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Abstract: This research investigates the mechanical properties of soil-cement specimens ranging from
ultrasmall to large values of shear strain at dynamic loading. The nonlinear behavior of soil cement
exposed to dynamic loading in a wide range of changing shear strains was examined on the basis of
two mechanical models. All soil-cement specimens were collected from under an existing building
and modified with deep soil mixing (DSM). Soil-cement samples were examined using low-amplitude
oscillations in the resonant column and the dynamic triaxial compression method. Additionally, the
stress–strain state for modified footings exposed to dynamic loading, and the approximation of soil
stiffness and damping coefficient was analyzed. Dependencies on the basis of the resilient elastic
models of Ramberg–Osgood and Hardin–Drnevich are proposed for application. Results reveal that
the empirical graphs of the dependency soil stiffness–shear strain based on various methods exhibited
the distinctive S-shape of decreased stiffness. The stiffness of the soil cement was reduced by 50% of
the maximal value at shear strains of the 10−3 decimal order. The method presented in this study
enables the drawing of stiffness change and damping–shear strain dependency where the range of
shear strains changes from ultrasmall to large strains. The normalized modulus of shearing and the
damping coefficient on shear strains for soil cement could be obtained under the proposed method.
This method can be used for the preliminary calculations of structures on the footing modified by
mathematical modelling or when field research data from site investigation are not available.

Keywords: stiffness; damping; soil cement; dynamic loading; dynamic triaxial compression test

1. Introduction

Geotechnical forecasting and building foundation analysis under dynamic loading are
not conceivable without an accurate definition of the mechanical properties of soils. This
statement is also applicable to a modified foundation’s basis. Deep soil mixing technology
has become widespread in many countries. This transformation emerges when the basis is
produced with a specific material called soil cement. The stiffness of soil cement and its
ability to absorb energy demonstrate a nonlinear dependency on shear strain when the
ultrasmall strains range from 10−4 to 10−2%. The strain changing range under dynamic
loading is significant for shear strains, and varies between 10−4 and 10−2%. It is necessary
to investigate the material’s behavior within the entire range of shear strain changes for
a reliable forecast of a modified soil basis. The distinctive nature of complex research is
necessary to combine the results of tests conducted with the methods of dynamic triaxial
compression and low-amplitude oscillations in resonant columns to determine the dynamic
behavior of soil cement. This task becomes more difficult due to the specific physical and
mechanical properties of soil cements, such as the dependency of the obtained parameters
on humidity and density, limitations on the applicability of various sensors for recording
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displacements when exposed to overpressure, humidity, and the stringency of the operating
chambers of triaxial compression apparatuses.

The behavior of geological conditions due to seismic hazards is essential to forecasting
the impact of dynamic property changes. The stress–strain behavior (SSB) of transformed soils
under foundation increases the responsibility of designing, constructing, and maintaining
buildings and structures. It is required to factor in various types of dynamic loading of natural
and technogenic character. The proposed research is of paramount importance for industrial
structures (nuclear power plants and hazardous chemical factories); their irregular operation
could lead to substantial public, ecological, and economic consequences. The research results
enable new methods of studying and forecasting stress–strain behavior of the modified bases
of such buildings and structures in geotechnical design. The experimental investigation of
the dynamic properties of transformed soils allows for enhancing the reliability of design,
construction, and maintenance for complex engineering–geological conditions, and reducing
technical and economic expenses arising during design in construction.

One of the principal geotechnical tasks in designing buildings is to prevent the de-
velopment of a soil base’s joint deformations and a structure beyond the permissible limit
values, standardized by Russian and international regulatory documents. As a rule, to
reach the calculation values of strains and ensure the dynamic stability of soils without
moving a structure to another construction site, measures must be undertaken to transform
the soil base’s properties. The well-known deep soil mixing method (DSM) is applied
widely for the transformation of the construction properties of soil bases (Romanov and
Racinais, 2018) [1]. This technology has an advantage over similar methods of jet grouting
and pile bottom foundation work while applying a lesser amount of a binder (cement). Few
international control documents regulate works execution; for instance, European Standard
14679:2005 recommends executing special geotechnical works and deep mixing. The behav-
ior of soil bases modified under the DSM method against static and dynamic loading has
not been studied extensively. Therefore, the issue of the interaction of a modified soil base
and a structure exposed to static loading requires further study (Khosravi et al., 2016) [2].

