the site (Vs30), and directivity parameters s (or d) and θ (or ϕ). The schematic of the
directivity parameters is plotted in Figure 1. Detailed procedures for the regression of these
model parameters can be found in [32–34].
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Figure 1. Directivity parameters [47].

Input parameters of the fling model are determined following the guidelines rec-
ommended by Yang et al. [28]. It is noteworthy that choosing equations for estimating
the parameters for the fling model is not unique. In this study, the predictive equations
proposed by Abrahamson [48] are selected.

Table 1 lists the predictive equations for estimating the input parameters.

Table 1. Predictive equations for the input parameters.

Model Predictive Equation Reference

MFW model α, β, c, tmax,q, f mid, f’ = F(F, M, ZTOR, RRUP, Vs30, s, θ)
t0,q = 0 [32–34]

Directivity pulse model Vp, Tp, γ, ν, tmax,p = F(F, M, ZTOR, RRUP, Vs30, s, θ) [32–34]

Fling model

Vp = 2Dsite/[Tp/(2 + ε)], ε ∈ (0,0.1]
log(Tp) = log(2 + ε) − 3.00 + 0.50M, ε ∈ (0,0.1]

log(Dsite)avg = −1.70 + 0.50M,
(Dsite)max ≈ (Dsite)avg/λ, λ ∈ [0.2,0.8]

γ = 1 + ε, ε ∈ (0,0.1]
ν ≈ 0 or π

t0 ≥ γTp/2

[28]

(Dsite)max is used to estimate Vp.

4. Vulnerability Analysis of a Fault-Crossing Bridge
4.1. Depiction of the Analysis Model

A typical cable-stayed bridge is selected as the case study bridge. The bridge has a
length of 174 + 352 + 174 m. There are 168 stay cables, whose tensile strength is 1670 MPa,
with a fan-typed configuration. The cable force is optimized based on the method proposed
by Guo et al. [49].
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Wind-resistance bearings are arranged between the girder and pylons in the transverse
direction. Note that the dampers, restrainers, and transverse retainers are not considered in
this study.

The numerical model of this case bridge is constructed with the OpenSeesPy plat-
form [43], as illustrated in Figure 2. The dimension of the critical components is given in
Figure 3. The elastic beam-column element is adopted for the main girder, cap beams, and
cross girders, as they are assumed to remain elastic. The plasticity fiber model is used for
the sections of pylons and piers. Fiber sections of the tower are presented in Figure 4. The
P-delta effect of the pylons is considered. The truss element is used to model the cables.
The pile foundation is simulated with three translational and three rotational springs. For
the spherical bearing, the no-tension uniaxial material is adopted to simulate the vertical
behavior of the bearings. The elastic no-tension material is used to model its axial stiffness
for the wind-resistance bearing. The damping ratio of the example bridge is 3%. The first
five natural vibration periods of the model are 10.999, 4.537, 3.092, 2.940, and 1.913 s. The
first three modes are longitudinal floating vibration, vertical vibration, and transverse
floating vibration, respectively.
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Material uncertainties are considered for the numerical model of the bridge. In addition,
the uncertainty of the actual initial cable forces due to the construction error is also considered.
In this study, the compressive strength of the concrete (f c), yield strength of the rebar (f y),
initial stiffness of the rebar (E), the ratio between the post-yield and initial stiffness, and the
ratio between actual and designed initial cable forces (R) are modeled as random variables.
Table 2 summarizes the statistical information of these uncertainty parameters.

Table 2. Uncertainty parameters of the bridge and their probability distribution.

Variable Distribution * Reference

f c,pylon Normal (C50, µ = 32.35 MPa, cov = 0.18) [50]
f c,pier Normal (C40, µ = 26.75 MPa, cov = 0.18) [50]

f y Lognormal (HRB400, µ = 400 MPa, cov = 0.08) [51]
E Lognormal (µ = 2 × 108 MPa, cov = 0.033) [52]
b Lognormal (µ = 0.005, cov = 0.2) [35,52]
R Uniform (µ = 1, σ = 0.1) /

* µ denotes the mean; cov denotes the coefficient of variation; σ denotes the standard deviation.

