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Abstract: TL-ϕ algorithms are newly developed explicit structure-dependent integration algorithms
utilized for solving the temporally discretized equations of motion. In contrast to the existing
algorithms, the most significant improvement of TL-ϕ algorithms is in diminishing the amount
of period errors by introducing a precorrection coefficient ϕ into the integration parameters of
TL-ϕ algorithms, which is related to the critical frequency of a system. In the previous work, the
fundamental frequency of the system is deemed to be the critical frequency, so that ϕ is a constant
scaling corresponding to the fundamental frequency for both single-degree-of-freedom (SDOF) and
multi-degree-of-freedom (MDOF) systems. However, for a MDOF system, the first mode may not
contribute to the total response more than other ones under a given external excitation, calculating
ϕ only by the fundamental frequency will underestimate the contribution of the higher-frequency
modes to structural dynamics. In this paper, choices of the critical frequency for ϕ when applying
TL-ϕ algorithms to MDOF systems are investigated thoroughly. By considering the initial structural
properties of the system and the frequency characteristics of the external excitation simultaneously, a
calculation criterion of ϕ for MDOF systems under specific external excitations is proposed. Four
numerical examples with different initial structure properties and loading conditions are designed,
and the results demonstrate that the proposed criterion can be potentially used to solve structural
dynamic problems of MDOF systems with a more desirable numerical dispersion performance.

Keywords: structure-dependent integration method (SDIM); controllable numerical dispersion;
MDOF systems; structural dynamics; frequency domain analysis

1. Introduction

Direct integration algorithms are widely utilized to solve temporally discretized equa-
tions of motion (EOMs) in the dynamic analysis of civil engineering structures [1–3]. Various
integration algorithms have been well established based on different design conceptions in
the past decades, such as the finite difference schemes [4–7], spectral methods of discretiza-
tion [8,9], and methods based on other ideas [10–12]. In general, integration algorithms can
be classified as explicit and implicit according to the expressions of displacement and ve-
locity. An algorithm is explicit if the displacement and velocity at the current time step can
be expressed in terms of all the known responses at the previous time steps [13], otherwise
it is implicit. Explicit algorithms are preferred over implicit ones since they do not involve
nonlinear iterations during a step-by-step simulation and possess favorable efficiencies for
long-time simulations with small time steps. However, conditional stability of the most
explicit algorithms limits their applications in solving dynamic problems, which leads to a
time-step size restriction especially for a multi-degree-of-freedom (MDOF) system with
high natural frequencies [14]. Hence, integration algorithms that possess both explicit
expressions and unconditional stability deserve more attention.
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Recently, a new family of integration algorithms classified as structure-dependent
integration methods (SDIM) have been well developed and widely used in structural dy-
namics. In contrast to a structure-independent integration method (SIIM) whose integration
parameters of the difference equations are constant, parameters in an SDIM are determined
by the initial structural properties, including structural natural frequency, damping ratio
and selected time steps [15]. The first SDIM was developed by Chang [16] (named Chang
algorithm) for pseudodynamic testing, and is unconditionally stable for linear systems and
possesses second-order accuracy. However, this method is semi-explicit as the displacement
increment is explicit in form while that of the velocity is implicit. Then, Chen [17] proposed
a new SDIM (named CR algorithm) which has explicit expressions for both the displace-
ment and velocity increments. The CR algorithm also demonstrates favorable performance
such as unconditional stability for linear systems and second-order accuracy. Rezaiee [18]
developed a new algorithm called the USE algorithm. In this method, the expressions
of the displacement and velocity increments are defined in terms of the accelerations of
the two previous time steps and three integration parameters were introduced to control
the stability and numerical dissipation of procedure. Tang [19] presented another type of
explicit SDIM known as the Real-time Substructure Testing algorithm (referred to as TL
algorithm in this paper), in which the two structure-dependent integration parameters
are introduced only in the displacement increment. It is noted that the TL algorithm is
unconditionally stable for linear systems and also bears second-order accuracy [20].

