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Abstract: Wind loads on structures are difficult to directly measure, so it is practical to identify
structural wind loads based on the measurements of structural responses. However, this inversed
problem is challenging compared with conventional load identification as wind loads are time-
space coupled and spatially distributed dynamic loads on structures. An improved method is
proposed for identifying wind loads on structures using only partial measurements of structural
acceleration responses in this paper. First, the wind loads on a structure are decomposed by proper
orthogonal decomposition as a series of time-space decoupled sub-distributed dynamic loads with
independent basic spatial distribution functions and time history functions. Herein, structural
modes are adopted as the basic spatial distribution functions and structural modes of discretized
and continuous structural systems are investigated. Then, a history function of the decomposed
wind load is identified in the modal domain based on modal Kalman filter with unknown inputs,
which is proposed by the authors. Finally, the distributed wind loads are reconstructed for discrete
or continuous structural systems. The feasibility of the proposed algorithm is verified by two
numerical examples of identification of wind loads on a discrete shear frame and a wind turbine
tower, respectively.

Keywords: wind loads identification; proper orthogonal decomposition; modal Kalman filter with
unknown inputs; mode superposition method; discrete structural system; continuous structural system

1. Introduction

Wind load information is important for the design and assessment of engineering
structures, especially for high-rise buildings and large-span bridges. However, wind
loads on the structures are usually unknown and are quite complicated because they are
affected by many factors, such as topographic and geomorphic conditions, surrounding
environment and structural morphology. In addition, the direct measurements of wind
loads are not feasible in practical engineering. However, it is easier to measure the wind-
induced responses of structures. Therefore, it is more realistic to identify/reconstruct wind
loads using partially measured wind-induced responses as the inversed problem.

In recent years, some wind load identification methods have been developed [1–3].
Law et al. [4] proposed the problem of time-varying wind load identification in state space
and solved it with a regularization method. They simulated the fluctuating wind load as
a multi-variable random function and identified the wind load at the full height of the
structure by observing the displacement and strain response of the structure. Luigi et al. [5]
and Federica et al. [6] used the orthogonal decomposition theory to establish a turbulent
field of wind loads and considered the coherence of turbulence. Hwang et al. [7] proposed
a method of modal wind load identification based on the Kalman filter and verified it
with the data obtained from wind tunnel experiments. Subsequently, the Kalman filter-
based method was used to estimate the modal wind load of structures with tuned mass
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dampers under typhoon action [8]. Zhi et al. [9–11] regarded the fluctuating wind load
as zero-mean Gaussian white noise, and successfully identified the unknown fluctuating
wind load of the structure by using continuous Kalman, discrete Kalman and Taylor
polynomial expansion methods. It is a good method to assume the fluctuating wind
load as zero-mean white noise or random walk process, but in practical engineering, it is
difficult to distinguish the fluctuating wind response from the observed sensor response
for wind load calculation. Niu et al. [12] measured the acceleration data of the structure
through the long-term health monitoring system and identified the equivalent wind load
acting on the Guangzhou Tower. Xu et al. [13] applied the direct inverse method to
solve the generalized wind load by fully measuring the non-stationary wind vibration
acceleration responses. Li et al. [14] studied the wind load characteristics of oval high-rise
structures. Wu et al. [15] proposed a new wind load inversion method, which decomposed
wind load into the product of orthogonal basis of position and time history function and
took fully observed structural displacements, derived velocity and acceleration responses
to obtain the wind load of the structure by least square estimation. Xue et al. [16,17]
used the method of unbiased estimation to identify wind load under both known and
unknown structural parameters. In a case study of the 1310 m long Hardanger Bridge,
Petersen et al. [18,19] studied wind loads in time domain and frequency domain and
introduced the Potential Gaussian Process model (GP-LFMS) to characterize the evolution
of wind loads. Nasrabad et al. [20] presented a new wind speed estimation method by
observing the deflection response of the tower and used the neural network to help estimate.
Charisi et al. [21] determined the variation of wind pressure coefficient at different locations
along the wind direction by on-site measurement of a double medium-sized building
complex, which is of great significance to the subsequent calculation of wind pressure and
wind load. For flexible slender structures, the interaction of the wind with the structure
also causes aeroelastic effects. In this regard, many scholars [22–24] have also carried out
corresponding research on aerodynamic damping and aeroelastic loads.

