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Abstract: The progress monitoring (PM) of construction projects is an essential aspect of project
control that enables the stakeholders to make timely decisions to ensure successful project delivery,
but ongoing practices are largely manual and document-centric. However, the integration of techno-
logically advanced tools into construction practices has shown the potential to automate construction
PM (CPM) using real-time data collection, analysis, and visualization for effective and timely de-
cision making. In this study, we assess the level of automation achieved through various methods
that enable automated computer vision (CV)-based CPM. A detailed literature review is presented,
discussing the complete process of CV-based CPM based on the research conducted between 2011
and 2021. The CV-based CPM process comprises four sub-processes: data acquisition, information
retrieval, progress estimation, and output visualization. Most techniques encompassing these sub-
processes require human intervention to perform the desired tasks, and the inter-connectivity among
them is absent. We conclude that CV-based CPM research is centric on resolving technical feasibility
studies using image-based processing of site data, which are still experimental and lack connectivity
to its applications for construction management. This review highlighted the most efficient tech-
niques involved in the CV-based CPM and accentuated the need for the inter-connectivity between
sub-processes for an effective alternative to traditional practices.

Keywords: construction progress monitoring; process assessment; computer vision; vision-based
automation; automated progress monitoring; systematic review

1. Introduction

Traditional construction progress monitoring (CPM) is based on manual and labor-
intensive procedures of information collection, documentation, and reporting of the status
of a construction project periodically [1]. These documented reports are used for project
monitoring and control against the as-planned project schedule and act as an as-built record
throughout the project lifecycle [2]. Accurate progress reporting may keep stakeholders
informed about the state of a project and help them make effective decisions about avoiding
construction delays and cost overruns by applying required controls to slippage operations
and prepare them for managing delay claims [3]. However, traditional progress reporting
practices are tedious, error-prone, slow, and often report redundant information, preventing
stakeholders from making proactive decisions [4]. More than 70% of contracting firms
mentioned poor job site coordination as the primary cause for projects to run over budget
and past deadlines. Resultantly, fewer than 30% of the contractors finish projects within
the planned budget and on time [5].

Various emerging disruptive technologies are currently explored in construction to
address these issues [6]. Applications of emerging technologies in construction have shown
great potential to digitalize the project progress monitoring (PM) by providing real-time
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status of site activities via automated capturing and reporting of site data using digital
tools [7]. These technologies include the use of barcodes by collecting real-time data
regarding material, equipment, and labor for calculating the progress of the project [4].
Similarly, Radio Frequency Identification (RFID) has been implemented to measure the live
information from the earthmoving equipment for accurately estimating the progress [8].
Ultra-Wide Band (UWB) was implemented for material tracking and activity-based progress
monitoring, especially in remote and harsh environments [9]. More advanced technology,
i.e., three-dimensional (3D) laser scanning was deployed to collect the as-built data and
transform it into the 3D point clouds and estimate the construction progress by comparing
it with Building Information Models (BIMs) [10]. Furthermore, Augmented Reality (AR),
by comparing the real environment with as-planned models, enabled the project teams to
visualize the progress and make necessary decisions [11]. One such example of advanced
technological tools for automated CPM is Computer Vision (CV).

CV is a technology-driven process that accepts inputs in the form of visual media,
either photos or videos, and generates outputs as either decisions or other forms of rep-
resentation [12]. CV mimics human visualization and possesses a function that derives
three-dimensional (3D) objects or data from two-dimensional (2D) inputs that can either
be photos or videos, providing the opportunity for automatically analyzing captured im-
ages and measuring the construction progress [13,14]. Its integration into the construction
field is an interdisciplinary endeavor that incorporates computer science, architecture,
construction engineering, and management disciplines. The full potential of CV-based
CPM requires fully automated processes of capturing, processing, and retrieving useful
information without human intervention [13,15].

CV-based CPM has been claimed to digitalize the monitoring and reporting of con-
struction progress [16]; however, an initial literature review revealed that the research in
CV-based monitoring of construction progress is scattered in multidisciplinary areas, such
as computer science, architecture, construction management and a holistic research focus
on the methods and techniques involved throughout the process of the CV-based CPM is
missing. This called for an in-depth literature review of CV-based monitoring of construc-
tion projects to understand the extent of automation achieved—specifically, the automation
of data acquisition (DAQ), information retrieval, progress estimation, and visualization
of useful output—because the CV-based monitoring process needs to be automated to be
considered a viable alternative to current CPM methods [17–19].

DAQ is the process of collecting visual as-built data using image sensors, which can be
either daily photo logs or videos from handheld devices, fixed cameras, or unmanned aerial
vehicles (UAVs) [7,20,21]. The information retrieval process corresponds to generating
useful output from visual data in the form of 3D models or 3D points defined as ‘point
clouds’ [8,22,23]. CPM is usually measured by comparing point cloud data with a four-
dimensional (4D) building information model (BIM) that contains information about the
planned schedule, and this comparison returns the progress status of various construction
activities [24]. Output visualization corresponds to useful information, e.g., earned value
management (EVM) analysis, retrieved from the point cloud data and 4D BIM comparison,
required to make relevant decisions by the project management teams [25,26]. Previous
studies have contributed to the automation of each process, and research efforts towards the
automation of the complete process of CV-based CPM will allow its viability towards imple-
mentation in the construction process and reduce the efforts of construction management
teams (CMTs) [27].

Currently, commercial applications of CV-based CPM are non-existent because it is an
emerging technology and is still in the experimental phase with few working demonstra-
tions [28]. Several studies have proposed automated construction progress tracking and
monitoring using CV-based methods [29–32]. Popular applications include point cloud
generation [28,33], feature recognition [29,34,35], comparison between as-planned and
as-built [36–38], and progress monitoring through material estimation [32,39,40]. However,
they mainly focused on only one or two of the following aspects of CV-based CPM: DAQ,
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information retrieval, and progress estimation. The holistic focus on the overall process
is missing and the integration of these sub-processes among themselves and the level of
automation provided by the techniques is the least researched topic. Researchers have
suggested that CV-based CPM could automate the entire construction monitoring process,
reduce the labor-intensiveness of the traditional practices, and allow construction man-
agers to act aptly to reduce losses due to construction delays [7,25,41,42]. However, while
researchers have claimed many potential benefits of CV-based CPM, very few studies have
analyzed and contributed toward the automated CV-based process and its viability in the
actual construction environment. This presents a gap targeted in the current study.

In this study, relevant literary databases including Scopus and Web of Science were
utilized to retrieve and analyze useful literature systematically. Accordingly, several re-
view articles have been identified on the application of CV-based tools in automating the
CPM [7,16,24]. These review articles provided significant insight into the tools, methods,
and applications of CV-based CPM. However, none of these existing reviews focused on
automating the complete process of CV-based CPM and its viability to replace existing
construction monitoring practices. Accordingly, this systematic review presents the au-
tomation status of current CV-based tools, methods, and applications for CPM. It aims to
investigate the related work on CV-based monitoring of construction projects to understand
various aspects of the CV-based CPM process and highlight gaps in the currently existing
literature. The objectives of this systematic review study are as follows:

1. Identify the CV-based CPM process, key sub-processes, and enabling techniques for
process automation.

2. Discuss the effectiveness and level of automation provided by the identified tech-
niques for CV-based CPM.

3. Discuss the identified CV-based CPM process in comparison with the traditional
techniques to understand the industry requirements and highlight key challenges.

Since these automated CPM processes aim to be either successfully integrated within
existing construction practices or replace the traditional manual and time-consuming
practices. Therefore, a holistic overview of the CV-based CPM is necessary to understand
its process and provide a roadmap toward its implementation. The novelty of this research
study is its focus on the overall process and the assessment of its sub-processes including the
methods and techniques involved in the CV-based CPM process. This study presented the
findings by conducting a state-of-the-art literature review. As a result, a holistic overview
of the said process is presented to understand the CV-based CPM process for researchers
and construction practitioners alike. Furthermore, this paper presents the purpose and
aim of the techniques involved in sub-processes, e.g., What is the data acquisition process
in CV-based CPM? What kind of data can be acquired from the worksite? How are
those data being managed and used to estimate the progress? etc. This will increase the
understanding of the readers from diverse backgrounds to comprehend the overall concept
behind this process.

Furthermore, the current study provides novel insight into integrating the sub-processes,
highlights a disconnect, and guides the research focus towards the seamless integration of
these sub-processes to propose a viable solution to the construction industry. Another key
novelty is the assessment of the available methods and techniques enabling the CV-based
CPM process. Based on the findings of this research study, future research efforts can select
the most relevant automated techniques for each sub-process and integrate them into a
fully integrated system to achieve the goal of automated CPM for the construction industry.
Such objectives have not been undertaken to date and this research endeavor is a novel
attempt to fulfill the said objectives.