The numerical properties of an SDIM are typically evaluated by its stability and
accuracy. In order to achieve higher stability limits, many improvements have been con-
ducted for nonlinear systems [21–23]. Energy dissipation and numerical dispersion are
two important indexes for evaluating the accuracy of an algorithm, which can be mea-
sured by amplitude decay (AM) and period elongation (PE) in the time domain. Some
researchers [24–28] have developed various families of algorithms that can control the
amount of energy dissipation by introducing different control parameters in the integration
parameters. Few researchers work on the issue of numerical dispersion of integration
algorithms. Li [29] proposed a new method of reducing PE (or numerical dispersion) by
introducing a parameter that is weighted by the mass matrix and stiffness matrix into
the original algorithm. As only the mass matrix of the system is changed slightly, the
convergence rate and stability property of the algorithm are maintained. Tang and Ren [30]
presented a new family of explicit SDIM with controllable numerical dispersion based on
the TL algorithm, known as TL-ϕ algorithms. By introducing a scaling parameter ϕ into the
two integration parameters of TL algorithm, the values of PE at a certain structural natural
frequency can be greatly diminished when compared to other well-developed algorithms.

In TL-ϕ algorithms, ϕ is a precorrection coefficient that is equal to the ratio of the
frequency (ωD) in the discrete domain to the one (ωA) in the continuous domain. This
reveals the degree of frequency distortion during the discretization of a continuous system,
and introduction of ϕ in the mapping rules of the discretization will ensure consistency
between ωD and ωA in numerical characteristics. For an MDOF system, the calculation of ϕ
depends on the critical frequency ωc = ωA that dominates the total responses of the original
continuous system. In the previous work [30], the fundamental frequency ω1 is regarded as
ωc, so that ϕ becomes a constant scaling for all the modes of the system when calculating the
integration parameters of the TL-ϕ algorithms. However, the first mode may not uniquely
contribute to the dynamic responses of an MDOF system under a given external excitation,
and the determination of ωc should take the numerical properties of both the original
system and external excitation into consideration. In this study, choices of ωc for ϕ when
applying TL-ϕ algorithms to MDOF systems are thoroughly investigated. Two factors that
control the relative importance of any mode in the total dynamic responses are introduced
to consider the effect of the initial structural properties of the system and the frequency
characteristics of the external excitation on the determination of ωc simultaneously. Then,
the selection criterion of ωc for systems subjected to harmonic excitation and seismic waves
are proposed, respectively, and studied with respect to the accuracy and efficiency.
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2. Formulation of TL-ϕ Algorithms for MDOF Systems

The formulation of TL-ϕ algorithms for an N-DOF system can be expressed in discrete
form as [30]

MÜi+1 + CU̇i+1 + KUi+1 = Fi+1 (1)

Ui+1 = Ui + α1∆tU̇i + α2∆t2Üi (2)

U̇i+1 = U̇i + ∆tÜi (3)

where, M, C and K are the mass, viscous damping and stiffness matrix, N×N, respectively;
Ü, U̇ and U are the acceleration, velocity, and displacement vector, N × 1, respectively; F is
the external force vector, N × 1; α1 and α2 are the integration parameter matrices, N × N,
which are {

α1 = 4B−1 ·M
α2 = B−1 · (4M− ∆tC− 2ϕ ·D + E)

(4)

where, B = 4ϕ2 ·M + 2∆tϕ ·C + ∆t2 ·K; D = (ΦT)−1 ·D∗2 ·Φ−1; E = (ΦT)−1 · E∗ ·Φ−1;
ϕ = diag[ϕ1, · · · ϕj, · · · , ϕN], and

ϕj =
arctan

(
Ωj/2

)
Ωj/2

j = 1, 2, ..., N (5)

in which, Ωj = ωj∆t, ωj is the natural frequency of the jth mode, and ∆t is the time step
selected for integrating.

3. Frequency Response under Arbitrary Excitation

Based on the mode-superposition method, the dynamic response of a linear MDOF
system can be obtained by solving separately for that of each mode and then superposing
these modes to obtain the total response in the original geometric coordinates. Thus, the
numerical characteristics of an algorithm applied in an MDOF system can be evaluated
for each mode in the same way as for a single-degree-of-freedom (SDOF) system. The
numerical characteristics of TL-ϕ algorithms under the free-vibration response have been
fully investigated in the previous work [30]. This section focuses on the frequency response
of TL-ϕ algorithms under arbitrary excitation with initial conditions of x0 = 0 and ẋ0 = 0.
For any arbitrary mode n, the equation of motion of an SDOF system under external
excitation is

ÿn(t) + 2ξnωnẏn(t) + ω2
nyn(t) =

fn(t)
mn

n = 1, 2, · · · , N

ξn =
cn

2mnωn
, ωn =

√
kn

mn

(6)

where, mn = φT
nMφn, cn = φT

nCφn and kn = φT
nKφn are modal mass, modal damping

and modal stiffness for the nth mode, respectively; ÿn, ẏn and yn are acceleration, velocity,
and displacement for the nth mode, respectively; ξn and ωn are the natural frequency and
viscous damping ratio for the nth mode, respectively; fn = φT

nF(t) is modal force for the
nth mode. For simplicity, the subscript n will be omitted from this point onward.