Currently, in the study of identifying wind loads, some studies [9–11] assume that
the wind load was zero mean white noise or random walk process, and the influence of
the average wind on the structure was ignored. Therefore, it is necessary to identify both
fluctuating and mean winds. In addition, modal truncation is also a very common method
to reduce the number of observations. When the modal wind load is transformed into the
physical coordinate wind load, the modal shape is no longer a square array after truncation.
In some studies [16,17] the pseudo-inverse of the modal matrix was calculated and the
modal wind loads were converted to wind loads in physical coordinates, but the use of
the pseudo-inverse resulted in non-unique results. How to avoid the pseudo-inverse of
the matrix is also content to be studied. Some studies [18,19,25] only identify modal wind
loads and do not convert them into loads in physical coordinates. Although the modal
wind load also has certain practical significance, its effect is not as large as that of the wind
load in physical coordinates. Moreover, most of the current studies are aimed at shear
frames or high-rise buildings, which are generally regarded as discrete structures, and the
identification of wind loads acting on continuous system structures is not very involved.

An improved method for identifying wind loads is proposed in this paper to realize
real-time identification of unknown wind loads of structures based on the partial wind-
induced responses of the structures. The wind loads are assumed to be composed of two
mutually independent functions about position and time, and the spatial distribution func-
tion about position is expanded by orthogonal polynomial about vibration mode. In this
paper, formulas are derived and calculated for both continuous and discrete systems. After
that, the time function obtained by decomposition is combined with the modal Kalman
filter with unknown inputs (MKF-UI) developed by authors [26] to identify unknown
forces, so as to achieve the purpose of identifying unknown wind loads.

The contents of this paper are organized as follows. First, the improved identification
method of wind loads is proposed in Section 2. The decomposition of wind loads decoupled
sub-distributed dynamic loads with structural modes and time history functions for discrete
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system and continuous system, and modal Kalman filter with unknown inputs (MKF-UI)
are presented. In Section 3, two numerical identifications of wind load on a 60 m continuous
wind tower system and a 20-story discrete shear frame system are carried out respectively
to verify the effectiveness of the proposed method.

2. Improved Identification Method of Wind Loads
2.1. Simulation of Wind Loads on Structures

In this paper, only one-dimensional wind loads along the vertical space field are
considered. Then, the wind speed at level h denoted as v(h, t) at time t can be expressed as:

v(h, t) = v(h) + ṽ(h, t) (1)

where v(h) is the mean wind speed at level h; ṽ(h, t) is the fluctuating wind speed at level
h, which varies over time.

The mean wind speed can be calculated according to the power law [27] as follows:

v(h) = v(h′)
(

h
h′

)α

(2)

where h′ and v(h′) represent the reference height and the mean wind speed at the corre-
sponding height according to the specification. In this study, h′ is set to 10 m above the
ground; h and v(h) are the arbitrary height and its corresponding average wind speed; α is
the power law exponent.

In this paper, the power spectrum of fluctuating wind speed ṽ(h, t) is davenport
spectrum, then the self-power spectrum Sii(ω) can be expressed as follows [28]:

Sii(ω) = 8πkv2
10

χ2

ω(1 + χ2)4/3 ; χ = 600ω/πv2
10 (3)

where ω is the circular frequency, k is ground roughness, v10 is the basic wind speed at a
standard reference height of 10 m, taking into account the local ground roughness.