This issue has lately been given much attention in various studies. The impact of soil
base transformation with the DSM method on stiffness under seismic loading was studied
by Shaghaghi et al. (2021) [3]. Results indicated that the soil base stiffness is increased upon
its transformation; the high stiffness of the binding material preconditions this. The study
mentions the high cost of this procedure due to the significant volume of soil mass to be
transformed for primary structures. Nevertheless, this approach is still much cheaper than
the conventional schemes applying the seismic isolation system. Tiwari and Upadhyaya
(2017) [4] reported that the stress in the soil massif, when exposed to seismic load, is reduced
by 48% due to 30% soil being replaced by soil cement. Researchers Namikawa and Usui
(2019) [5] revealed that the stiffness of a transformed soil base increased, and stated that
soil stiffness was increased by approximately 20% at impulsive loading, corresponding to
the most intense seismic impact.

The investigation of various factors affecting soil cements’ strength and dynamic
properties was thoroughly studied by Kim et al. (2018) [6]. Findings indicated that the
shearing action and soil-cement stiffness were increased with time of strength generation.
Whereas the properties depend on stress (generic shear modulus and damping coefficient),
different trends were observed where stiffness was regarded as the function of the time
of strength generation and the content of a binder. The results of prior studies by Li et al.
(2016) [7] demonstrated that dynamic shear strain develops at a lower rate while dynamic
strength gradually rises with the increase in the fraction of a binder in the composition of a
soil–cement mixture. The damping coefficient of soil cement was decreased as a function of
growing cyclic stresses and the number of cycles under cycling loading.

A semilogarithmic model fully described the degradation of soil cement’s shear mod-
ulus and damping coefficient. The importance of the relationship between the binder’s
content and strength gain time in geotechnical properties of modified soils is emphasized
by Upadhyaya et al. (2016) [8]. Studies by the triaxial compression method implemented
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by Du et al. (2021) [9] proved that the confining pressure was not significantly impacted the
generic modulus of elasticity for soil cement; it was determined by the content of a binder
and strength gain time. The same work noted that the damping coefficient is reduced with
the increase in confining pressure for the specific content of a binder and strength gain time.
The dependency of the damping coefficient obtained in this research for various binder
contents, strength gain times, and confining pressures corresponded precisely to the expo-
nential function. Ter-Martirosyan and Sobolev (2020) [10] studied the impact of changes
in humidity, density, and confining pressure on determining the dynamic properties of
soil cement. Laboratory tests by the triaxial compression method were implemented at the
specified humidity of soil-cement specimens (air-dry specimens, natural water content, and
water-saturated ones). The anisotropic stressed state of the soil-cement specimens exposed
to triaxial tests in the resonant column was preconditioned by the specific features of the
foundation of the designed building. The research showed that additional vertical loading
is the essential factor affecting stiffness. Ter-Martirosyan and Sobolev emphasize that,
with increasing density, the velocity of transverse waves decreases. Humidity is directly
connected with soil-cement density and the amount of water in pores, so the evaluation of
its impact on the dynamic properties of soil cement is analogous to the influence of density
change. Sobolev and Ter-Martirosyan (2020) [11] proposed a method for controlling the
stress–strain behavior of a transformed soil base exposed to dynamic loadings. Similar
research was implemented by Wei et al. (2020) [12], who presented systematic laboratory
testing for the impact of water content on soil-cement density while controlling the density
and porosity coefficient. The influence of the porosity coefficient and a binder’s content
was investigated. The strength of sandy soil stabilized by cement was constantly lowered,
while the water/cement ratio increased from 0.5 to 3. The general equation was proposed
for the evaluation of soil-cement strength. The water/cement ratio of the soil stabilized by
cement significantly impacts strength and stiffness, as reported by Wang et al. (2022) [13].
The investigation of the new method of water/cement ratio’s selection for construction
with the DSM method. The empirical model for evaluating the optimal water/cement
ratio of the transformed soil with variable cement content was developed on the basis of
empirical data.