4.2. Ground Motions

It is pointed out that the model developed by Dabaghi et al. should be used within
the boundaries of the database, which are 6 ≤M ≤ 7.5, 5 < RRUP ≤ 25 km, and 400 < Vs30 <
1000 m/s [32]. Therefore, 25 ground-motion pairs (in FN and FP directions) are simulated
with their input parameters randomly generated within the corresponding ranges. It is
worth noting that for strike-slip faults, RRUP, s, and θ are correlated with RRUP = stanθ if
a straight line can represent the rupture and if the site is located alongside the rupture,
as shown in Figure 1. In the present study, only the case of vertical strike-slip faults
with surface rupture is considered, and the site is assumed to be perpendicular to the
epicenter. As a result, F, ZTOR, s, and θ are constrained as 0, 0, 0, and 90◦, respectively,
in the simulation. Models of the low-frequency pulses and high-frequency residuals are
programmed in Python language. Figure 5 presents the time histories of one of the synthetic
motions. The “forward-directivity” pulse in the FN direction and the “fling-step” pulse in
the FP direction can be successfully simulated. The random parameters of the 25 synthetic
ground-motion pairs are listed in Table 3.
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Table 3. Input parameters of the synthetic ground motions.

GM M RRUP (km) Vs30 (m/s) GM M RRUP (km) Vs30 (m/s)

1 6 10 702 14 7.3 5.1 873
2 7 18.9 446 15 7.2 6.5 508
3 7.1 5 752 16 7.2 8.2 524
4 6.7 15.1 642 17 7 7.9 691
5 7.3 7.8 993 18 6.7 9 651
6 7.1 5.8 954 19 7.5 23.4 445
7 6.3 14.2 691 20 6 15.9 588
8 6.9 8.2 846 21 6.7 10.8 630
9 7.1 20.3 882 22 7.1 8.2 675
10 6.1 7 542 23 6.3 14.3 947
11 7.3 7.2 622 24 6.9 5.8 455
12 6.2 12.4 905 25 6.9 15.1 587
13 6.8 5.9 903

F = 0 for strike-slip faults; ZTOR = 0; s = 0; θ = 90◦.

The synthetic motion pairs are then scaled using a factor ranging from 0.5 to 3 with
an increment of 0.5. Thus, 150 ground-motion pairs are generated for the nonlinear time-
history analysis. Figure 6 presents the spectra displacement of the input ground motions
in FN and FP directions. It shows that the component in the FP direction has larger
displacements than that in the FN direction in the long-period range.

According to previous studies, cable-stayed bridges are suggested to cross the fault
perpendicularly [15]. Therefore, in this study, the fault rupture should cross the bridge in
its middle span with an angle of 90◦. The time-history series applies to the bridge supports
in the FN and FP directions. Because this study focuses on the vertical strike-slip scenario,
the ground dislocation is assumed to distribute equally at the two sides of the fault. As
a result, the FN ground motions are the same on each fault side, whereas the FP ground
motions have equal amplitudes but with reversed polarity [53] (as shown in Figure 7). To
exclude the interference of the effect of vertical ground motions and mainly consider the
effect of the FN and FP components, the vertical motions are not considered in this study.
The wave passage effect is not considered as well.
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4.3. Optimal IM Determination and PSDMs Establishment

The selection of optimal IMs is essential for establishing reliable PSDMs. In this study,
12 IM candidates are examined to identify the optimal one for the fault-crossing cable-
stayed bridge. Table 4 gives the definitions of the studied IMs. The IMs are divided into
three groups: acceleration-related, velocity-related, and displacement-related. Note that
only structure-independent IMs are used in the current study.

Table 4. Description of the considered IMs.

Type IM Definition Reference

Acceleration-related

PGA Peak ground acceleration
Max|a(t)|, a(t) is the acceleration time history /

SMA Sustained maximum acceleration
third largest peak in a(t) [54]

CAV
Cumulative absolute velocity∫ ttot

0 |a(t)|dt, ttot is the total duration
[55]

Ia
Arias intensity
π
2g

∫ ttot
0 a2(t)dt,

[56]

Arms
Root-mean-square of acceleration√

1
ttot

∫ ttot
0 a2(t)dt

/

Velocity-related

PGV Peak ground velocity
Max|v(t)|, v(t) is the velocity–time history /

SMV Sustained maximum acceleration
third largest peak in v(t) [54]

CAD
Cumulative absolute displacement∫ ttot
0 |v(t)|dt, ttot is the total duration

[55]

Vrms
Root-mean-square of velocity√

1
ttot

∫ ttot
0 v2(t)dt

/

Iv
Velocity intensity

π
2g

∫ ttot
0 v2(t)dt

[57]

Displacement-related
PGD Peak ground displacement

Max|d(t)|, d(t) is the displacement–time history /

Drms
Root-mean-square of displacement√

1
ttot

∫ ttot
0 d2(t)dt

/
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The geometric mean of the IMs for the FN and FP input ground motions is adopted
here to represent the IM of a motion pair:

IM =
√

IMFN × IMFP (10)

During the analyses, responses of the following components (engineering demand
parameters, EDPs) are recorded: (1) curvature of Section 1, ϕS1; (2) curvature of Section 3,
ϕS3; (3) bearing displacement between girder and pier σb,pier; (4) bearing displacement
between girder and pylon σb,pylon; (5) force of the longest backstay cable (N121) Fbc; and
(6) force of the longest forestay cable (N221) Ffc. The upper sides of the pylon are less
vulnerable than the lower sides, and the pier has a small effect on the seismic responses of
the bridge compared to the pylon [38], so their responses are not considered in this study.
Quadratic polynomials are adopted to construct the PSDMs.

Because the regression model is quadratic, the criteria of an optimal IM for linear
regressions (practically, efficiency, proficiency, and sufficiency [57]) are not appropriate here.
In this study, the determination coefficient (R2) of the regression is used to judge whether
an IM is optimal or not. The definition of R2 is given as follows:

R2 =
∑(ŷ− y)2

∑(y− y)2 = 1− ∑(y− ŷ)2

∑(y− y)2 (11)

where y is the sample value, ŷ is the regression value, and ȳ is the mean of the sample. The
larger R2, the better the regression is.

Figure 8 plots the determination coefficients for the regressions in the case of each IM
candidate. As shown in Figure 8, the largest R2 varies for different EDPs. Additionally, R2

can be significantly different for an EDP in different directions. For example, PGV performs
well in predicting the transverse bearing displacements, pylon responses, and the backstay
cable’s force but may not provide reliable predictions on bearing displacements in the
longitudinal direction and the force of forestay cables. Therefore, it is difficult to identify
the optimal IM from R2 directly. The multicriteria decision-making (MCDM) method
is adopted to tackle this issue. In each MCD, there are several alternatives and criteria.
The alternative with the highest score is selected as the best one and is placed in the first
rank [58]. In this research, different IMs are considered alternatives, and the corresponding
determination coefficients R2 for different components are chosen as criteria.
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the type of the IMs (white: acceleration-related; yellow: velocity-related; gray: displacement-related).

The weights of different components are assigned based on 10-point scale qualitative
evaluations, as shown in Table 5. Moreover, the weights of a component in different
directions are considered to be the same for simplicity. Compared with the bearings, cables
and pylons are considered more critical because their failure would cause bridge collapse.
As a result, the weights of pylons and cables are both assigned as 10, whereas the weights
of bearings are assigned 3, 5, or 7.
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Table 5. Assignment of values for a 10-point scale [58].

Attribute Evaluation Value

Extremely unimportant 0
Very unimportant 1

Unimportant 3
Average 5

Important 7
Very important 9

Extremely important 10

After assigning the weights, a weighted sum method calculates the scores and ranks
the IMs. Results of the MCDM method are tabulated in Table 6.

Table 6. Results of the MCDM method.

Weight of Criteria Rank of the Optimal IMs

Pylons Cables Bearings 1st 2nd 3rd

10 10 7 Vrms Iv PGV
10 10 5 Vrms Iv PGV
10 10 3 Vrms Iv PGV

According to the rank of the IMs for different weight assignments, it is found that Vrms
is the optimal one among the 12 candidates. Results also demonstrate that the velocity-
dependent IMs perform better than the others for all the weight assignments. Moreover,
it is worth mentioning that PGA, which has been used as the optimal IM for seismic
fragility analyses in previous studies [41,59], is inappropriate for cable-stayed bridges that
cross fault ruptures. The PSDMs established for each EDP using Vrms are illustrated in
Figure 9, and the corresponding regression coefficients are listed in Table 7. It is worth
noting that the hazard curve for Vrms is unavailable. However, it is possible to establish the
correlation between Vrms and an IM with available hazard curves, with the development
of ground-motion prediction equations, using similar methods introduced in [60].
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Table 7. Regression coefficients for the PSDMs.

EDP
Longitudinal

EDP
Transverse

EDP
/

a b c a b c a b c

σb,pier −0.022 0.979 −2.696 σb,pier −0.196 1.864 −2.202 Fbc 0.035 0.065 8.522
σb,pylon −0.059 1.165 −3.054 σb,pylon −0.203 1.883 −3.856 Ffc 0.065 −0.038 8.652

ϕS1 0.099 1.408 −11.050 ϕS1 0.471 −0.058 −8.963
ϕS3 0.183 1.091 −10.791 ϕS3 0.326 0.408 −9.252

Formulation for the quadratic regression: ln(SD) = aln2(IM) + bln(IM) + c.