The cross spectrum of longitudinal fluctuating wind loads at different heights can be
expressed as [29]:

Sij(ω) =
√

Sii(ω)Sjj(ω)γij(∆h, ω) (4)

where Sii(ω) and Sjj(ω) are the wind speed spectrum at hi and hj height respectively, and
γij is the coherence function. The expression of the coherence function is as follows [29]:

γij(∆h, ω) = exp

(
− ω

2π

Cz∆h
1
2
[
v(hi)v(hj)

]) (5)

where Cz is the exponential decay coefficient, and ∆h is the height difference between the
i-th point and the j-th point. The spectral density function matrix can be expressed as:

Sx(ω) =


S11(ω) S21(ω) · · · Sn1(ω)
S21(ω) S22(ω) · · · Sn2(ω)

...
...

. . .
...

Sn1(ω) Sn2(ω) · · · Snn(ω)

 (6)

Perform a Cholesky decomposition of this matrix, that is:

S(ω) = H(ω)H∗(ω)T (7)
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H(ω) =


H11(ω) 0 · · · 0
H21(ω) H22(ω) · · · 0

...
...

. . .
...

Hn1(ω) Hn2(ω) · · · Hnn(ω)

 (8)

According to Shinozuka’s theory [28,30], the pulsating wind speed can be simulated by:

ṽ(hi, t) =
i

∑
j=1

N

∑
l=1

(∣∣∣Hij(ωjl)
∣∣∣√2∆ω cos[2πωjlt + θjl ]

)
(9)

in which ∆ω = (ωu −ωk)/N, ωl = ωk + (l − 1 + j/N)∆ω, ωu and ωk are the upper and
lower limits of the interception frequency, respectively; N is a sufficiently large positive
integer and θjl is a random number whose value range is (0, 2π).

Based on Equation (1), the total wind pressure w(h, t) can be obtained:

w(h, t) =
1
2

ρv2(h, t) =
1
2

ρv2(h) +
1
2

ρ[ṽ2(h, t) + 2v(h)ṽ(h, t)] (10)

in which ρ is the air density, and w(h, t) can be divided into average wind pressure w(h)
and the part of fluctuating wind pressure w̃(h, t) as follows:

w(h) =
1
2

ρv2(h), w̃(h, t)
1
2

ρ[ṽ2(h, t) + 2v(h)ṽ(h, t)] (11)

Then at level h, the wind load can be calculated as

f(h, t) = µs(h)As(h)w(h, t) (12)

where µs(h) is the structure drag coefficient at level h; As(h) is the windward area at level h.

2.2. Wind Loads Decomposition and Modal Transformation

Since wind load changes with height, full observation is required to identify all
unknown wind loads. However, it is almost impossible to deploy a lot of sensors in practical
engineering. In this paper, the motion equation is transformed into modal coordinates, the
wind loads are decomposed into a series of independent functions of space and time, and
modal truncation is carried out to reduce the identification numbers and achieve a partial
observation effect. In this paper, the following formulas are mainly derived for two cases:
continuous system and discrete system.

2.2.1. Identification of Wind Loads on Continuous Structural Systems

A vertical cantilever structure can be used to verify the unknown wind loads identifi-
cation method. It is assumed that the aerodynamic damping effect is not considered in this
paper. The equation of motion is given as:

ρA(h)
∂2w(h, t)

∂2t
+ c

∂w(h, t)
∂t

+
∂2

∂h2

[
EI(h)

∂2w(h, t)
∂h2

]
= f(h, t) (13)

where ρ and A(h) are the mass density of the cantilever structure and the structure cross-
sectional area at level h. Symbols EI(h) and c are the flexural rigidity and the damping of
the cantilever at level h, respectively. f(h, t) are the distributed wind loads calculated in
Equation (12). w(h, t) is the displacement of the cantilever at level h and time t.