The continuous transfer function G(s) that relates the force f (t) to the displacement
y(t) is given by

G(s) =
Y(s)
F(s)

=
1

m(s2 + 2ξω + ω2)
(7)

where, Y(s) and F(s) are the Laplace transforms of y(t) and f (t), respectively, and s is the
Laplace transform parameter.
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Substituting s = iω̃ into Equation (7), the complex frequency response function of the
steady-state response under the harmonic excitation of f (t) = f0eiω̃t can be determined by

G(iω̃) =
Y(iω̃)

F(iω̃)
=

f0

k[(1− β2) + i(2ξβ)]
, β = ω̃/ω (8)

in which, β is frequency ratio, that is, the ratio of the excitation frequency ω̃ to the modal
frequency ω. The dynamic magnification factor (DMF) D and phase θ of G(iω̃) are

D =
G(iω̃)

yst
=

1√
(1− β2)2 + (2ξβ)2

(9)

θ = tan−1
(

2ξβ

1− β2

)
(10)

where yst = f0/k is the displacement which would be produced by the load f0 applied
statically. The two factors, D and θ, calculated by Equations (9) and (10) denote the exact
dynamic magnification factor and phase, respectively.

Similarly, the complex frequency response function for TL-ϕ algorithms in the discrete
domain can be obtained by introducing z = eiω̃∆t into the discrete transfer function G(z),
which is

G(z) =
Y(z)
F(z)

=
α2∆t2z + (α1 − α2)∆t2

mz2 + m(α2Ω2 + 2ξΩ− 2)z + m[(α1 − α2)Ω2 − 2ξΩ + 1]
(11)

and the numerical DMF and phase are expressed as Dnum = kG(eiω̃∆t) and θnum =
∠G(eiω̃∆t), respectively.

Figure 1 shows Dnum and θnum for TL-ϕ algorithms when compared to the exact
solution of D and θ. The damping ratio ξ is taken as 0.1, while the different values of
Ω = 0.2, 1.0 and 2.0 are considered and the corresponding coefficients ϕ become 0.9967,
0.9273 and 0.7854, respectively. Meanwhile, Dnum and θnum for the other three well-
developed explicit integration algorithms, including Chang algorithm, CR algorithm and
TL algorithm, are also calculated and shown in each sub-figure.

It can be seen in Figure 1a that Dnum and θnum for all the integration algorithms agree
well with their accurate counterparts when Ω = 0.2. For a larger value of Ω = 1.0 and 2.0,
the numerical resonance peak shifts to the left for all the algorithms, and the larger the
value of Ω, the further left the numerical resonance peak shifts. It is also observed that
the left-shift values of the numerical resonance peak of TL-ϕ algorithms are smaller than
those of other algorithms, indicating a smaller PE in the numerical solution. This property
conforms to the findings presented in previous work [30]. In addition, the maximum values
of Dnum for all the algorithms become larger with an increasing value of Ω than those of
the exact solution.

fig1a
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Figure 1. Cont.
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Figure 1. Numerical DMF Dnum and phase θnum for TL-ϕ algorithms compared with the exact
solution of dynamic magnification factor D and phase θ. (a) Ω = 0.2. (b) Ω = 1.0. (c) Ω = 2.0.

4. Critical Frequency Selection for ϕ in TL-ϕ Algorithms

When applying TL-ϕ algorithms to a MDOF system, the first and most important
issue is the calculation of ϕ . Precorrection for each mode of the system may possess high
accuracy but is time consuming, especially when the number of DOFs is huge. It is quite
promising that determination of a critical frequency ωc for ϕ, reduces ϕ to a constant scaling
for all the modes.

In general, the first mode of an MDOF system possesses a dominant impact on the
total responses of free-vibration and forced-vibration under specific external excitation,
such as an earthquake tends to excite the response of a structure mainly in its first mode [31].
However, higher modes of an MDOF system may contribute more to the response than the
first one, and the determination of ωc should consider both the initial structural properties
of the system and the frequency characteristics of the external excitation. It should be
noted that the importance of any mode in the total dynamic response depends on two
factors: (1) The DMF that depends on the frequency ratio of the external excitation to the
mode, as discussed in the previous section; (2) the modal participation factor (MPF) that
is determined by the interaction of the mode shape with the spatial distribution of the
external excitation.