The rest of the paper is as follows. The materials and methods used in this research
paper are presented in Section 2. Section 2 further discusses the literature retrieval process
and the process of this systematic literature review. The findings of this research are
presented in Section 3. Section 3 is further divided into four sections, i.e., DAQ, information
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retrieval, progress estimation, and output visualization. The discussion is presented in
Sections 4 and 5 of this study comprise of conclusion, limitations, and future directions.

2. Materials and Methods

A systematic review approach was adopted for this study following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines in line
with recent studies [43,44]. Accordingly, the Scopus and Web of Science (WoS) databases
were searched for retrieving the relevant research articles. The overall method of this
study consists of three major steps: literature retrieval, systematic review, and pertinent
analyses, and presenting the retrieved data in the form of an assessment of the CV-based
CPM process. These are steps subsequently explained.

2.1. Literature Retrieval

A database search was performed to retrieve relevant literature using Scopus and
WoS online databases. Google Scholar search engine was not consulted due to incomplete
Boolean operations in advanced search features and non-disclosure of the algorithm by
which search results are presented [45]. Furthermore, Google Scholar presents location-
specific results due to the inherent characteristic of the Google search engine; thus, results
in one part of the world may be different from another even with the same keywords and
strings. Pre-defined keywords and semantic search strings were used to search for the
relevant literature. The selected keywords were CV, vision-based, real time, automated,
and CPM. The asterisk (*) serves as a wildcard and was added to the keyword ‘automat*’
and ‘construction progress*’ in search strings to enable results for similar keywords, such
as ‘automated’ and ‘automatic’ and ‘CPM’ and ‘construction progress tracking’. The details
of keywords and semantic search strings are shown in Table 1.

Table 1. Search strings, restrictions, and results.

Database Strings and Refinements Results

Scopus
(TITLE-ABS-KEY (“computer vision” AND “construction progress*”) OR TITLE-ABS-KEY
(“vision-based” AND “construction progress*”) OR TITLE-ABS-KEY (“real-time” AND
“construction progress*”) OR TITLE-ABS-KEY (“automat*” AND “construction progress*”))

233

AND (LIMIT-TO (SUBJAREA, “ENGI”) OR LIMIT-TO (SUBJAREA, “COMP”) 195

AND (LIMIT-TO (DOCTYPE, “cp”) OR LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “cr”)
OR LIMIT-TO (DOCTYPE, “re”) OR LIMIT-TO (DOCTYPE, “ch”) 194

AND (LIMIT-TO (LANGUAGE, “English”)AND (LIMIT-TO (PUBYEAR, “2011–2021”) 180
180

Web of
Science

TOPIC: (“computer vision” AND “construction progress*”) OR TOPIC: (“vision-based” AND
“construction progress*”) OR TOPIC: (“real-time” AND “construction progress*”) OR TOPIC:
(“automat*” AND “construction progress*”)

121

Refined by: RESEARCH AREAS: (ENGINEERING OR COMPUTER SCIENCE) 103

Refined by: DOCUMENT TYPES: (ARTICLE OR PROCEEDINGS PAPER OR REVIEW OR
BOOK CHAPTER) 103

Refined by: LANGUAGES: (ENGLISH)Refined by: PUBLICATION YEARS: 2011–2021 102
102

Total Articles 282

Duplicates 84

After Abstract Screening 183

After Full-text Screening 180

Total Selected Articles 180
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The search was restricted from the year 2011 to the year 2021. The initial search
returned 233 and 121 research articles from Scopus and WoS, respectively. Then, the search
was narrowed down to only two relevant research areas—engineering and computer
science—to keep a relevant research focus; this search restriction resulted in 195 and
103 research articles from Scopus and WoS, respectively, showing that most research articles
related to the selected keywords belonged to the two research areas. Other restrictions
included the selection of journal articles, conference papers, review articles, and book
chapters. The final restriction was applied to the language of the retrieved literature by
keeping the search between the years 2011 and 2021. Later, a duplicate analysis was
performed using the MS Excel feature of finding and removing duplicate entries. In the
final step of literature retrieval, abstract screening and full-text screening were performed.
Based on this screening process, irrelevant literature was discarded, and a final selection
was made for further review and analysis.

2.2. Systematic Literature Review Process

A systematic review approach was adopted to achieve the objectives of this study.
This approach is evidence-based and delivers a clear and comprehensive overview of
available data on a given topic. The primary purpose of this method is to plan, identify,
analyze and summarize the findings of all relevant studies. The systematic review ap-
proach is transparent, allowing other researchers to reproduce the results by repeating
our methodology.

A search for available literature was performed according to the PRISMA guidelines.
The PRISMA protocol aims to enable authors to improve the reporting of systematic
reviews and meta-analyses. The PRISMA-recommended flowchart for this study is shown
in Figure 1.

Observing the PRISMA 2020 protocols [46], as adopted by [43,44], the following
guidelines were ensured:

1. Protocol and registration: This review aims at retrieving and reviewing literature from
Scopus and WoS databases based on pre-defined keywords. Furthermore, the review
is limited to the literature published from 2011 to 2021.

2. Eligibility criteria: The literature with the pre-defined keywords present in its title,
abstract, and keyword sections are selected.

3. Information sources: Two renowned and reliable research databases, i.e., Scopus
(scopus.com/search/form.uri?display=basic#basic, 15 May 2022) and WoS (https:
//www.webofscience.com/wos/woscc/basic-search, 15 May 2022) are consulted
for the literature search and retrieval. Both databases can be accessed using the
provided links.

4. Search: The complete search process including the limits used during the database
search is presented in Table 1 of this manuscript.

5. Study selection: The study selection process involves screening the pre-defined key-
words, identifying and removing the duplicates, and a qualitative analysis based on
abstract and full-text screening for prominent codes and themes.

6. Data collection process: Relevant literature/data are collected by referring to the online
scholarly databases, i.e., Scopus and WoS, using the most suitable pre-defined keywords.

7. Definition for data extraction: One author performed the independent data extraction
using pre-defined data fields and processes and by ensuring the quality indicators.

8. Risk of bias and applicability: As the processes are not ranked or subjectively assessed,
the risk of bias in individual studies affecting this systematic review is not applicable.

9. Diagnostic accuracy measures: Since no test is being applied and tested in this sys-
tematic review, the diagnostic accuracy measure does not apply to this research.

10. Synthesis of results: The collected information is properly analyzed and summarized
into relevant categories to understand the evidence present. The results are also
compared to other research studies for consistency of the findings.

scopus.com/search/form.uri?display=basic#basic
https://www.webofscience.com/wos/woscc/basic-search
https://www.webofscience.com/wos/woscc/basic-search
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Since the retrieved literature comprised 180 research articles, an MS Excel spreadsheet
was utilized. The relevant information regarding all the studies was listed in different
columns starting from the left and over to the right. The main findings were listed towards
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the end of the spreadsheet. Most of the required information was retrieved from the CSV
files downloaded from the Scopus and WoS databases. The findings of this study were
further divided into sub-processes involved in the CV-based CPM process. Apart from
the sub-processes, this analysis also identified and listed all the methods and techniques
involved in the overall process based on their ability to enable specific sub-process, i.e., data
acquisition, information retrieval, progress estimation, and output visualization. Finally,
the ‘sort’ function was used intensively to filter the desired results throughout the research
duration. Moreover, apart from identifying and categorizing sub-processes and techniques
involved in the CV-based CPM process, an assessment was performed to categorize the
available techniques based on the level of automation they provide. The assessment was
conducted based on the information from relevant research studies on how they have
demonstrated the use of such techniques.

3. Assessment of the CV-Based CPM Process

CPM entails periodically measuring the on-site progress and comparing the data with
a planned schedule to get the actual status of a construction project [47,48]. Traditional CPM
practices involve manual data collection, which requires human intervention and hence
are slow, error-prone, and labor-intensive [26,49,50]. To overcome these issues, various
automated CPM processes have been proposed [4,51,52]. These processes include but are
not limited to the use of enhanced information, geospatial, and imaging technologies [7].
The imaging technologies comprise photogrammetry, videogrammetry, laser scanning, and
range imaging. Laser scanning is a promising tool for as-built DAQ due to its accuracy;
however, it requires expensive equipment, is technically complex, and requires experts
to capture, model, and manipulate data for meaningful interpretations [17]. An alternate
technique is CV-based technology, which comprises photogrammetry, videogrammetry,
and range images [53–56].

The CV-based CPM comprises four sub-processes: DAQ, information retrieval, progress
estimation, and output visualization [7,17]. Each process involves various methods and
techniques to achieve the desired output posing several benefits and limitations. Table 2
presents an overview of the CV-based CPM process, identify the sub-processes involved,
and summarized the techniques that enable each sub-process. Furthermore, it also presents
a concise overview of the advantages and limitations of each identified technique with
required references. The following sections and subsections will discuss the information
presented in Table 2 in detail.
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Table 2. Summary of automated CV-based CPM process, its sub-processes, and techniques with associated advantages and limitations.