4.4. Definition of the Damage Index

Four limit states are considered, namely slight, moderate, extensive, and complete.
For the pylon sections, the value of each damage state proposed by Feng [61] is adopted in
this study. Figure 10 illustrates the moment-curvature curve for a pylon section. The slight
damage state is characterized by the equivalent yield curvature (ϕey), whereas the complete
one is characterized by the ultimate curvature (ϕu). Taking the difference between ϕey and
ϕu as ∆ϕ, the curvatures that represent moderate and extensive damage states are defined
as (ϕey + ∆ϕ/3) and (ϕey + 2∆ϕ/3), respectively. For the spherical bearings, the slight limit
state is defined to be the maximum allowable bearing displacement under normal service
conditions; the distance between the center of the bearing and the edge of the masonry
plate is defined as the threshold of the extensive damage state, and the threshold of the
moderate damage state is defined as the median of slight and extensive damage states;
when the center of the bearing moves over the edge of the substructure (i.e., the cap or cross
girder), the bearing is considered to be completely damaged. Figure 11 gives the definition
of the damage states for the bearing. For the cable forces, the threshold of the complete
damage state is defined as the cable’s breaking force. The difference between the initial and
cable-breaking force is quartered, and the quartering points are defined as slight, moderate,
and extensive damage thresholds.
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Table 8 summarizes the damage index of different damage states for the EDPs, where
SC and βC mean the median and logarithmic standard deviation, respectively. Note that the
thresholds of slight, moderate, and extensive damage states for the bearings are the same
in longitudinal and transverse directions. However, the bearing’s complete damage state
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threshold is larger in the transverse direction because of the adequate distance between the
bearing’s center line and the cap’s transverse edge.

Table 8. Damage index for different damage states.

EDP
Slight Moderate Extensive Complete

SC βC SC βC SC βC SC βC

ϕS1, longitudinal 1 0.04 6.1 0.05 11.2 0.05 16.3 0.06
ϕS1, transverse 1 0.04 7.6 0.04 14.3 0.04 20.9 0.04

ϕS3, longitudinal 1 0.15 6.7 0.06 12.5 0.06 18.2 0.06
ϕS3, transverse 1 0.13 7.1 0.04 13.2 0.04 19.3 0.04

σb, longitudinal (mm) 300 0.35 450 0.35 600 0.35 800 0.35
σb, transverse (mm) 300 0.35 450 0.35 600 0.35 2500 0.35

Fbc (kN) 8586 0.10 11,785 0.10 14,987 0.10 18,188 0.10
Ffc (kN) 8279 0.10 11,196 0.10 14,114 0.10 17,031 0.10

βC for bearing displacements and cable forces refers to [13].

4.5. Component Fragility Curves

Utilizing the aforementioned PSDMs, the component fragility curves for the fault-
crossing bridge under different limit states are developed, as presented in Figure 12. As
shown in Figure 12, the bearings at girder–pier locations are the most fragile components
for all damage states, especially in the transverse direction. Comparing the bearings at
different locations, their vulnerabilities are similar in the longitudinal direction but different
in the transverse direction. This can be attributed to the rotation of the deck caused by the
permanent displacement.
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Figure 12 also shows that the pylon sections are more vulnerable in the transverse
direction, and the pylon bottom section (Section 1) is more vulnerable than the section
of the connection zone between the pylon and lower cross-girder (Section 3). Although
the capacity of Section 1 is stronger than that of Section 3 (as shown in Figure 4), the
pylon bottom can suffer larger seismic forces under earthquakes, which results in its higher
vulnerability.
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As for the cables, they are likely to experience only slight and moderate damage.
Furthermore, the forestay one appears more vulnerable than the backstay one. This is
because the girder’s inertia force is undertaken alone by the forestay cables in the middle
span and the backstay cables and transition piers in the side span.

5. Comparison of the Fragility of the Bridge Subjected to Fling-Step and
Near-Faults Motions

To investigate the influence of traversing a fault rupture on the vulnerability of cable-
stayed bridges, fragility curves of the same case bridge near the fault rupture are developed
as a comparison. The finite element model, input ground motions, selected IM, and
EDPs are the same as those described in previous sections. The only difference is that
the transverse excitations are applied to the bridge with equal amplitudes and the same
polarity for the near-fault scenario, as shown in Figure 13.

Figure 14 compares the component fragility curves of the bridge subjected to near-
fault and fling-step motions. Fragility curves of the cables under extensive and complete
damage states are not plotted because of their low damage-exceedance probabilities. Table 9
presents the median value (the Vrms associated with the 50% exceedance probability) of
the fragility curves across the four limit states. Note that a larger median Vrms means the
component is less vulnerable.
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Table 9. Median Vrms across different damage states for fault-crossing and near-fault bridges (unit: cm/s).