4.1. Determination of ωc Based on DMF

According to the frequency response analysis, the maximum response amplitude
occurs at a frequency ratio β approaching close to (slightly less than) unity, i.e., the external
excitation frequency approaches a certain modal frequency, known as resonance. For an
MDOF system, an arbitrary external excitation will excite the resonance response of any
mode, and the determination of ωc should consider βi that relates the excitation frequency
ω̃ to the ith mode frequency ωi.

In this section, a spring-mass system with 20-DOF is set up to investigate the relation-
ship between ωc and ω̃, as shown in Figure 2. A total of 12 models with different structural
properties are intentionally designed, and the fundamental frequencies of each model are
shown in Table 1. The system is assumed to be linear elastic and is subjected to a ground
acceleration üg(t) of sine-wave form as follows,

üg(t) = sin(ω̃t) (12)
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and then, Fi+1 in Equation (1) is expressed as

Fi+1 = MI · üi+1
g (13)

fig2

……m1 m2 m20

u1 u2 u20

k1

ug

k2 k20

..

Figure 2. A 20-DOF spring-mass system.

Table 1. The fundamental frequencies of the models (rad/s).

Model 1 2 3 4 5 6

ω1 0.0699 0.2047 0.4423 0.7661 1.0834 1.7129

Model 7 8 9 10 11 12

ω1 2.4225 3.4259 5.4168 7.6605 12.112 19.779

TL-ϕ algorithms with ωc = 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 for ϕ are applied to
calculate the displacement responses of the system under the harmonic excitation with
ω̃ = 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively. One error indicator, normalized root-mean-
square error (NRMSE) that is sensitive to frequency differences of the dynamic responses,
is adopted for accuracy analysis and defined as

NRMSE =

√
∑m

i=1
(uES,i−uNS,i)

2

m
max(uNS,i)−min(uNS,i)

(14)

where, u is the displacement of m20; subscript NS and ES represent the numerical solution
obtained by TL-ϕ algorithms and exact solution derived from the mode-superposition
method, respectively; m = t/∆t is the number of the samples, where t is the duration of
the external excitation and ∆t = 0.01 s is the time step for numerical simulations.

Plotted in Figure 3a–c are the variations of NRMSE with the increasing of ωc for models
1, 8 and 10, and similar curves can be obtained for the rest of the models. It can be seen that
the NRMSE is minimal at: (1) ωc = ω1 when β1 < 1, i.e., ω̃ < ω1; (2) ωc = ωi when βi ≈ 1,
i.e., ω̃ ≈ ωi(i = 1, 2, ..., 10); (3) otherwise, ωc is between values of ω1 and ω̃, which verifies
the importance of ω1 and ω̃ in determining ωc for the calculation of ϕ in TL-ϕ algorithm.
In order to determine the value of ωc in (3), more numerical models with different values
of ω1 (less than 10 Hz) are designed to calculate the optimal critical frequencies ω̂c that
correspond to the minimal NRMSE. To diminish the effect of the fundamental frequency
randomly selected for numerical simulation on fitting results, arithmetic mean values of ω̂c
for each model are calculated according to the following formula,

ωc

ω1
=

1
n ∑

ω̂c

ω1
,

ωc

ω̃
=

1
n ∑

ω̂c

ω̃
(15)

in which, n is the number of the harmonic excitation ω̃.
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（a）

（c）

（b）

（c）

Figure 3. NRMSE curves vs. critical frequency ωc under harmonic excitation with different values of
ω̃. (a) Model 1. (b) Model 8. (c) Model 10.

Table 2 lists the ratio of the mean values of ωc to ω1 and ω̃ for the 15 models. Figure 4
shows the scatter diagram of mean values varying with ω1, which indicates that ωc/ω1
decay exponentially with an increasing of ω1, while ωc/ω̃ increases linearly with an
increasing of ω1. According to these rules, a regression analysis is conducted and the fitting
formulas are

ω̃c1

ω1
=

{
1 + 86e−10.7ω1 + 7.8e−1.04ω1 , 0 < ω1 < 3
1, ω1 ≥ 3

(16)

ω̃c2

ω̃
=

{
0.71, 0 < ω1 < 2.5
0.32ω1 + 0.1, ω1 ≥ 2.5

(17)
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ω̃c =

{
ω̃c1, ω̃c1

ω1
≤ ω̃c2

ω̃

ω̃c2, ω̃c1
ω1

> ω̃c2
ω̃

(18)

where, ω̃c1 and ω̃c2 are predicted values of ωc in Equation (15). The smaller one of the
two radios derived from Equations (16) and (17) is considered to calculate ω̃c. Then, the
criterion of determining ωc for the calculation of ϕ in TL-ϕ algorithm when applied to
MDOF systems can be expressed as

ωc =


ω1, β1 < 1
ωi, βi = 1± 0.1
ω̃c, otherwise

(19)

Table 2. Ratios of the average values of ωc to ω1 and ω̃.