Sub-Processes Techniques Advantages Limitations References

DAQ

UAVs

• Help automate progress monitoring
• Enable laser scanners, digital cameras, and a

variety of other sensors onboard
• Provides visual and detailed progress information
• Provides better area coverage
• Provides views from human-inaccessible angles

• Requires proper operation
• Potential safety hazard
• Causes distraction
• Requires accurate path planning
• Requires obstruction avoidance planning
• Rotational motion and sudden angular movements

cause motion blur
• Affected by wind speeds and other

environmental anomalies

[20,31,57–65]

Handheld devices

• Widely available in the form of smartphones,
tablets, digital cameras, etc.

• No prior planning and preparation required
• Provide close shots of the object

under consideration
• Avoid obstructions and hindrances to a large extent

• Views, angles, and coverage depends on human
accessibility at the worksite

• Required a large number of photographs
taken manually

• Visual data must cover every nook and cranny of
the construction feature under observation

[19,33,37,39,40,66–69]

Fixed on mounts

• Provide automated data collection from a constant
elevation or view

• Least affected by varying weather conditions
• Best for long-term data acquisition from the

construction environment
• A reliable source for high-quality visual

progress information
• Enable real-time data acquisition and

PCD extraction

• Limited to a specific view or orientation
• Minor maintenance requires significant effort, i.e.,

crane-mounted cameras
• Incomplete coverage of construction site
• Requires a higher number of cameras for efficient

data collection

[33,41,70–74]

Surveillance cameras

• Allow for real-time productivity computation
• Minimizes the need for human intervention
• Good-quality DVR system enables input from

multiple cameras

• Requires significant memory requirements
• Varying weather conditions may affect the quality

of data
• Not suitable for smaller features that require a

closer view

[32,59,75]
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Table 2. Cont.

Sub-Processes Techniques Advantages Limitations References

Information
retrieval

SfM

• Easy to use in a construction environment, requires
a single camera

• Cost-effective in comparison to lidar
• Automatically estimates the camera positions

between images

• Less precise as compared to lidar
• Takes a long time to process relatively larger

vision datasets
• A minimum 60% overlap is recommended to get

the higher quality results

[19,31,33,62,63,73,76–78]

CNN

• Integrates both classification and detection into its
architecture

• Detect multiple construction features from
one image

• Faster processing time enables real-time
monitoring applications

• The training process takes significant time
• Requires higher computing power than ordinary

desktop PCs
• Do not encode the position and orientation of

construction features

[28,32,59,65,79,80]

SVM
• One of the most powerful classification techniques
• Can be applied for multi-class

classifications scenarios

• Not suitable for larger vision datasets
• Do not perform well when the dataset has

more noise
[29,47,67,68,73,81,82]

SLAM

• Enable the reconstruction of a 3D map of a
construction scene in real-time

• Does not require GPS for localization

• Creates higher computational complexity in case of
a larger dataset

• The heavy computational workload of image
processing requires significant time and memory

[60,70]

CC • Very fast at computing construction features due to
the use of integral images

• Requires supervised training with sets of positive
and negative examples

[37,59]

SURF • A fast and robust algorithm enables real-time
applications such as tracking and object recognition

• Requires clear and noise-free input, does not
perform well for low illuminations and dark scenes

[71,74]

LoG

• Useful for detecting edges of various construction
features, e.g., concrete structural elements, precast
walls, etc.

• Robust to dynamic changes of illumination,
viewpoint, camera resolution, and scale

• Required vision datasets with uniform regions
• Performance in the real construction environment

with various obstruction and lighting conditions
might not return precise results

[39,40]
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Table 2. Cont.

Sub-Processes Techniques Advantages Limitations References

HoG
• Better than any edge descriptor as it uses

magnitude and angle of the gradient
• Very sensitive to image rotation and requires very

careful input images
• Higher computation times

[81,83]

Progress
Estimation

BIMs registration

• Facilitates as-built and as-planned data comparison
• Enables autonomous data collection and navigation

through the construction site by providing a
detailed reference model

• Generally, does not work well with partially
occluded patches in a 3D point cloud

• Registration of multiple point clouds still poses
technical challenges

[33,74,84,85]

Object recogni-
tion/matching

• Enable feature recognition and matching from
object-based models for differentiating between
various construction features, i.e., concrete, bricks,
doors, windows, etc.

• Various combinations of algorithms are being
utilized for object recognition, matching, and
tracking, no universal method or technique is
available to address a variety of construction
features at once.

[32,59,73,79,80,86]

Output
Visualization

Color labels
• Very simple and objects can be labeled easily
• Volumetric bounding boxes can efficiently depict

completed work

• Currently, used labels are designed to locate objects
coarsely, but for construction applications, it lacks
higher precision

[31,39,63,65,68,73,78,82]

AR and VR • Enable visual assessment of physical construction
progress on work site

• Requires complex processing for AR registration
and lacks a real-time visualization function

[37,42]

EVM • Depicts actual cost and time performance
• Enables accurate forecasting

• Integration of EVM with CV-based CPM is the least
explored area in the existing literature

[16,25,87]
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3.1. DAQ

Successful project management and delivery require control over all the aspects of the
project, e.g., resource usage including labor hours, material, and equipment [8]. For efficient
project control, project management teams require an accurate data collection strategy to
collect from the worksite and compare it with as-planned data to stay aware of the progress
and be able to deliver the project within the planned cost and time [88]. DAQ is the first
sub-process of the CV-based CPM process and refers to the collection of vision datasets as
inputs for the said process. Construction projects are complex and involve hundreds of
activities, which create an unstructured and complex environment [89]. Various activities
are simultaneously performed at a construction site with hundreds of laborers, equipment,
and materials all the time. The CV-based system requires an accurate vision dataset—the
image and video datasets are collectively called vision datasets—to identify features or
create a point cloud dataset. Owing to the construction site complexity, it is challenging
to obtain a clear vision dataset of either photos or videos for efficient DAQ [90]. Many
studies have proposed several DAQ techniques using various digital cameras [41,91]. The
literature review revealed that the following methods are being used to capture site data
that can provide input for a CV-based CPM system.

3.1.1. Unmanned Aerial Vehicles (UAVs)

UAV is a generic aircraft design with no human pilot onboard to operate the air-
craft [92]. Recently, UAVs have rapidly entered the architecture, engineering, and con-
struction industry, and their use is expected to grow in the future [93]. For CV-based
applications, UAVs are equipped with an optical sensor or a digital camera. Modern UAVs
are also equipped with a communication system to transmit the captured vision dataset in
real time [57]. UAVs are also quick and cost-effective methods and allow for data collection
at places inaccessible by ground-based or manned vehicles [94]. To capture an accurate
vision dataset, UAVs require an expert operator and a well-planned flight path with various
data capturing angles. However, modern UAVs allow for a pre-planned flight path to be
programmed into it, allowing a certain degree of automation in DAQ [58,95].

Mahami et al. attempted to reduce the number of photos required to create an accurate
point cloud model and experimented in a physical construction environment. The high-
quality camera was attached to a UAV which acquired the vision dataset to extract the
measurements of as-built walls to calculate the volume of work achieved. The proposed
method with the data acquired through UAVs reported a 99% accuracy for the volume
of completed work [62]. Similarly, Kielhauser et al. [64] attempted to estimate the cost of
UAV deployment for CPM and quality management and selected a mixed-use commercial
building as a test project. The UAV was programmed for an automatic flight on a pre-
determined path to target the external wall section and concrete slab only. The study
acquired the volumetric as-built data and compared it with the as-planned model to
estimate the percent completion of targeted activities. The study successfully demonstrated
the use of UAVs for progress monitoring however it reported untidiness and cluttering of
construction sites as a potential hindrance to data acquisition through UAVs. The usefulness
of the UAVs for acquiring data to enable the CV-based CPM process is evident however
studies reported several limitations to the adoption of UAVs, i.e., use is limited to mostly
external construction features, the overall process is time-consuming and requires expert
manpower, requires costly equipment and hence is costlier than traditional practices in the
field [28,64,93].

Useful 3D point clouds can be generated if all features of the construction process
are visible throughout the UAV’s flight path [65]. The UAV-enabled vision DAQ has been
compared with crane-mounted and terrestrial handheld digital cameras, showing that the
UAV-enabled technique was more efficient and flexible and enabled better coverage [91].
Most studies have explored and reported the benefits of UAVs for outside construction;
hence, the use of UAVs in interior CPM is the least explored research area [16,65]. As
a result, UAVs are very useful tools to capture the vision dataset for an automated CV-



Buildings 2022, 12, 1037 12 of 32

based CPM process provided that there is a good-quality digital camera, global positioning
system, communication system, and well-programmed automated flight path to cover all
possible elements of a construction project [26,96,97].