Apart from purely experimental approaches to studying the inter-relation of the
physical properties of soil cement, its stressed state and dynamic properties, there are
approaches based on analytical analysis that study the interaction of discrete particles of
soil cement in the shape of spheres (discrete mechanics). An example of this investigation is
Wei et al. (2021, 2022) [14,15], who examined the advantage of semianalytical one-parameter
correlations between the velocity of waves’ propagation and the stressed state or correlation
between the stiffness of soil cement and stressed state. Notwithstanding mathematical
rigor, the analytical approach is to be verified by an experimental laboratory and field tests.
The study of damping of the dynamic soil shear modulus for various types of soils, both
natural and modified, is an urgent task in designing high-speed railways. Study Ye et al.
(2021) [16] is performed by a generalization the empirical models of the dynamic modulus
and the range of damping curves. A method for determining the value of the dynamic
modulus with a reasonable range of working shear deformations is proposed.

Nguyen et al. (2021) [17] stated the importance of obtaining the parameters of cement
deep mixing DSM columns for numerical finite element modeling, and comparing results
with geotechnical monitoring. Viet et al. (2020) [18] considered two models that define the
soil. The models of the Mohr–Coulomb (MC) and soft soil (SS) were used to model the
behavior of deep excavation, the retaining wall, and base, which were improved with the
use of deep cement mixing columns (CDMs). Results presented in this study can be used in
similar studies for these models. Dang et al. (2018) [19] performed similar studies that also
required determining damping parameters and a decrease in the stiffness of soil cement
with increasing shear deformation. Rashid et al. (2015) [20], and Priol et al. (2007) [21]
stated that, despite the long history of soil cementation technology, the need to determine
the parameters under dynamic effects is especially relevant for practical use. In the studies
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under consideration, numerical analysis based on the effective strength parameters was
carried out, which gave a more realistic idea of the real strength of the reinforced base and
its interaction with the surrounding soil. This simulation was perfomed with a 3D finite
element method model to provide a better reinforcement estimate.

This study explores the mechanical characteristics of soil-cement specimens with shear
strains ranging from ultrasmall to large. On the basis of the two mechanical models, the
researchers did not fully explore the nonlinear behavior of soil cement subjected to dynamic
loading in the broad range of changing shear stresses. The current investigation was
performed to fulfill this research gap, which is considered to be the novelty of this research.

2. Materials and Methods

In laboratory conditions, soil modified by cement samples from the designed nu-
clear power plant site was extracted and tested using a triaxial dynamic test. Before the
modification process, were presented fine sands of alluvial genesis. The reactor building
was constructed in situ and the soil basis is constructed using DSM technology. As a
binder, Portland cement V was used in compliance with ASTM C150/C150M-19a Standard
Specification for Portland Cement (compression strength at 28 days is 21 MPa). The undis-
turbed samples of cement-stabilized soils whose height was 140 mm and diameter 70 mm
were used, as shown in Figure 1. The principal physical properties of soil cements were
determined during the investigations and are demonstrated in Table 1.
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Table 1. Physical properties of the investigated cement-stabilized soils.

S. No.

Depth of Specimen
Collection H, (m) Humidity W,

Unit Fraction,
Containers

Density, g/cm3
Porosity

Coefficient,
Unit Fraction

Moisture Level
Sr, Unit Fraction

From To In a
Natural State

Dry
Soil

Soil
Particles

1 10.2 10.6 0.641 1.56 0.95 2.66 1.8 0.95
2 18.1 18.3 0.514 1.67 1.1 2.67 1.43 0.96
3 19.1 19.3 0.600 1.59 0.99 2.66 1.69 0.95
4 3.7 4.0 0.700 1.54 0.91 2.66 1.92 0.97
5 7.1 7.4 0.602 1.59 0.99 2.67 1.7 0.95
6 9.0 9.4 0.696 1.53 0.9 2.67 1.97 0.94

The modified soil samples were tested using the low-amplitude oscillations in the
resonant column method [22], as shown in Figure 2a. Three dynamic triaxial compression
tests (as shown in Figure 2b) were conducted (Seed and Idriss, 1970) [23] to study the
nonlinear dynamic behavior of soils and plot the degradation curves (dependency of shear
modulus G and damping coefficient D on shear strains γ at cyclic loads).
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Figure 2. Laboratory equipment for testing dynamic properties of cement stabilized soil. (a) Resonant
column and (b) the apparatus of dynamic triaxial compression.