Model 1 2 3 4 5 6 7

ω1 /rad/s 0.0699 0.2047 0.4423 0.7661 1.0834 1.7129 2.4225
ωc/ω1 49.947 16.984 6.7213 4.5392 3.5496 2.3007 1.6587
ωc/ω̃ 0.7072 0.6997 0.6805 0.6785 0.7325 0.7398 0.7123

Model 8 9 10 11 12 13 14

ω1 /rad/s 3.1274 4.0947 5.0512 6.2548 7.6606 8.8456 9.9986
ωc/ω1 1.0000 1.0000 1.0241 1.0072 1.0034 1.0028 1.0039
ωc/ω̃ 1.2005 1.3948 1.6646 2.0673 2.5153 2.9031 3.2833
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50
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 c1/1

 c/
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0
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~

1 /Hz

 
c/
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Figure 4. Fitting curves for optimal critical frequency (sine-wave).

When an MDOF system is subjected to an earthquake, üg(t) in Equation (12) represents
a practical seismic record. It is known that the contribution of the first mode to the dynamic
responses of the system is much greater than that of the other higher-order modes when
the fundamental frequency of the system is close to or higher than the main frequency
component of a seismic motion. In addition, defining ωc = ω1 will achieve relatively
high accuracy of the dynamic responses. However, the effect of the high-order modes on
structural dynamics cannot be ignored when the fundamental frequency of the system is
lower than the main frequency component of a seismic motion. Thus, it is of great interest to
examine the influence of the spectral characteristic of a seismic motion on the determination
of ωc. Then, ω̃ will be replaced by the peak frequency of the response spectrum ωp in the
following.

Numerical analysis of the 20-DOF spring-mass system is performed to establish a
selection criterion of ωc. A total of 14 seismic waves are selected as external excitations,
and ωp of each wave is shown in Table 3. Moreover, 10 groups of structural properties are
designed to investigate the relationship between ωc and ωp as well as ω1.
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Table 3. Peak frequency of response spectrum (rad/s).

Earthquake ωp Earthquake ωp Earthquake ωp

El Centro 24.166 San Fernando1 19.635 Chuetsu-oki 20.944
Taft 14.280 San Fernando2 17.453 Victoria Mexico 44.880
Wen Chuan 52.359 San Fernando3 14.960 Loma Prieta 10.134
Irpinia Italy 34.906 Corinth Greece 12.083 San Simeon 28.560
Tottori Japan 31.416 Cape Mendocino 18.580 Artificial Wave 15.708

TL-ϕ algorithms with ωc varying from 1 rad/s to 20 rad/s are applied to calculate
NRMSE for each model. It is worth noting that the minimal NRMSE can be obtained when
ωc = ω1 for the case of ωp ≤ ω1. For ωp > ω1, the optimal critical frequencies ω̂c and the
arithmetic mean values ωc are acquired according to Equation (15). Table 4 lists the ratio of
the mean values of ωc to ω1 and ωp for each model. Figure 5 shows the scatter diagram
of mean values varying with ω1, which indicates that ωc/ω1 decays exponentially with
an increasing of ω1, while ωc/ωp increases linearly with an increasing of ω1. The fitting
formulas are also conducted based on the regression analysis as follows, and the ωc that
equals to the smaller one of ω̃c1 and ω̃c2 is recommended in this situation.

ω̃c1

ω1
= 4.2e−0.3ω1 + 0.4e0.05ω1 , 1.2 ≤ ω1 ≤ 20 (20)

ω̃c2

ωp
= 0.037ω1 + 0.12, 1.2 ≤ ω1 ≤ 20 (21)

ω̃c = min(ω̃c1, ω̃c2) (22)

ωc =

{
ω1, ωp ≤ ω1
ω̃c, ωp > ω1

(23)

Table 4. Ratios of the average values of ωc to ω1 and ωp.