3.1.2. Handheld Devices

A handheld device is any compact and portable device that can be held, carried, or
used by one or both hands. The use of handheld imaging devices, such as smartphones
and digital cameras, is common at present [66]. Smartphone, digital single-lens reflex,
mirrorless, film, and 360◦ cameras are well-known handheld devices to acquire vision
datasets. From setting out acquisition geometry, collecting vision datasets to transmit
data for further processing is a manual process [91]. Various studies have explored the
potential of handheld devices for vision DAQ to measure the construction progress based
on feature detection, e.g., concrete walls, drywalls, and bricks [40,67,82]. Daily site pho-
tologs captured by handheld devices are useful in generating point clouds, identifying
various construction features, and estimating construction progress [19,21,78]. For example,
Golparvar-Fard [73] identified that construction site staff usually take more than 500 pho-
tos a day using several handheld and off-the-shelf cameras and utilized the unordered
daily site photologs to extract useful information to be compared with as-planned. The
study successfully demonstrated the extraction of point cloud models for comparison and
analysis after automatically ordering, calibrating, and removing occlusions. However, the
study focused entirely on addressing the technical feasibility of the proposed concept rather
than addressing the progress monitoring and tracking of various construction features.
Mahami et al. [19] photographed a real construction environment and extracted the mea-
surements of external construction features. This study used a handheld camera and the
photographer moved around the entire site taking photos at specific intervals, varying
angles, and fixed orientations making the process of data acquisition entirely manual and
labor-intensive. Early research in CV-based CPM utilized unordered daily site photologs
and other vision datasets captured specifically for extracting the point cloud models but
the focus has shifted towards acquiring the vision datasets automatically without human
intervention. Handheld devices provide certain flexibility during vision DAQ in adapting
according to the site conditions and types of data required; however, the coverage is limited
and not useful for an automated CV-based CPM process.

3.1.3. Fixed on Mounts

The term fixed on mounts indicates various camera systems mounted on camera
stands, polls, formworks, cranes, robots, etc., for collecting required vision datasets. These
systems can be designed to capture vision data on a short- or long-term basis. They are
mounted at a specific place to capture the required elements at desired angles. These
systems are sometimes connected with a wired or wireless communication system to
transmit data for further processing [41].

Various studies have employed these systems for element recognition, 3D point cloud
generation, and progress calculation [41,72,73]. Few studies have also mounted these
systems on a crane to cover a large area and provided less occluded 3D point clouds for
construction progress estimation [33,74]. One study [74] addressed the technical challenge
of multi-building extraction and alignment of as-built point clouds. The study utilized
the data captured through two stereo cameras installed on a tower crane on a mi-used
construction project including a shopping mall, hotel, housing, and offices. The authors
reported the successful acquisition of the vision datasets using crane-mounted cameras
and subsequent analyses to estimate construction progress. Tuttas et al. argued that despite
the effort of installation of a camera on a crane jib, associated maintenance, limited range
of the motion of the crane, and its fixed position in a single plan of view; data acquisition
from crane-mounted cameras can be designed for a fully automated process [91]. A self-
navigating robot-mounted camera system has been explored to create 3D point clouds
for an interior of a building, and the usefulness of such systems for various construction



Buildings 2022, 12, 1037 13 of 32

management purposes has been reported [70]. A fixed on-mount vision DAQ technique
can be fully automated by equipping the camera system with a pan–tilt–zoom function
and a pre-determined coverage area programmed into it [41,91]. Despite several proofs-of-
concept, the cameras fixed on mounts do not provide complete coverage of the construction
site and cover all the construction features making the point clouds fragmented. Future
research must undertake to explore the possibility of acquiring vision datasets using
multiple cameras and integrating the output to get more detailed point cloud models hence
a more accurate comparison between as-planned and as-built.

3.1.4. Surveillance Cameras

Surveillance cameras are video cameras installed to observe an area for multiple
security and monitoring-related purposes. These camera systems transmit video and
audio signals to a digital video recorder where the video data can be viewed, recorded, or
processed for the required purpose.

Few studies have attempted CV-based CPM using the video feed or video data from
surveillance cameras installed on a construction site, as opposed to most available studies
that explored the viability of image data and retrieved information by image processing
using various techniques [75]. For example, Wu et al. [59] recognize the work cycles for an
earthmoving excavator by constructing its Stretching–Bending Sequential Patterns (SBSP).
This research study utilized long video sequences and recognized the complete cycle of an
excavator, i.e., digging, hauling, swinging, and dumping. This research study accurately
recognizes the work cycle and estimated the progress of the equipment by multiplying the
excavator’s capacity by the number of cycles counted [32]. They presented a framework
encompassing object detection, instance segmentation, and multiple object tracking to
collect the location and temporal information of precast concrete wall installation on a
construction site. However, the study reported that the movement of the camera and
view range of the surveillance camera on a construction site significantly influence the
effectiveness of the vision datasets. Video data from surveillance are successfully processed
to obtain the progress of various prefabricated construction elements and the working of
machinery at a construction site [32,59,75]. Surveillance cameras can be potential DAQ
techniques for the automated CV-based CPM process provided a well-planned layout and
several cameras are installed throughout the vicinity of the construction site [75].

Table 3 presents the techniques that enable data acquisition for the CV-based CPM
process identified through literature and summarizes the purpose of identified techniques
for the said process. It also presents the information extracted from a detailed review of the
retrieved literature on how these studies were deployed and utilized by each referenced
research study and categorizes them into manual, semi-automated, and fully automated
based on the level of human intervention involved. This summarization help understands
the level of automation provided by each technique for acquiring the vision datasets from
the complex construction environment.

Table 3. Comparison of data acquisition techniques.

Technique Purpose
Level of Automation

Manual Semi-
Automated

Fully
Automated

Unmanned Aerial
Vehicles (UAVs)

Provides efficient, accurate, and quick access to vision
datasets from human-inaccessible places. [31,60–63] [57,64,65] [20,58,69]

Handheld Devices
Provides a large vision dataset without the need for
technical complexity, designated equipment, and the need
for multiple visual sensors.

[19,33,37,39,40,67,
68,77,78,82] - -

Fixed on Mounts Provides accurate and effective vision dataset from short or
long-term observation of a fixed view. [71–73] [33,41,70] [74]

Surveillance Cameras Provides real-time vision datasets in the form of videos of
single or multiple views from the construction environment. - - [32,59,75]
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3.2. Information Retrieval

The acquired vision datasets contain vital as-built information from the construction
environment. In the construction environment, the data collected from the worksite hold
significant importance as they help in analyzing and reporting the progress of the project
and enable project management teams to gain valuable insights regarding the actual
status of the project in terms of physical progress, earned labor hours, material consumed,
equipment utilized, etc. [1]. Once the DAQ has been performed and data are transmitted
or transferred to a storage medium, the next and most important sub-process is to extract
useful information from the vision data. Information retrieval is performed through signal
processing or, more precisely, image processing. Images from an image dataset or frames
from a video dataset are the inputs, and the outputs are usually some characteristics or
features associated with the inputs. For CPM, usually, the information retrieval sub-process
aims to obtain an as-built model in the form of a 3D model or a 3D dataset, which is then
compared with an as-planned model to estimate the progress of various activities of a
construction process [80].

The articles retrieved and selected for this study have proposed various techniques
to extract the required information from the data acquired. These can be grouped into
four distinct categories, i.e., (1) classification, (2) edge detection, (3) quantification, and
(4) object tracking [98]. In addition, each category has several other techniques to process
the associated vision datasets. The key techniques are discussed below.

3.2.1. Structure from Motion (SfM)

SfM is a technique that reconstructs a 3D structure/model/point cloud using 2D
images of a scene or an object. It is a photogrammetric imaging technique and lies in the
quantification category along with digital image correlation [98]. The term quantification
means a method of obtaining real-life measurements from a 2D image dataset [99]. SfM
reconstructs 3D models by matching features in various images and estimating the relative
position of a camera. The inputs are in the form of image data with recommended 60%
side overlap and 80% forward overlap between images to realize high-quality and detailed
3D models or 3D point clouds as outputs [100]. This technique automatically detects and
matches features from an image dataset of varying scales, angles, and orientations. Various
studies have demonstrated the use of image-based reconstruction utilizing high-quality
images taken from the construction environment for progress monitoring, productivity
measurement, quality control, and safety management, providing the project management
teams with a remarkable opportunity to visualize as-built data [19,31,38,62].