Due to the limited number of measurement sensors, structural modal reduction is
adopted according to the modal coordinate transformation theory [31]. The structural
acceleration response vector

..
x(t) can be obtained as follows:

..
x(t) = Φ

..
q(t) (14)
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where
..
q(t) is the p× 1 modal acceleration vector, Φ is the mode shape of continuous system

structure after p order truncation and p is the number of modal truncations. Truncated
modal number has an impact on the result, and many scholars [11,17] have done relevant
research on it. It is pointed out that for structural vibration, the first several modes are
mainly involved in the vibration of the structure. The more the number of intercepted
modes, the higher the identification accuracy will be, but the more structural responses
need to be measured. In order to intercept appropriate modal numbers and obtain relatively
accurate identification results, this paper mainly uses the proper orthogonal decomposition
(POD) technique to determine the number of modal truncations of a multi-degrees of
freedom (MDOF) system. The following Equation can be used to calculate the energy
contribution η:

η =

p
∑

i=1
λi

n
∑

i=1
λi

(1 ≤ p ≤ n) (15)

where p means the number of truncated modes and n is the number of structural degrees of
freedom. λi is the eigenvalues of acceleration response covariance matrix, which represent
the proportion of energy in the response. In general, η should exceed 99% of the whole
energy in the structural responses and its corresponding modal order is the number of
truncations needed.

After transforming physical coordinates into modal coordinates, Equation (13) can be
rewritten as:

..
q(t) + Γ

.
q(t) + Λq(t) =

ΦTf(h, t)
M∗

(16)

For Rayleigh damped system, some matrix parameters in the above formula can be
expressed as:

Γ = diag(2ξ1ω1, . . . , 2ξiωi, . . . , 2ξpωp), Λ = diag(ω2
1, . . . , ω2

i , . . . , ω2
p), M∗ = diag(m1, . . . , mi, . . . , mp) (17)

where ωi and ξi mean the natural frequency and the modal damping ratio of the ith
mode, and mi is the ith modal mass.

It is well known that the distributed wind loads are the function of position and
time. This article is proposed to decompose the distributed wind loads f(h, t) by proper
orthogonal decomposition (POD) as a series of time-space decoupled sub-distributed
dynamic loads with independent basic spatial distribution functions Tj(h) and time history
functions dj(t). i.e.,

f(h, t) =
p

∑
j

Tj(h)dj(t) (18)

Then, the ith modal force of the distributed wind loads can be expressed as follows:

f m
i (t) =

∫ L

0
f(h, t)ϕi(h)dh =

∫ L

0
ϕi(h)

p

∑
j

Tj(h)dj(t)dh (19)

where ϕi(h) is the ith mode shape function of the vertical cantilever structure, L is the
length of the continuous structure, and f m

i (t) is the ith modal force for the distributed wind
loads. If Tj(h) and ϕi(h) are orthogonality, Equation (18) can be easily solved. Herein, the
orthogonal basis is defined as:

Tj(h) = ρA(h)ϕj (20)

Due to the orthogonality of the mode of vibration:∫ L

0
ρA(h)ϕi(h)ϕj(h)dh = miδij (21)
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where δij is the Kronecker delta and mi means the ith modal mass. Therefore, the expression
of the ith modal force of the wind loads can be written as:

f m
i (t) =

∫ L

0
ρA(h)ϕi(h)ϕi(h)di(t)dh = midi(t) (22)

After transforming Equation (22) into modal space, the motion equation is rewritten as:

..
q(t) + Γ

.
q(t) + Λq(t) = d(t) (23)

Herein, d(t) can be obtained by the method [26] in Section 2.3. Therefore, after the
estimation of d(t), the distributed loads can be reconstructed as:

f(h, t) =
p

∑
i=1

ρA(h)ϕi(h)di(t) (24)

2.2.2. Identification of Wind Loads on Discrete Structural Systems

In many cases, the modal shape function of complex continuous systems cannot be
analytically analyzed, so structures need to be discretized into finite element elements.