EDP
Slight Moderate Extensive Complete

FC NF FC NF FC NF FC NF

σb,pier, longitudial 4.86 5.24 7.62 8.00 10.56 10.63 14.71 13.95
σb,pier, transverse 1.77 5.70 2.28 7.63 2.76 9.43 8.73 29.02

σb,pylon, longitudial 5.71 5.75 8.81 8.76 12.17 11.90 17.08 16.27
σb,pylon, transverse 5.65 6.37 8.15 9.76 10.97 13.62 / /

ϕS1, longitudial 9.77 10.12 24.67 24.88 33.08 32.93 39.49 38.97
ϕS1, transverse 6.34 6.33 16.45 17.80 20.76 22.91 23.72 26.49
ϕS3, longitudial 13.85 14.12 32.82 34.64 42.35 45.30 49.31 53.18
ϕS3, transverse 6.96 6.96 18.61 20.13 24.10 26.75 28.00 31.57

Fbc 22.04 21.73 59.95 59.08 / / / /
Ffc 14.80 14.02 33.76 36.57 / / / /

Figure 14a depicts that the transverse vulnerability of the bearings at the girder–pier
location is significantly different for the two scenarios. Bearings at that location are much
more vulnerable to fault-crossing cable-stayed bridges due to the deck’s rotation, which is,
as mentioned earlier, caused by permanent ground dislocations. As presented in Table 9,
the median root-mean-square velocities of the bearings’ longitudinal vulnerabilities are
similar for the two case bridges. However, Figure 14a shows that when the intensity of
ground motions is high, bearings of the bridge subjected to near-fault motions are a little
more vulnerable in the longitudinal direction.

Figure 14b compares the vulnerabilities of the pylons for fault-crossing and near-fault
bridges. It illustrates that the pylon’s vulnerabilities for the two scenarios are compa-
rable under the slight damage state. However, the pylon’s transverse vulnerabilities of
fault-crossing bridges become higher under the other three damage states, whereas its
longitudinal vulnerabilities remain comparable. According to Table 9, the median root-
mean-square velocities of the transverse moderate, extensive, and complete damage states
of Section 1 for near-fault bridges are 8%, 10%, and 12% larger than those for fault-crossing
bridges. Similarly, differences in median values of these damage states of Section 3 between
the two cases are 8%, 11%, and 13%, respectively. This is because the transverse seismic
responses of the pylon for the fling-step bridge contain not only dynamic ones but also
static ones exerted by the ground dislocation. Thus, the transverse seismic demand of the
pylon for fault-crossing bridges can be more significant than that for near-fault bridges. In
other words, there is a high risk of suffering severe damages in the transverse direction for
the pylons if the bridge crosses a fault.

Figure 14c and Table 9 show that the vulnerabilities of the stay cables are almost
the same under slight and moderate damage states, whether the bridge is across a fault
rupture or not. Such phenomena can be attributed to the fact that the cable force is mainly
affected by the vertical and longitudinal deformations of the girder and pylons, and these
deformations of the near-fault bridges are supposed to be similar to those of the fault-
crossing bridges.

6. Conclusions

This study aims at the seismic fragility assessment for cable-stayed bridges crossing
faults. Synthetic fling-step motions are generated and applied to the numerical models.
The optimal ground-motion intensity measure for the bridge is identified among 12 candi-
dates. Fragility analysis is conducted, and the results are compared. The conclusions are
summarized as follows:

(1) According to the coefficient of determination R2 and the multicriteria decision-making
(MCDM) method, the root-mean-square velocity (Vrms) is identified as the optimal
IM for the cable-stayed bridge crossing faults.

(2) Bearings are the most fragile components for the fault-crossing bridge, especially
in the transverse direction of those on transition piers. The pylon bottom is more
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vulnerable than the connection zone between the pylon and cross-girder. In contrast,
the cables are not likely to suffer severe damage.

(3) Compared with the bridge subjected to near-fault motions, the vulnerability of pylons
and bearings of the fault-crossing bridge becomes higher in the transverse direction.
However, the vulnerability of the cables is comparable.

(4) This study limits the fragility analysis of cable-stayed bridges subjected to vertical
strike-slip faults with a fault crossing angle of 90◦. The vulnerability of cable-stayed
bridges crossing dip-slip and oblique-slip faults or existing bridges with other fault
crossing angles needs further investigation.
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