Unordered image collection from construction sites has been used in various studies
to test the effectiveness of SfM, and high accuracy of generated 3D as-built models has been
reported [73,77]. Moreover, [38] utilized the high-quality images taken from the interior
scene of a construction project to demonstrate image-based 3D reconstruction through
SfM and compared it with the output of a laser scanner. The study concluded that the
accuracy of the model generated from the image-based reconstruction was less than the
laser scanner however the proposed approach automatically overlays the hi-resolution
images to 3D point clouds models which presented its potential for its use in progress
monitoring through as-built visualization. Another study [19] collected several images
from proper positions from two real-life construction projects, i.e., one-story, and two-story
residential buildings. The SfM technique was deployed to generate a 3D point cloud model
for two case study projects and quantities were calculated using the proposed technique.
This study reported 99% accuracy and identified that this system becomes less accurate as
the length of the building/element increases. The process of reconstructing a 3D model
from an image dataset remains reliant on human intervention at various steps to improve
the output quality.



Buildings 2022, 12, 1037 15 of 32

3.2.2. Convolutional Neural Network (CNN)

CNN is a technique that identifies and differentiates various objects or features in
an image by assigning weights and biases to them [101]. CNN is a Deep Learning (DL)
algorithm and falls under the feature detection/classification category of CV-based analysis.
Long Short-Term Memory (LSTM), which can analyze and obtain information from video
frames, belongs to the same category. The term DL refers to Machine Learning (ML) in
an artificial learning environment that is capable of learning unlabeled or unstructured
data without supervision. CNN comprises a convolutional and a pooling layer; usually, a
pooling layer is added after the convolutional layer. The input is in the form of an image,
and the convolutional layer uses matrix-based scanning over the image and identifies fea-
tures. Later, the pooling layer reduces the number of parameters to learn and computations
required by a network, thereby reducing the size of feature maps, which is a summarized
version of features detected in the input [102]. In recent years these CNN-based techniques
have achieved further development in the construction domain [103]. Object detection
and tracking have been the interest of many researchers, e.g., unsafe behaviors were de-
tected by tracking the workers while walking on formwork supports [104], and diverse
construction activities were also recognized to save the valuable time of project manage-
ment teams [105], also single worker and equipment were tracked for longer periods for
calculating productivity [106], multi-worker/machinery tracking also for productivity
estimation [107], etc.

Few researchers have used CNN to monitor the progress of construction machinery
and the installation of various prefabricated components [32,59,108]. In a recent study [32],
the installation of precast concrete walls was monitored by detecting and tracking indi-
vidual wall panels by utilizing the video feed from a surveillance camera installed on
a construction site. This vision method was designed to get two types of information,
i.e., time information and location information. The study reported the useability of such
algorithms for CPM purposes and directed further research to extend this technique to
detect other construction features as well. Similarly, another study [59] demonstrated the
combination of the CNN technique to identify the work cycle of an earthmoving excavator
by utilizing long video sequences. This study demonstrated the feasibility of the idea
of calculating the stretching-bending cycle of the excavator to estimate the quantity of
earth moved during the overall operation. However, the proposed technique was simpler
and further research was directed to explore the viability of such techniques for accurate
measurement of work cycles and hence an accurate measurement of progress. The CNN
process requires pre-training of the algorithm to efficiently identify various features from
the input and can automate the entire process.

3.2.3. Support Vector Machines (SVM)

SVM is a technique that classifies the features or information in an image by assigning
positive and negative values to features across a hyperplane. SVM is a classifier that lies
in the classification/feature detection category. Unlike ANN, SVM is a supervised ML
technique highly regarded for its two-group classification with a higher degree of accuracy;
however, multigroup classification can be achieved by dividing a problem into several two-
group classification problems [30]. The input is in the form of an image, and a pre-trained
SVM classifier performs a binary analysis and classifies various features by drawing a
hyperplane between two groups.

Various studies have implemented SVM to detect various construction materials and
estimate the project progress [29,109]. For example, [109] inferred the construction activity
of girder launching for a rail project. This study utilized the structural responses collected
from the girder launching equipment and identified the exact state of a girder, i.e., auto
launching, segment lifting, post-tensioning, and span lowering. However, this study was
a demonstration of such techniques and highlighted the limitations of only relying on
structural responses, and directed future studies to integrate more sensors to get accurate
feedback. Another study [82] investigated the installation of drywall using a video feed
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from the interior construction environment. Based on the identification of three different
states of drywall panel during installation, i.e., installation, plastering, and painting of
panels, the progress of drywall installation were measured. The SVM was trained with the
extracted feature to demonstrate the success of the proposed technique. The learning of
SVM can be significantly improved using the k-nearest neighbor algorithm [110]; however,
not many studies can be found on testing its performance in a real-world construction site
with a great degree of uncertainty, occlusions, and variability.

3.2.4. Simultaneous Localization and Mapping (SLAM)

SLAM is a technique of reconstructing or updating a 3D map of an unknown location
while navigating through it [111]. SLAM is similar to SfM; however, SLAM maps an
environment in real time. Similar to SfM, SLAM is a photogrammetric technique and is in
the quantification category. SLAM learns by moving around an environment and searching
for known features, which can be achieved by moving around in the environment once or
multiple times. The inputs are in the form of images obtained from video frames and the
outputs are in the form of feature points [70].

A preliminary study investigated the effectiveness of SLAM and reported its potential
application in tracking construction equipment [60]. For example, [60] conducted a pilot
study to demonstrate the real-time 3D reconstruction of a construction environment by
utilizing visual SLAM and UAV. This study discussed the use of the proposed technique on
three different projects, i.e., by calculating the volume of earthwork between two instances,
measuring the progress of pavement compaction by tracking the equipment on a job site,
and tracking site assets, e.g., labor, equipment, material, etc. The study proposed a primitive
SLAM algorithm and highlighted various limitations, i.e., limitations of performance in
complex construction environments, limited sensing range of visual sensors, memory
management, and difficulty of maneuvering UAVs through construction worksites. Despite
this demonstration, this technique is less explored for construction progress estimation,
and its effectiveness is subject to further research in this domain.

3.2.5. Cascading Classifiers (CC)

The CC technique is a technique to detect and track an object or a feature in an image.
CC lies in the classification/detection category [81]. It is an ML-based approach in which
the classifier is trained by inputting many positive and negative images. The positive
images are the ones intended to be recognized by the said classifier; otherwise, they are
negative. The inputs are in the form of images from a construction environment, and then
a pre-trained CC identifies various features from the dataset and indicates or highlights
them on the input images. The accuracy of this technique depends on a detailed algorithm
and pre-training using a well-sorted image dataset.

Few studies have attempted using CC in progress monitoring by detecting construction
features such as drywall or concrete walls and reported a good performance [37,82]. For
example, [37] attempted to automate the progress monitoring for the interior construction
environment and focused on the visualization and computer vision techniques by utilizing
an object-based approach. In the proposed approach, the study compares as-built BIM and
as-planned images in a 3D walkthrough model. The rapid object detection scheme based on
the Haar-like cascading classifier was deployed to detect features from the acquired vision
dataset. The cascading classifier utilized in this study was first trained to detect specific
construction features from the images using a couple of hundred positive and negative
samples. However, the proposed algorithm was limited to specific construction features
and this study suggested that detecting multiple features from a complex construction
environment requires further research towards modifying and improving such an algorithm.
The supervised training of this technique makes it less desirable for a fully automated
CV-based CPM process.
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3.2.6. Histogram of Oriented Gradients (HoG)

HoG is a feature descriptor and is used for object detection. HoG is a feature extraction
technique and lies in the classification/detection category. HoG identifies features in
an image by returning a descriptor of each cell that it creates when an input image is
given to the algorithm. Each input is decomposed into small cells or blocks, and the
algorithm computes the HoG by counting occurrences in each cell or block and returns
the detection of various features present in an image. This technique accurately detects
various construction features by focusing on their shapes [112]. The detection methods that
rely on visual features, e.g., shape and color have been proposed and tested in construction
scenarios. HoG feature is among the top two popular shape-based features that are being
used to detect construction workers and equipment [68].

Few studies have explored the effectiveness HoG technique in CPM using a CV-based
dataset by identifying and tracking construction workers and equipment [81,83]. For
example, [83] attempted to automate the estimation of the progress of earthmoving activity
by monitoring the movement of dump trucks on large-scale construction projects. The said
study evaluated the combination of HoG algorithms to recognize off-highway dump trucks
in a noisy video stream. Theis study effectively demonstrated the ability of HoG algorithms
to detect the activity of trucks in an effective and timely manner and presented its usefulness
in productivity measurement, performance control, and other safety-related applications
on large-scale civil construction projects. The combination of HoG with tracking techniques
has successfully reported very precise detection and tracking of workers and equipment on
a construction site for CPM purposes [68]. However, very few studies have explored this
technique and further research in this domain is required to ascertain the effectiveness of
this technique in CPM-related applications.