The motion equation of n degrees of freedom discrete structure can be expressed
as follows:

M
..
x(t) + C

.
x(t) + Kx(t) = F(t) (25)

where M is the mass matrices, C is the damping matrices, and K means the stiffness matrices;
F(t) means the n× 1 external excitation vector; the structural acceleration, velocity, and
displacement vector can be expressed as

..
x(t),

.
x(t), and x(t).

Similar to the continuous system, the motion equation in modal coordinates can be
expressed as:

M∗
..
q(t) + C∗

.
q(t) + K∗q(t) = ΦTF(t) (26)

where
..
q(t),

.
q(t), q(t) are the p× 1 modal acceleration, velocity and displacement vector,

Φ is the n× p mode shape, p is the number of modal truncation, M∗ = ΦTMΦ = I is the
modal mass matrix, C∗ = ΦTCΦ = Γ is the modal damping matrix, K∗ = ΦTKΦ = Λ is
the modal stiffness matrix, Equation (20) can be rewritten as follows:

..
q(t) + Γ

.
q(t) + Λq(t) =

ΦTF(t)
M∗

(27)

Similar to Equation (17), the following can be obtained:

Γ = diag(2ξ1ω1, . . . , 2ξiωi, . . . , 2ξpωp), Λ = diag(ω2
1, . . . , ω2

i , . . . , ω2
p) (28)

Wind loads in discrete system can also be decomposed into a series of two functions
of time and space:

F(t) =
p

∑
i

Tidi(t) (29)

The jth modal force f m
j (t) of the distributed wind load F(t) can be obtained as follows:

f m
j (t) = ϕT

j F(t) = ϕT
j

p

∑
i

Tidi(t) (30)

where ϕj is the jth modal shape.
The basis function can be defined by using the orthogonality of the modes [15]:

Ti = Mϕi (31)
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Then the Equation (30) can be converted to as follows:

f m
j (t) = ϕT

j Mϕjdj(t) = mjdj(t) (32)

in which mj is the jth modal mass. Substitute Equation (26) into Equation (21), which can
be rewritten as:

..
q(t) + Γ

.
q(t) + Λq(t) = d(t) (33)

Equation (33) is similar to Equation (23) in the continuous system. When d(t) is
identified by MKF-UI, the distributed wind loads can be reconstructed as:

F(t) = MΦd(t) (34)

2.3. Wind Loads Identification Based on MKF-UI

When structural state vector X(t) is defined as X(t) =
{

q(t)
.
q(t)

}
, the state equation of

the modal Equations (23) and (33) can be expressed as

.
X(t) = AX(t) + Bd(t) (35)

where: A =

[
0 I
−Λ −Γ

]
, B =

[
0
I

]
.

If samples are taken at equal intervals at each t = [t0, t1, t2, · · · tk, · · ·] and the excitation
is assumed to remain constant within the time interval of ∆t = tk+1 − tk, the continuous
state motion equation can be rewritten as the following discrete state equation:

Xk+1 = AkXk + Bkdk + wk (36)

where Xk+1 and Xk mean the structural state vectors at time t = (k + 1)∆t and t = k∆t
respectively. dk is the modal force of the excitation acting on the structure at time t = k∆t.
wk is the zero mean model error matrix and its covariance matrix is Qk = E(wkwT

k ). The
correlation coefficient matrix of state and excitation from t = (k + 1)∆t to t = k∆t can be
discretized as:

Ak = (I + A∆t ), Bk = B∆t (37)

In this paper, only part of the acceleration responses are observed, so Yk+1 denotes
r× 1 acceleration responses under the observed physical coordinates, r is the number of
response observation points. The measurement equation at time t = (k + 1)∆t can be
given as:

Yk+1 = Ck+1Xk+1 + Hk+1dk+1 + vk+1 (38)

where vk+1 denotes zero mean Gaussian measurement noise vector with and covariance
matrix is Rk+1 = E(vk+1vT

k+1), the relevant observation matrix can be expressed as:

Ck+1 =
[
−DaΦΛ −DaΦΓ

]
, Hk+1 = [DaΦ] (39)

where Da is the r× n position matrix based on the observed acceleration.
Then, at time t = (k + 1)∆t, the predicted state estimate X̃k+1|k can be expressed

as follows:
X̃k+1|k = AkX̂k|k + Bkd̂k|k (40)

where X̂k|k and d̂k|k are the state estimates and the modal forces at time t = k∆t, respectively.
Then the state estimation equation can be expressed as:

X̂k+1|k+1 = X̃k+1|k + Kk+1(Yk+1 − Ck+1X̃k+1|k −Hk+1d̂k+1|k+1) (41)
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where Yk+1 represents the observation vector in Equation (38), that is, the structural re-
sponse data collected by the sensor installed on the structure. Kk+1 is Kalman gain matrix,
which is consistent with traditional Kalman filter and can be expressed as:

Kk+1 = P̂X
k+1|k+1CT

k+1(Ck+1P̃
X
k+1|kCT

k+1 + Rk+1)
−1

(42)

In the above equation, P̃
X
k+1|k and P̂X

k+1|k+1 are the covariance matrices of the prediction
error and estimation error of the state vector respectively.

If the number of observed responses is greater than the unknown number of modal
forces, then, using the least square method, the unknown modal forces can be identified as:

d̂k+1|k+1 = Sk+1HT
k+1

R−1
k+1

(I− Ck+1Kk+1)
(

Yk+1 − Ck+1X̃k+1|k

)
(43)

where Sk+1 =
[
HT

k+1
R−1

k+1
(I− Ck+1Kk+1)Hk+1

]−1
.

The error covariance matrix of state vector and modal force P̃
X
k+1|k, P̂X

k+1|k+1,

P̂Xd
k+1|k+1P̂dX

k+1|k+1, P̂d
k+1|k+1 can be expressed as:

P̃
X
k+1|k =

[
Ak Bk

][P̂X
k|k P̂Xd

k|k
P̂dX

k|k P̂d
k|k

][
AT

k
AT

k

]
+ Q (44)

P̂X
k+1|k+1 = (I + Kk+1Hk+1Sk+1HT

k+1R−1
k+1Ck+1)(I−Kk+1Hk+1)P̃

X
k+1|k (45)

P̂Xd
k+1|k+1 = −Kk+1Hk+1Sk+1, P̂dX

k+1|k+1 =
(

P̂Xd
k+1|k+1

)T
(46)

P̂d
k+1|k+1 = Sk+1 (47)

According to Equation (43), d̂k+1|k+1 can be identified, then through Equations (24) and (34),
unknown wind loads at physical coordinates in continuous and discrete systems can be
successfully identified respectively.

3. Numerical Identification Examples
3.1. Identification of Wind Loads on Continuous Structure of Wind Tower

To verify the feasibility of this method in a continuous system, a 60 m-high wind
turbine tower structure is established for numerical calculation. In practical engineering,
similar high-rise structures have a nonlinear nature and the dynamic equation describing
the vibration process of structures should be a nonlinear differential equation. However,
in consideration of the low wind speed in this paper, such buildings basically only show
the linear elastic response [32] and non-linear response is basically not reflected. Therefore,
wind power towers are regarded as linear structures for wind load identification in this
paper. At the same time, on the premise of not affecting the dynamic characteristics of the
wind power tower structure, the auxiliary components that have little influence on it are
ignored, and the complex parts such as connections are simplified. Figure 1 shows the
schematic diagram of its structure.

The diameter of the bottom and top of the structure is 4 m and 3 m respectively, and
the thickness is 25 mm and 10 mm. The diameter and thickness of the wind turbine tower
linearly change from the bottom to the top. The structure is made of Q345 steel and its
Young’s modulus is E = 2.06 × 1011 N/m2. The mass density is ρ = 7850 kg/m3. The
first-order frequency of the wind tower structure is 1.16 Hz. It is assumed that aerodynamic
damping is not considered in this numerical simulation.