The laboratory unit for dynamic triaxial compression was produced in Germany,
Gottingen, APS Antriebs-, Prüf- und Steuertechnik GmbH, model LO70-SH0063-S2 (https:
//www.wille-geotechnik.com; accessed on 1 June 2022). The laboratory setup for testing
using low-amplitude torsional vibrations (resonant column) was produced in Russia by
NPP Geotek LLC, model GT 1.3.3. All used laboratory equipment was standard, and passed
metrological control and verification. The implemented studies allowed for deriving the
set of dependencies describing the decrease in G and increase in D on shear strain γ; these

https://www.wille-geotechnik.com
https://www.wille-geotechnik.com
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dependencies enable foreseeing the stiffness change of soils exposed to dynamic loadings
corresponding to the predicted seismic impact.

The actual shear modulus values obtained during the experiments were normalized
to the value of initial shear modulus G0. The value of shear modulus G, obtained on the
basis of test results in the resonant column at low shear strains γ from 10−4 to 10−3%,
was assumed to be initial shear modulus G0, i.e., under the first most significant value of
shear modulus. All calculations were performed by using the ASTM D 4015. Generic shear
modulus G/G0 using the dynamic triaxial compression method was determined assuming
that the initial shear modulus value at low strains G0 equaled the value obtained during
low-amplitude oscillations in the resonant column tests. The results of estimating generic
shear modulus G/G0 and damping coefficient D in the relationship with shear strains γ
under the results of triaxial testing were combined with the results of testing under the
method of low-amplitude oscillations in the resonant column on the general chart to derive
the given dependencies in the range of shear strains γ from 10−4 to 10−2%. Particular
values obtained during each experiment are presented in Appendix A.

3. Results and Discussions

The obtained empirical dependencies of generic shear modulus G/G0 and damping
coefficient D on shear strains γ (Figure 3, Table 2) were obtained during the experiments
and approximated by the following logarithmic functions:

G
G0

= −A1 · ln(γ) + B1 (1)

D = A2 · ln(γ) + B2 (2)

where A1 = 0.066, A2 = 0.588, B1 = 0.073, and B2 = 11.059 dimensionless empirical
coefficients were assumed with the experimental data.
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soils (according to the results of six readings).
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Table 2. Investigated dynamic properties for the investigated cement-stabilized soils.

S. No. Depth, m G0,
MPa

Vs,
m/s

Relative Shear Strain γ, Unit Fraction

Shear Modulus G, MPa

Damping Coefficient D, %

1 10.2–10.6 240 390
2.8 × 10−7 5.0 × 10−7 1.2 × 10−6 2.3 × 10−6 4.9 × 10−6 8.6 × 10−6 1.1 × 10−5 1.5 × 10−5 8.0 × 10−5 3.6 × 10−4

240 240 237 228 225 217 194 287 270 28
1.65 1.65 1.79 2.15 2.35 2.63 2.83 7.95 5.66 7.87

2 18.1–18.3 263 424
2.0 × 10−7 5.6 × 10−7 1.4 × 10−6 3.0 × 10−6 7.3 × 10−6 9.7 × 10−6 1.3 × 10−5 7.9 × 10−5 1.9 × 10−4 3.7 × 10−4

263 263 263 250 240 216 173 300 263 231
1.81 1.78 1.98 2.38 2.39 2.57 2.56 6.28 5.31 8.05

3 19.0–19.3 244 391
2.0 × 10−7 5.1 × 10−7 1.2 × 10−6 3.1 × 10−6 5.6 × 10−6 9.7 × 10−6 1.3 × 10−5 5.3 × 10−5 1.8 × 10−4 8.1 × 10−4

244 241 237 234 234 204 190 280 32 26
1.90 1.90 2.11 2.17 2.43 2.89 3.02 8.63 3.10 6.98