3.2.7. Laplacian of Gaussian (LoG)

LoG is a well-known algorithm for detecting edges and is widespread in image
processing and CV applications. The Laplacian algorithm is used to detect edges but is
sensitive to noise; therefore, a Gaussian filter is commonly applied to images to remove
noise, yielding LoG as their combination [113]. LoG lies in the edge detection category.
LoG filters are derivative filters that work by detecting the rapid changes in an image. They
detect objects and boundaries and extract features.

CPM by counting brick has been attempted using LoG and reported relatively higher
precision values [39,40]. Hui and Brilakis [39] attempted to automatically count the number
of bricks ordered vs. consumed to eliminate manual surveys for the said purpose. The study
proposed novel and automated method to count bricks during the facade construction of a
building. This method utilized images and videos from the construction site and selected
the color thresholds based on the color of the bricks. The LoG was deployed to detect the
edges of the bricks from the constructed wall and compared various known features, i.e.,
shape and size to accurately detect the number of bricks. However, the implementation
of LoG in CPM is one of the least explored areas. This technique requires various manual
steps to achieve the desired accuracy, making it a less desirable option for automating the
entire CV-based CPM process.

3.2.8. Speeded-Up Robust Features (SURF)

The SURF technique is a template matching technique that detects features from
an image. It is a feature extraction or detection technique that lies in the classification
category [114]. It can be used for object recognition, image registration and 3D point cloud
generation. The SURF technique computes operators using a box filter that enables fast
computation, thereby allowing real-time object detection and tracking.

A recent study [75] attempted CPM of prefabricated timber construction using surveil-
lance cameras and reported near real-time monitoring. This study proposed an automated
installation rate measurement system using inexpensive digital cameras installed on the
mast of a tower crane. The time-lapse footage of the construction sequence was processed
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and analyzed for precise progress information. The study also successfully demonstrated
the ability of SURF in aligning removing vision differences of images resulting from wind
and tower crane vibrations. The study further reported the 95% accuracy rate of detected
timber panels during the observation. This study also directed future research efforts
towards the proper setup of gear by ensuring the minimum level of noise in the footage
and algorithm improvements for multiple camera feedback. The process of point cloud
generation and registration can also be enhanced using this technique [70]. The implemen-
tation of this technique in the CV-based CPM can automate the whole process. However,
assessing the benefits of this technique in achieving the intended targets requires further
research efforts.

Table 4 summarizes the techniques that enable the information retrieval process for
the CV-based CPM process. The reviewed literature most prominently explored the SfM
and SVM techniques in the early stages of the research in this domain. However, as evident
from the number of studies, the CNN technique has seen increased interest from researchers
and has been explored to enable the CV-based CPM process more efficiently. This table also
highlights the fact that most of the studies manually extracted the information using the
SfM technique as compared to SVM and CNN. Furthermore, the SVM technique provides
a certain level of automation after being trained through a supervised learning process.
However, the CNN technique has been providing the most automation for the said process
as per the findings from the literature.

Table 4. Comparison of information retrieval techniques.

Technique Purpose
Level of Automation

Manual Semi-Automated Fully Automated

SfM A technique to reconstruct a 3D model by extracting
information from a 2D image.

[19,31,33,62,63,73,
76,78] [77] -

CNN A deep neural network-based technique to analyze
visual imagery. - [59,80] [28,32,65,79]

SVM A supervised technique, used for classification, regression, and
edge detection. - [29,47,67,68,73,82] [81]

SLAM A technique used for localization and environment mapping. [60,70] - -

CC A training-dependent classifier that detects the object in
question from an image. [37,59] - -

SURF A local feature detector and descriptor are used for object
recognition tasks. - [71,74] -

LoG A kernel-based technique is used to detect edges. [39,40] - -
HoG A feature descriptor is used for object detection. - [83] [81]

3.3. Progress Estimation

Progress estimation is the process of determining whether construction execution is
according to a pre-planned or baseline schedule. In CV-based CPM, this process can also
be termed the comparison between as-built and as-planned. This comparison provides
information on whether the intended construction activities are executed according to
the schedule, upon which construction managers can take necessary actions to keep the
project on track and avoid construction delays. Distinct techniques were proposed in the
articles retrieved and selected for this study to obtain necessary information on the progress
status of various construction activities by comparing as-built and as-planned models
and otherwise. We now discuss various frequently used information progress estimation
techniques in the following subsections.

3.3.1. Building Information Models (BIMs) Registration

Building information modeling is a process of creating and managing digital rep-
resentations of any built entity in a highly collaborative environment. BIMs are highly
intelligent, data-rich, and object-oriented models; they not only represent various objects
and spaces of buildings but also contain knowledge on how these objects and spaces
relate [115]. These qualities make BIMs efficient as-planned models to perform the com-
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parison between as-built and as-planned to estimate progress [116]. Usually, 4D BIMs,
which are 3D models integrated with the fourth dimension, i.e., time, are used as as-
planned models to be compared with superimposed as-built models [17]. For automated
CV-based CPM, many studies have attempted various techniques of acquiring 3D point
clouds or as-built models and reported the intended results by comparing as-built with
as-planned BIMs [84,85,117,118]. The intended results are reported by comparing as-built
with as-planned BIMs.

The process of superimposing an as-built model over an as-planned model is called reg-
istration. The registration process requires post-processing of the acquired CV-based data
to remove noise. There are two distinct methods of image model registration: coarse regis-
tration and fine registration. The coarse registration along with post-processing allows for
rough alignment, whereas the fine registration can achieve near-optimal alignment [74]. The
coarse registration can be achieved through various approaches, such as plane-based match-
ing, principal component analysis-based alignment [47], plane patches-based matching,
3D to 2D transformation [119], building extraction, and alignment for multi-building point
clouds [74], etc. For example, [84] proposed a semi-automated plane-based coarse registra-
tion approach and compared the proposed method with already existing general-purpose
registration software, and reduced the complexities and time requirements associated with
this process. This system addressed the issues of self-similarities at the object and model
level by the semi-automated matching stage and demonstrated resilience and robustness in
challenging registration cases. The plane-based registration finds the matching planes from
as-built and as-planned datasets and aligns both models [84]. However, the plane patched-
based system is the state-of-art of current practice, allowing for automatic registration using
a 4-plane approach rather than a 3-plane as in a plane-based process [85]. Moreover, the
Iterative Closest Point (ICP) is most frequently used for fine registration in CV-based CPM
studies [47,74,84,119]. For example, [120] proposed a fully automated registration of 3D
data to a 3D CAD model for CPM purposes. This study deployed a two-step global-to-local
registration procedure, i.e., principal component analysis-based global registration and
an ICP-based local registration, and demonstrated that not only this proposed technique
fully automates the process but also proved beneficial for project progress monitoring
purposes. In conclusion, few studies have proposed semi-automated and fully automated
registration techniques and directed further research efforts in exploring the useability of
these techniques for CPM in the real construction environment.

3.3.2. Progress Estimation through Object Recognition/Matching

The progress estimation process requires the recognition of various features or objects
present in the built environment following the model registration process. The comparison
between as-built and as-planned datasets does not provide useful information by the
mere superimposition of both models. This requires proper recognition, identification,
or classification of construction features in the as-built point cloud, thereby comparing
information available in object-based as-planned BIMs to retrieve information.

Many scholars have proposed techniques to detect, classify and recognize various
features of construction, such as walls, panels, tiles, ducts, doors, windows and fur-
niture. [32,34,121]. A few of these techniques are Mask R-CNN [32], DeepSORT [32],
Voxel [73], OpenGL [37], Probabilistic Model [86], Point Net [99], Surface-based recogni-
tion [84], timestamp [32], point calculation [122], segmentation by color thresholding [72],
color images [89], etc. These techniques retrieve useful information from object-based mod-
els that calculate progress estimation. Apart from as-built vs. as-planned comparison, a few
studies have also estimated progress based on counting equipment cycles [59], material
classification [78], material usage [79,82], and installation speed [75].

Table 5 compares various progress estimation methods used for CV-based CPM and
categorizes them into manual, semi-automated, and fully automated based on the required
manual input throughout the process based on the information retrieved from the reviewed
literature. There are two prevailing techniques, first involves the overlaying of the as-built
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model over the as-planned BIM model and comparing the overall models for the volume
of work completed and converting the output into percent complete or identifying the
specific construction features using the targeted BIM model for a specific type of construc-
tion feature, i.e., RCC structure of a building. The latter technique involves identifying
various construction features from the vision dataset and measures their quantity or rel-
ative position of installation/construction. In addition, it is evident from the table that
BIMs registration provides a varying level of automation based on the complexity of the
registration algorithm, and object recognition/matching also provides a certain level of
automation depending on the type of technique being utilized.

Table 5. Comparison of progress estimation techniques.