Buildings 2022, 12, 1003 9 of 16

Buildings 2022, 12, x FOR PEER REVIEW 10 of 17 
 

it are ignored, and the complex parts such as connections are simplified. Figure 1 shows 
the schematic diagram of its structure. 

 
Figure 1. Structural model of wind power tower excited by wind load. 

The diameter of the bottom and top of the structure is 4 m and 3 m respectively, and 
the thickness is 25 mm and 10 mm. The diameter and thickness of the wind turbine tower 
linearly change from the bottom to the top. The structure is made of Q345 steel and its 
Young’s modulus is E = 2.06 × 1011 N/m2. The mass density is ρ  = 7850 kg/m3. The first-
order frequency of the wind tower structure is 1.16 Hz. It is assumed that aerodynamic 
damping is not considered in this numerical simulation. 

The structure is a cantilever beam with variable section, and its modal shape curve is 
solved by Rayleigh-Ritz method. Based on the boundary conditions conforming to the 
structure, the i th modal test function is defined as the following expression [15]: 

( )2 1
( )

2
s
i

i z
z sin

L
π

ϕ
− 

=  
 

 (48) 
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Figure 1. Structural model of wind power tower excited by wind load.

The structure is a cantilever beam with variable section, and its modal shape curve
is solved by Rayleigh-Ritz method. Based on the boundary conditions conforming to the
structure, the ith modal test function is defined as the following expression [15]:

ϕs
i (z) = sin

(
(2i− 1)πz

2L

)
(48)

where L is the total height of the structure. Substitute the trial function into the following
equation to obtain the corresponding stiffness and mass matrices Ks, Ms:

mij =
∫ L

0
ρA(x)ϕs

i (x)ϕs
j (x)dx, kij =

∫ L

0
EI(x)

..
ϕ

s
i (x)

..
ϕ

s
j (x)dx (49)

The natural frequency ωi and eigenvector ai of the structure can be solved by using
the eigen-equation

[
Ks −ω2Ms

]
· a = 0, and the modal shape function of the structure can

be obtained from the following expression:

ϕi(z) =
[

ϕs
1(z) ϕs

2(z) · · · ϕs
q(z)

]
· ai, i = 1, 2, . . . , p (50)

where p is the order of modal truncation.
Since the harmonic superposition method cannot produce a continuous wind loads

action curve, in this numerical example, based on the spatial correlation of wind loads
height direction, it is assumed that the wind loads of adjacent 2 m is correlated, and the
wind loads within the interval changes linearly. In this numerical simulation, the fluctuating
wind speed is simulated by harmonic superposition method using the spectral density of
Davenport spectrum. During the simulation, the time step is 0.2 s. The mean wind speed
is calculated by exponential formula. Based on the Chinese National Load Code [33], the
parameters α, h′ and v(h′) in Equation (2) are set to 0.22, 10 m and 10 m/s. The ground
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roughness is set to 0.0045. The parameter µs in Equation (12) is set to be 1.6 and the air
density is set to be 1.23 kg/m3. Figure 2 shows the pulsating wind speed at 30 m and 60 m
obtained by harmonic superposition.
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The simulated wind loads are applied to the structure and the acceleration responses
can be obtained through calculation. According to the calculation, the energy contribution
rate of the first 15 orders of acceleration response of shear frame in this section has reached
99%. Therefore, the modal truncation order of wind tower structure is calculated as
15 order.