4 3.7–4.0 - -
5.4 × 10−5 2.8 × 10−4 8.1 × 10−4 1.8 × 10−3 1.0 × 10−2 - - - - -

58 48 47 54 85 - - - - -
17.00 8.80 6.37 5.79 7.69 - - - - -

5 7.1–7.4 - -
1.3 × 10−3 2.2 × 10−3 2.8 × 10−3 3.3 × 10−3 3.7 × 10−3 - - - - -

114 148 162 181 191 - - - - -
6.49 5.90 5.08 4.81 4.37 - - - - -

6 9.0–9.4 - -
5.2 × 10−5 1.9 × 10−4 4.5 × 10−4 9.3 × 10−4 1.8 × 10−3 - - - - -

190 137 121 117 130 - - - - -
23.42 9.93 5.90 4.87 4.60 - - - - -

The selection of a logarithmic function is preconditioned by the maximal acceptability
of approximation assessed by the parameter coefficient of determination R2. The necessity
of applying similar approximating functions is supported by the further use of laboratory
test results for extrapolation on the broader range of shear strains γ. The problem is that,
for the whole range of shear strain programmed by the software, it is not always possible
to derive the dependencies of shear modulus degradation and damping coefficient on
the shear strain shown in Figure 3. Some gaps in these graphs could be filled utilizing
data interpolation obtained in the adjacent lots by employing Functions (1) and (2). This
approach is likely to prove its value for further engineering analysis, as, for instance,
presented in the work of Siretean et al. (2014) [24].

For the further analysis and description on nonlinear relationships between stresses
and strains in soil cement at dynamic loading (to a successful application for numerical
analysis of the stress–strain state of modified footings), the resilient-elastic models of Ramberg–
Osgood [25] and Hardin–Drnevich (Drnevich et al., 1978) are proposed [22] for the approx-
imation of soil stiffness and damping coefficient. On the basis of the results of laboratory
tests, generalized empirical dependencies were drawn that were further approximated by
the proposed models. The selected models are widely applicable in nonlinear calculations of
the stress–strain state when a footing interacts with a structure while accounting for various
dynamic impacts (Solberg et al., 2016) [26,27], (Wolf and Song, 2002) [28], (Ueng and Chen,
1992) [29]. The given models are predominantly used in the model software complexes for
the mathematical modelling of the system’s footing–structure interaction under static and
dynamic loading. However, a conventional method for determining parameters on the basis
of experimental data does not exist.

The first proposed model, the Hardin–Drnevich, is a hyperbolic model with three
variable parameters: the generic shear modulus G/G0, the relationship between shear
strain and nonlinearity limit γ/γ0.7 and empirical parameter α determining the type of
nonlinear dependency. Generic shear modulus G/G0 at cyclic loading for this model
corresponds to the formula:

G
G0

=
1

1 + α
(

γ
γ0.7

) (3)

In the Hardin–Drnevich model, the relationship between generic shear modulus G/G0
and damping coefficient D is described by the following formula:

D =
4
π

(
1

1 − G
G0

)(
1 +

G
G0

1 − G
G0

ln
(

G
G0

))
− 2

π
(4)
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In the current research, in a soil-cement sample from the footing of the designed
nuclear power plant, the value of 0.05 was the most optimal for parameter α in the Hardin–
Drnevich model. Applying the approximation function of Equations (3) and (4), the curves
of the dependency of soil stiffness and soil damping on the shear strain were produced.
The results are presented in Figure 4 and Table 3.
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Hardin–Drnevich model (results of six tests).

The second considered model, namely, the Ramberg–Osgood, includes four parame-
ters: generic shear modulus G/G0, the relationship between the current shear strain and
nonlinearity limit γ/γ0.7, and empirical parameters α and r, which define the type of
nonlinear dependency in the given model. In the Ramberg–Osgood model, the defining
dependency corresponds to the formula:

G
G0

=
1

1 + α
(

γ
γ0.7

)r−1 (5)

where γ is shear strain, γ0.7 is shear strain at which G/G0 = 0.722, α and r are empirical
parameters determined from the results of experimental data approximation.

In the Ramberg–Osgood model, the relationship between generic shear G/G0 and
damping coefficient D is estimated with the following formula:

D =
2
π

r − 1
r + 1

(
1 − G

G0

)
(6)

The implemented experimental studies show that, for the examined soil cement, the
values of parameters α and r for the Ramberg–Osgood model were assumed to be equal
to 0.35 and 1.35, respectively. From these parameters, the most optimal approximation of
experimental data of laboratory tests is achieved. To obtain these data, it is necessary to
combine the results of tests on various laboratory apparatuses, as each has its own limited
range of measurement of shear strain measurement in dynamic mode.
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Table 3. Table of recommended values of dynamic properties.