Technique Purpose
Level of Automation

Manual Semi-Automated Fully Automated

BIMs registration It superimposes an as-built dataset onto an
as-planned dataset to measure progress status. [33] [74,84] [85]

Object
recognition/matching

It identifies, recognizes, or matches various
construction features from overlayed models. - [32,59,73,80,86] [79]

3.4. Output Visualization

Output visualization corresponds to the presentation of useful information or results
obtained from the information retrieval or progress estimation. In the CV-based CPM
process, output visualization is as essential as DAQ, information retrieval, and progress
estimation. The results of this sub-process are crucial to CMTs, as they must make decisions
based on the output extracted from the entire process. Traditionally, CMTs use reports,
Gantt charts, or other visual techniques. The reviewed literature on the output of the CV-
based construction management process suggests a few visualization techniques, which
are discussed as follows.

3.4.1. Color Labels

Color labels are the most frequently used form for representing the information on a
vision dataset. The color labels used in CV environments are called bounding boxes. These
labels can provide a range of information depending on the purpose of an algorithm or a
process. The output shown by these labels can be classification, identification, segmentation,
verification, detection, recognition, etc. [35,74,123].

Few studies have also superimposed various forms of color labels on the input images
to visualize the current state of construction activities under consideration [39,73,77]. For
example, in this study, [77], the authors utilized color labels for performance monitoring. A
color label was given to each construction component to indicate whether that component
was built ahead of schedule (green label), on time (semitransparent white label), or behind
schedule (red label). Furthermore, different color variations were also suggested in annotat-
ing other factors as well, i.e., darker blue label to indicate that component has not been built
as planned. Similarly, another study [73] color-coded the construction elements to indicate
whether the element in consideration was behind or on schedule. The green label was
utilized to annotate the element on schedule, red labels were assigned to elements behind
schedule and grey labels indicated those elements whose progress has not been reported.
However, the proposed thresholds were tailored for the specific construction elements and
require further research to be proven significant in different cases [33]. The size, shape, and
description of these color labels depend on the technique or selected algorithm and can be
modified as per the project requirements.

3.4.2. Augmented Reality (AR) and Virtual Reality (VR)

AR is an interactive experience of a physical world with useful information loaded
onto the video feed for multiple purposes and operations [124,125]. Output visualization
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of CV-based CPM can also be enabled by VR after processing vision datasets for extracting
construction progress status. Some studies have explored the use of AR by linking it with
processed BIMs for monitoring construction progress [37,42]. An object-based interior
CPM was proposed by [37] utilizing the common as-built construction photographs and
displaying the interior construction progress by imposing color and pattern coding based
on the actual status. The study reported the difficulty in object detection and classifica-
tion in the interior construction environment and directed future studies to improve the
algorithm to automatically detect various types of interior objects without manual human
intervention. Another study [42] proposed a real-time AR-based system for modular CPM.
The proposed system demonstrated the automatic AR registration method represented by
relative coordinates and a fixed camera and successfully presented a live animation of the
construction sequence. However, the study was conducted in a controlled lab environment
using a simple mockup of a building. To sum it up, AR-based visualization requires the
accurate alignment of BIMs and real-world data. For such accurate positioning, sophisti-
cated surveying equipment is required. Another approach is to install fiduciary markers to
locate and estimate the exact location. Mobile-based AR systems can provide the required
accuracy with construction status. However, it requires further research to be implemented
for CV-based CPM [8].

3.4.3. Earned Value Management (EVM)

EVM is a project monitoring and control technique that integrates cost, time, and scope
to calculate project performance [126]. It requires as-planned and actual information on
all three constraints to calculate the schedule and cost variances and provide the schedule
and cost performance indexes as an alternative means of accessing the project performance.
EVM is a valued output for CMTs as it enables them to access the current state of a project
and make necessary decisions to keep the project on track.

A recent study has suggested that the output of CV-based monitoring of construction
projects can be integrated with EVM systems [16]. An automated calculation of EVM
indicators can provide necessary project control information to identify potential delays
and make useful decisions to control construction delays and cost overruns [16]. However,
the retrieved literature does not provide practical evidence of EVM-based output from
CV-based CPM.

Table 6 summarizes the explored techniques by the literature on the CV-based CPM
process. It also stated the concise purpose of the identified techniques in enabling the output
visualization of the said process for construction project management teams. Furthermore,
it also compares the identified visualization techniques used for presenting the output of
CV-based CPM and categorizes them into manual, semi-automated, and fully automated
based on the required human intervention throughout the process. Majority of the research
studies utilized color labels or varying shapes and sizes to showcase the outcome of the
overall process. These color labels also provide a certain level of automation to present the
outcome as well. However, AR and VR are still the least explored and very few studies
have implemented these techniques to present the outcome of the CV-based CPM process.

Figure 2 summarizes the findings of this systematic literature review and provides a
holistic overview of the automated CV-based CPM process. The overall process comprises
four distinct sub-processes from vision datasets to statistical output, i.e., photos and videos,
histograms, line graphs, and Gantt charts. Starting from DAQ, the figure summarizes the
identified techniques from the literature which enable the acquisition of vision datasets from
the construction environment. The dotted line between DAQ and information retrieval
represents the disconnect between the two processes. Most of the studies have manually
transferred the vision dataset from the capturing device to the processing medium, i.e.,
personal computers. Few have explored the automatic transfer of vision datasets via
wireless mediums and wired connections. Information retrieval and progress estimation
is a cyclical process as these sub-processes comprise overlapping techniques and the
process of information extraction also overlaps between two sub-processes. Most of the
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literature initially retrieved the information from the vision dataset using various algorithm-
based techniques. It later used the information to overlay on as-planned models via BIM
registration or deployed various object recognition and feature matching algorithms to
identify various construction features from the as-built dataset efficiently. Lastly, this study
also found a disconnect between the progress estimation and the output visualization.
Most of the reviewed literature performed complex processing to show the output of their
selected technique in the form that helps the construction teams make informed decisions
about ongoing construction projects.

Table 6. Comparison of output visualization techniques.

Technique Purpose
Level of Automation

Manual Semi-Automated Fully Automated

Color labels The color labels are indicators of varying sizes and shapes to
show the outcome of image processing. - [31,65,78,82] [39,63,68,73]

AR and VR
The visualization with overlaying information retrieved from
as-built vs. as-planned comparison to depict progress status in a
virtual environment.

- [37,42] -
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4. Discussion

This section aimed at addressing the final objective of this study, i.e., discussing the
role of identified techniques within the CV-based CPM process and providing an overview
of how these techniques are aiming at improving or replacing existing practices. Generally,
project success is associated with the successful completion of the project within its planned
cost and time by achieving an acceptable level of project specifications [127]. To achieve the
project’s pre-defined time, cost, and quality goals, proactive monitoring of its progress is
required. The traditional CPM process requires manual data collection of multiple activities
happening on a single day, compiling the data into useful information, and reporting it
to the stakeholders. Hence, traditional methods are labor-intensive, slow, error-prone,
and inefficient. Alternatively, CV-based CPM techniques have shown some potential in
resolving the problems with traditional methods [24]. This section compares traditional
practices with the CV-based CPM process of progress DAQ from the construction environ-
ment, retrieving the useful progress-related information from data collection instruments,
i.e., Daily Progress Reports (DPR), estimating the progress, and calculating the variance
between baseline and as-built and finally presenting the outcome of the CPM process to
consultant or client depending on the contractual obligations. The comparison is as follows.

4.1. DAQ

In a traditional construction setting, the planning engineer prepares a template and
hands it over to the site supervisor to collect progress-related information associated with
all the activities planned for that specific day [1]. The data acquired through this practice
usually consist of the name of the activity, actual start and end dates, percent completion,
number of earned manhours, and amount of work achieved in terms of quantities [128].
Although this process is manual, slow, and labor-intensive, as established earlier in this
section, it gives the required information to the construction project management teams
for further processing and decision making. Currently, the DAQ process of the CV-based
CPM explored several techniques, i.e., UAVs, handheld devices, fixed on mounts, and
surveillance cameras, which requires specialized skills on part of the planning department
and site staff to prepare for the progress-related data collection from the construction
environment [129]. It also requires additional cost resources for necessary equipment,
manpower, and other accessories to successfully conduct the DAQ process on a construction
site and cover all activities involved in a construction project [28]. Furthermore, a typical
construction project comprises more than a hundred different types of activities throughout
its lifecycle, and currently, the CV-based CPM process explored only a handful of these
activities, i.e., structural elements [32,67,119,130], e.g., columns, beams, slab, walls, etc.,
interior tile work [121], HVAC ducts [16,131], earthmoving activity [59,132], and few
others, which limits the useability of the CV-based CPM for the construction management
teams. Apart from these limitations, current literature demonstrated the usefulness of these
techniques in ideal or near-ideal settings on construction projects which requires but are
not limited to ideal lighting conditions, the least number of physical obstructions, better
weather conditions, etc. None of the literature attempted the DAQ process during bad
weather conditions and night shifts of the construction execution process.