Because the number of sensors measuring points must be larger than the number of
modal truncations, 15 acceleration observation points are arranged along the structure
every four meters. The wind load results obtained by identification are compared with
the real wind load obtained by original simulation. Figure 3 shows the comparison of
time-varying wind load at different height. Figure 4 shows the comparison of wind load
identification in the frequency domain. As can be seen from Figure 3, in the continuous
system structure, unknown wind loads can be effectively identified by using the method
in this paper only through partial observation. Table 1 shows the RMS error of wind load
at different heights. Although it is not completely consistent, the identification error is
in an acceptable range for wind loads identification. As can be seen from the table and
figure, there is a large error in identifying the wind load at the low height. The analysis may
be caused by a small average wind and a large proportion of fluctuating wind at the low
height leading to a decrease in the identification accuracy. However, since the significance
of identifying the wind load at the low height is relatively small, the proposed method is
still effective in identifying the wind loads on the structure.

Table 1. RMS error of the identified wind loads on the continuous system.

Height (m) RMS Error (%) Height (m) RMS Error (%)

5 14.51 35 5.29
10 6.64 40 5.18
15 7.93 45 5.01
20 5.87 50 6.24
25 6.08 55 5.43
30 6.83 60 5.82
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3.2. Identification of Wind Loads on a Discrete 20-Story Shear Frame

To verify the accuracy and availability of the above method on the identification of
wind loads on discrete structural system, a 20-story shear frame is adopted as a demonstra-
tion example. At each floor, the mass coefficient m and the stiffness coefficient k are 50 t
and 7.5 × 106 N/m, respectively. The damping is assumed to be Rayleigh damping and
the damping ratio of the building is set to be 0.47%. The story height is 4.8 m for each floor.

In this numerical simulation, the wind load simulation parameters are consistent
with the first calculation example. Figure 5 shows the simulated time history diagrams of
fluctuating wind speed at different height. The parameters µs and As in Equation (12) are
set to be 1.6 and 24 m2 of each floor. The air density is set the same as the previous example.

The simulated wind loads are applied to the structure and the acceleration responses
can be obtained through calculation. According to the calculation, the energy contribution
rate of the first seven orders of acceleration response of shear frame in this section has
reached 99%, so the first seven orders of modes are selected for identification. Since the
number of intercepted modes is seven, the number of observed responses should be greater
than or equal to seven. Therefore, acceleration observation on the 2nd, 4th, 7th, 10th, 13th
and 16th floors are selected herein.
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Then, the unknown force can be successfully identified by the proposed method
introduced in Section 2 using only seven acceleration responses. In Figures 6 and 7, it
shows the comparison of simulation with inversion results the of inverse problem in the
time domain and frequency domain respectively. It can be seen from the figure that the
wind load identification results of other layers are in good agreement with the wind load
obtained by harmonic superposition method, except for the large error of the bottom layer.
Table 2 shows the RMS error of wind load of each floor.
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Table 2. RMS error of the identified wind loads on the discrete frame system.

Floor Number RMS Error (%) Floor Number RMS Error (%)

1 10.15 11 5.88
2 6.95 12 5.70
3 7.50 13 3.36
4 3.94 14 5.27
5 8.05 15 5.05
6 7.08 16 3.10
7 3.91 17 5.11
8 6.73 18 5.13
9 6.37 19 4.62
10 3.55 20 4.10
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Figure 7. Comparison of wind load frequency domain at the (a) 1st floor, (b) 6th floor, (c) 12th floor
and (d) 20th floor.

4. Conclusions

In this paper, a method is presented for the identification of unknown wind loads
on structures only using partial observations of structural acceleration responses. The
method is based on the decomposition of wind load as a series of time-space decoupled
spatial distribution functions and time history functions. Structural modes are adopted as
the spatial distribution functions and structural modal truncation can be used to reduce
the numbers of unknown time history functions, which can be identified by the method
of MKF-UI. The proposed method can be used for the identification of wind loads on
both continuous and discrete system structures, and only partial structural acceleration re-
sponses which are more than the modal truncation modes are required, which is applicable
for actual engineering situations. Besides, it is necessary to conduct more numerical and
experimental validations of the proposed method for the identification of wind loads on
complex structures. In addition, the aerodynamic damping is not considered in this paper,
which is very important. Wind load identification related to aerodynamic damping is also
being investigated.
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