N Soil’s Model

Initial
Shear

Modulus
G0, MPa

Shear
Modulus

G0.722, MPa

Shear Strain
γ0.7,

Unit Fraction

Velocity
Vs, m/s

Relative Shear Strain γ, Unit Fraction

Generic Shear Modulus G/G0, Unit Fraction

Damping Coefficient D, %

1 Ramberg–Osgood

244 180 7.50 × 10−5 391

1.2 × 10−6 8.0 × 10−6 1.2 × 10−5 7.5 × 10−5 3.4 × 10−4 1.6 × 10−3 7.1 × 10−3 3.2 × 10−2 1.5 × 10−1 6.7 × 10−1

0.9 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
2.7 3.3 3.4 4.4 5.5 6.7 7.9 9.0 9.8 10

2 Hardin–Drnevich
1.2 × 10−6 8.0 × 10−6 1.2 × 10−5 7.5 × 10−5 3.4 × 10−4 1.6 × 10−3 7.1 × 10−3 3.2 × 10−2 1.5 × 10−1 6.7 × 10−1

1.0 0.9 0.9 0.9 0.8 0.5 0.2 0.1 0.1 0.1
2.0 2.1 2.1 3.0 6.3 16 36 52 60 64
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Using the approximation functions of the Ramberg–Osgood model (5) and (6), the
curves of dependency of stiffness and soil intake on shear strain that are recommended for
use in succeeding calculations were obtained. The curves are presented in Figure 5 and
Table 3.
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cement with the Ramberg–Osgood model (results of six tests).

The obtained curves of the dependency of soil stiffness on shear strain had the distinc-
tive S-shape of stiffness reduction (which, on the logarithmic scale of strains, becomes a
straight line). This shape is typical for both dispersive soils and specimens modified by
the deep soil mixing method. Experimental data analysis showed the minimal strain that
can be accurately measured at standard laboratory tests (we assumed the test of triaxial
compression or odometer tests as the standard laboratory test). Soil stiffness is often de-
creased by more than a half its initial value at small strains. Once again, this proves the
necessity to analyze the change in the mechanical properties of the soils at various values
of shear strain.

The Hardin–Drnevich model is a reasonable fit to the range of ultrasmall strains. How-
ever, with a strain increase, this model tends to unreasonably overestimate the damping
coefficient. This result is clearly demonstrated in Figure 4, where the curve of the depen-
dency of the damping coefficient sharply went upwards in the range of large strains. This
shortcoming of this model is related to its limited flexibility, as it only depends on the
constrained number of parameters, which do not allow for the curve’s shape to vary in the
ample range. This fact does not allow for recommending this model as an analytical model
to assess the stress–strain state by the method of mathematical modelling for a soil base
modified by the method of deep soil mixing.

At the same time, the Ramberg–Osgood model demonstrated an improved conver-
gence with the results of the experimental studies. The graphs of the degradation of
shear strain modulus and damping coefficient on the base of the Ramberg–Osgood model
(Figure 5) practically coincided with the points of the experimental readings. The ana-
lyzed and obtained curves show that the increase in parameter r in the Ramberg–Osgood
model would lead to a worsening of modulus degradation with the increase in shear strain,
whereas degradation started at a higher strain value. On the other end of the spectrum,
when parameter α was increased, the curve was shifted towards the left side of the diagram,
i.e., the deterioration started at lower values of shear strain. Thus, the four-parameter
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Ramberg–Osgood model is preferable for use in the numerical modelling of buildings’
stress–strain state of modified soil-cement bases.

The investigation of dispersive soils resulted in a decrease in soil stiffness from small
to large strains related to the loss of intermolecular and superficial forces inside the soil
skeleton. The mechanism of reducing soil-cement stiffness has not been studied thoroughly,
as this material is at the nexus of the dynamic behavior theory of soil and concrete. However,
when evaluating the behavior of cement-stabilized soils under dynamic loading impacts,
the relationships between elastic and plastic deformations could be applied, with retained
strength and the typical vibrocreep for both soil and concrete. When the loading direction
was reversed, soil and concrete restored their stiffness to the maximal value, approximately
equal to the initial soil stiffness. Further, stiffness was reduced again when the loading was
imposed in the opposite direction.