4.2. Information Retrieval

Like the traditional DAQ process, the information retrieval process is also a manual
activity. After filling out the provided DPR template, the construction supervisor, and
hands it over to the planning engineer for further processing after getting it approved by
the construction manager [1]. Then, planning engineers manually extract and transfer the
necessary information into their computers and perform the necessary analysis as per the
requirements of their organization and contractual obligations. However, in the case of the
CV-based CPM process, information retrieval is being extracted from the vision datasets
using algorithm-based techniques which lies in the domain of Information Technology (IT)
and is far from the expertise of a typical planning engineer who is usually a graduate civil
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engineer. The information retrieval of CV-based CPM raises the requirement of an expert IT
professional along with the planning engineer with technical expertise in the construction
domain. Moreover, it also requires the investment in the required tools and equipment
necessary for performing this process efficiently [64]. Apart from the human resource and
cost resources required for this process, the major problem which no one has addressed yet
is deciding whether the activity in consideration has yet finished or not based on the quality
of completed work [24]. The CV-based CPM process is only taking the physical existence
of any structural element or other construction features as completion. This is usually not
the case in a traditional construction setting. For example, if the CV-based CPM process
has detected a concrete column at a certain point in time it will mark it as complete or
finished, what if it does not meet the requirement of finishing quality, or even worse what
if it does not meet the minimum requirements of the desired structural strength. Moreover,
no study has integrated the approval requirements from various cadres in the construction
management team to make them responsible and liable for delivering the desired outcome
of the construction project.

4.3. Progress Estimation

In a traditional setting, after retrieving progress-related information from DPR, the
planning engineering usually inputs the data into commercially available software such
as MS Project and Primavera P6 for further analysis, which compares as-planned and
as-built and returns the variance between the two [133,134]. The CV-based CPM process
widely utilized the BIM models for overlaying the information retrieved in the form of
point clouds and estimating the construction progress by volumetric comparison between
the as-built point cloud model and as-planned BIM [63,135–138]. This raises the need for
the BIM models for the construction project consideration, and not every project manage-
ment team utilizes and implements BIM for their construction projects [139,140]. Like the
information retrieval process, the progress estimation requires designated human resources
with the specialized expertise required for the advanced IT-enabled CV-based CPM process.
Furthermore, the CV-based CPM aims to improve the traditional practices or transform
the traditional process by eliminating them, which means replacing the currently utilized
tools mandated by the contracts, and clients/consultants require feedback in a specific
form [141].

4.4. Output Visualization

The output visualization in a traditional construction management practice corre-
sponds to the weekly and monthly construction progress reports submitted to consultants
or clients as per the requirements mandated by the contract [141]. These reports usually
comprise a detailed summary of activities planned vs. completed, the number of human
resources deployed, the type and number of tools and equipment utilized, and a sum-
mary of cost along with various charts and graphs to summarize the overall progress
achieved during the reported period [1]. The visual charts and graphs usually comprise
of manpower histogram, S-curve, EVM charts, and a tracking Gantt chart showing the
comparison between baseline and as-built schedule [142]. Furthermore, periodic payments
to the contractors are being made based on the progress information provided through such
progress reports. Currently, the CV-based CPM process explored and utilized color labels
to showcase the outcome of the overall process which does not portray useful information
or quantify the outcome to enable project stakeholders to take any necessary decisions.
Furthermore, the outcome visualization through AR and VR requires significant technical
expertise and further investment on behalf of project management teams [143].

Despite the current limitations of existing techniques and limited use cases, the CV-
based CPM has shown immense potential for automating progress information acquisition,
processing, and disbursement. Owing to the importance of accurate progress information
throughout the lifecycle of the project and the capabilities of CV-based techniques, a frame-
work is needed that efficiently assesses the available automated techniques and determines
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their integration within project management processes using Technology Readiness Levels
(TRL). This hypothesized framework should measure the maturity level of technology for
CV-based CPM applications. By involving the construction industry practitioners, this
framework should also be adopted for further research to support the understanding of
the industry’s requirements from the CPM process and holistic comparison of require-
ments versus capabilities of the CV-based CPM techniques will provide an overview of
resources required to develop the technology and its subsequent adoption. Moreover, the
enhanced and accurate progress information will significantly improve the decision-making
process by the CMTs which will further improve the adoption of such technologically ad-
vanced techniques. These efforts are likely to reduce the reliance of CMTs on manual,
time-consuming, labor-intensive, and most importantly subjective assessments being made
by the supervisory staff regarding the completion of construction activities and improve
overall project delivery.

The research efforts presented by the retrieved literature mainly focus on using CV-
based processing by exploring various techniques for monitoring and measuring construc-
tion progress. Very few studies have presented the PM solution from the perspective of
the construction management field. Further, most studies presented and experimented
with ML-based techniques to retrieve information from the vision data collected from
construction sites and addressed occlusion problems that occur due to the busy nature of
construction sites. Data synthesis presented in this review has also highlighted the need for
research efforts from the perspective of the construction management domain by involving
construction management professionals and directing the output of these analyses towards
helping CMTs in making useful decisions to keep projects on track.

5. Conclusions, Limitations, and Future Directions

The concept of an automated CV-based CPM process is still in its inception, as evident
by the research efforts in the form of proof of concepts, practical applications, and research
advancements. To make it a viable and preferred alternative method for PM on construction
projects, all sub-processes involved in the CV-based CPM, i.e., DAQ, information retrieval,
progress estimation, and output visualization, must consider a certain level of automation
and should minimize labor-intensive tasks and provide a well-connected process. These
sub-processes further contain various techniques that can be tested with multiple alterna-
tives to provide an efficient process for automatic PM on construction sites. In summary,
the CV-based CPM method encompasses four distinct processes, i.e., (1) data acquisition,
(2) information retrieval, (3) progress estimation, and (4) output visualization.

This systematic review summarizes the entire CV-based CPM process and identifies
many techniques and the level of automation provided by said techniques to achieve a fully
automated process. The application of CV-based PM for assessing construction projects has
many potential benefits. It can standardize the process of determining whether an activity
is finished or not; currently, it is up to a site supervisor to manually inspect and determine
the completion of an activity. The well-connected and fully automated process can also
eliminate the redundancy and errors from the process, making it reliable. However, current
research lacks the focus on determining the possibility and laying out the guidelines for
adopting CV-based techniques by CMTs into their existing processes. Furthermore, this
research effort neither aimed at improving the existing CPM techniques nor resolving the
problems posed by the traditional CPM process.

The retrieved literature further highlights the potential of CV-based techniques in
the construction industry. The research interest in this domain is increasing, and many
scholars have explored the real-life implementation of such concepts in the construction
environment. The benefits reported by these explorations predict the adaptability of
CV-based techniques over traditional techniques used in the construction industry for
decades. Further, researchers could explore the possibility of real-time monitoring and
measurement of construction progress to enable CMTs to adopt the CV-based CPM over
traditional practices.
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Finally, heightened research interest in this domain and further investment from
construction and academia in exploring the benefits of the CV-based CPM process could
transform the viability and acceptance by the construction industry sooner than later.
Further, research should divert its focus towards exploring the readiness and attitude of
the construction industry in adopting such technological solutions. It also needs to explore
the potential benefits, contractual allowances, tradeoff between traditional and information
technology-enabled techniques, anticipated reaction from the industry personnel, and
accepted forms in which the construction industry would adopt the automated CV-based
CPM technique.

The findings of this research effort will present a holistic overview of the CV-based
CPM process to the readership and help them understand the workings of this complete
process. Furthermore, the assessment and categorization of available techniques into the
level of automation provided by such techniques will help researchers quickly grasp the
idea of which technique provide the most automation throughout the process. Moreover,
this study highlights the disconnect between sub-processes of the CV-based CPM process
and directs future research studies toward the importance of seamless integration of
all sub-processes towards achieving a viable alternative to traditional CPM practices.
Lastly, this research study also compared the offerings of this advanced technique with the
requirements of actual construction setup and expectations of project management teams
as well which will help future research endeavors to involve and consider the industry
perspective during the developmental research phase in this domain.
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CV Computer Vision
CPM Construction Progress Monitoring
DAQ Data Acquisition
WoS Web of Science
UAV Unmanned Aerial Vehicle
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SVM Support Vector Machines
SLAM Simultaneously Localization and Mapping
CC Cascading Classifiers
SURF Speeded-Up Robust Features
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HoG Histogram of Oriented Gradients
BIMs Building Information Models
AR Augmented Reality
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EVM Earned Value Management
CMT Construction Management Teams
DPR Daily Progress Report
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