4. Conclusions

The current research determined the dynamic properties of cement-stabilized soil
samples obtained from an industrial building’s soil basis. Specific laboratory tests of
cement-stabilized soils were carried out using the methods of low-amplitude oscillations in
the resonant column and dynamic triaxial compression to study the nonlinear behavior of
soils exposed to dynamic loading, particularly the nonlinear change in shear modulus G
and damping coefficient D as a function of shear strain γ. It was required to fix the change
of given parameters in the range of shear strains 10−4–1% with the purpose of further use
for the analytical and numerical calculations of interaction of a designed structure with
a soil base modified by the DSM method. The results of the research are summarized
as follows:

1. The modified soil specimens were tested to their complete saturation with distilled
water. The tests were implemented under a consolidated–undrained scheme. The
consolidation pressure was specified according to the ground pressure on the sampling
depth and consolidation isotropic.

2. As the result of the tests, we obtained the values of velocity of transversal waves
Vs, initial shear modulus G0; shear strains γ0.7 (at which G

G0=0.722 ), dynamic shear
modulus G, and absorption (damping) coefficient D of soils in the range of shear
strains γ, which where 10−4 to 10−2%.

3. The integrated degradation curves of shear modulus and damping coefficient for
stabilized soils were obtained by reconciling the test results for soil-cement specimens
implemented by two methods—dynamic triaxial compression and low-amplitude
oscillations in the resonant column.

4. The Hardin–Drnevich model is a reasonable fit to the range of ultrasmall strains only.
With the strain increase, the model tended to unreasonably overestimate the damping
coefficient. This fact does not allow for recommending this as a computational model
for succeeding numerical modelling. The second considered model of Ramberg–
Osgood showed better convergence with the results of experimental research. The
curves of degradation of shear modulus and damping coefficient on the base of this
model practically coincided with the experimental points. The four-parameter model
of Ramberg–Osgood is better for the application in the numerical modelling of the
strain–stress state of transformed soil-cement bases of buildings.

5. The empirical linear dependency of G/G0 and D on shear strain γ proposed in this
study could be further used for the dynamic analysis of structures on a soil base
modified by the DSM method for preliminary calculations or by scenarios with data
of direct field investigation.
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Appendix A

Laboratory tests of reinforced soils were performed using low-amplitude oscillations
in a resonant column and dynamic triaxial compression to study the nonlinear behavior
of soils under dynamic loads, particularly the nonlinear change in shear modulus G and
damping coefficient D depending on shear deformations γ.

Laboratory tests of soil-cement samples in the mode of low-amplitude dynamic tests
in a resonant column (triaxial static loading with simultaneous excitation of low-amplitude
torsional vibrations in the sample) were carried out in accordance with the requirements of
Russian State Standard GOST 12248-2010 “Soils. Methods for laboratory determination of
strength and deformability characteristics” (https://docs.cntd.ru/document/1200084869;
accessed on 1 June 2022) and Russian State Standard GOST 56353-2015 “Soils. Methods
for laboratory determination of the dynamic properties of dispersed soils” (https://docs.
cntd.ru/document/1200118271; accessed on 1 June 2022). Samples of reinforced soils were
tested at full water saturation with distilled water. The tests were carried out according to
the consolidated–undrained scheme. The consolidation pressure was set in accordance with
the natural pressure at the sampling depth. Consolidation took place in isotropic mode.

Laboratory tests of soil cement samples in the mode of dynamic triaxial compression
(triaxial static loading with simultaneous excitation of vertical vibrations in the sample)
were carried out in accordance with the requirements of Russian State Standard GOST
12248-2010 “Soils. Methods for laboratory determination of strength and deformability
characteristics” and Russian State Standard GOST 56353-2015 “Soils. Methods for labora-
tory determination of the dynamic properties of dispersed soils”. Samples of reinforced
soils were tested at full water saturation with distilled water. The tests were carried out
according to the consolidated–undrained scheme. Consolidation pressure was set in ac-
cordance with the natural pressure at the sampling depth. Consolidation took place in
isotropic mode.

As a result of the tests, the values of shear wave velocity Vs (m/s), initial shear
modulus G0 (MPa), shear strain γ0.7 (fraction units), dynamic shear modulus G (MPa), and
absorption (damping) coefficient D (%) soils were in the range of shear deformations γ
10−4–1 %. Particular values of mechanical (dynamic) properties for each tested soil sample
are contained in this appendix in Figures A1–A6.

https://docs.cntd.ru/document/1200084869
https://docs.cntd.ru/document/1200118271
https://docs.cntd.ru/document/1200118271
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