Model 1 2 3 4 5

ω1 /rad/s 1.2112 2.4225 3.8303 5.0512 6.2548
ωc1/ω1 3.228 2.847 1.836 1.314 1.186
ωc2/ωp 0.184 0.350 0.342 0.295 0.351

Model 6 7 8 9 10

ω1 /rad/s 7.6605 9.8897 11.4197 13.9862 15.3211
ωc1/ω1 0.934 0.974 0.895 0.785 0.848
ωc2/ωp 0.361 0.478 0.496 0.569 0.671

0 4 8 12 16 20
0

1

2

3

4

1 /Hz

 
c/

p

 
c/



 c/1

 c1/1

 c/p

 c2/p

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5. Fitting curves for optimal critical frequency (seismic wave).
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4.2. Modal Participation Factor, MPF

Another factor that rules the importance of any mode in the total dynamic response
is MPF. In Equation (6), the external force vector F(t) can be expressed as a product of a
distribution vector R and an amplitude vector p(t):

F(t) = Rp(t) (24)

and for the particular case of seismic excitation, it has

F(t) = Mrüg(t) (25)

where, r is a displacement transformation vector that expresses the displacement of each
DOF excited by a unit static support displacement.

Introducing Equation (24) or (25) into Equation (6), the equation of motion for each
DOF becomes:

ÿn(t) + 2ξnωnẏn(t) + ω2
nyn(t) =

φT
nR

φT
nMφn

p(t) (26)

or

ÿn(t) + 2ξnωnẏn(t) + ω2
nyn(t) =

φT
nMr

φT
nMφn

üg(t) (27)

The ratios shown on the right side of Equations (26) and (27) are defined as the modal
participation factor. That is,

MPFn =
φT

n R
φT

n Mφn
or MPFn =

φT
n Mr

φT
n Mφn

(28)

It is apparent from Equation (28) that the amplitude of the response due to any given
mode depends on the interaction of the applied load distribution and the mode shape.
An arbitrary external load distribution applied to an engineering structure might excite
a response in any of the modes, and it is recommended that ωc equals to the frequency
corresponding to the mode with the largest value of MPF. While for an engineering structure
subjected to horizontal ground motion, the transformation vector r is a unit column, and
the determination of ωc depends mainly on DMF.

5. Numerical Confirmations

For numerical confirmation of the selection criterion for ωc proposed in this paper,
three cases with different original structural properties and loading conditions are inten-
tionally designed.

5.1. Case 1: Undamped Linear MDOF System under Harmonic Ground Motion

A spring-mass system with 50-DOF is utilized to discuss the effect of ωc selected for
ϕ on dynamic responses, and its structural properties are plotted in Figure 6. After the
eigenvalue-analysis, the lowest natural frequency of the system is found to be 3.1104 rad/s,
while the highest natural frequency is found to be 199.90 rad/s. Table 5 shows the first
10 natural frequencies and the corresponding MPFs of the system. The system is subjected
to a harmonic acceleration excitation of sine-wave form at the ground, and the circular
frequency ω̃ is set to 1, 6, 16 and 40 rad/s, respectively.



Buildings 2022, 12, 863 11 of 21

……m1 m2 m50

u1 u2 u50

mi =1kg, ki =10  N/m 4

Ground acceleration=100sin(ωt)~

fig10

Figure 6. A 50-DOF spring-mass system.

Table 5. The first 10 natural frequencies and MPFs of the system.

Mode Frequency (rad/s) MPF (%) Mode Frequency (rad/s) MPF (%)

1 3.1104 36.804 6 34.049 3.3133
2 9.3281 12.260 7 40.161 2.7926
3 15.537 7.3465 8 46.235 2.4091
4 21.730 5.2373 9 52.264 2.1144
5 27.903 4.0629 10 58.243 1.8805

According to the selection criterion of ωc in Equation (19), ωc = ω1 when ω̃ = 1 and
6 rad/s; ωc = ω3 when ω̃ = 16 rad/s; ωc = ω7 when ω̃ = 40 rad/s, and the corresponding
ϕ = 0.9999, 0.9980, 0.9869, respectively. Numerical results obtained from TL-ϕ algorithm
with different values of ωc and other three well-developed algorithms, including Chang
algorithm, CR algorithm and TL algorithm, with ∆t = 0.01 s are shown in Figure 7a–d.
In the figures, the analytical solutions obtained by modal superposition method (MSM)
are marked as “Exact” for comparison, and “TL-ϕ” refers to the ones derived from TL-ϕ
algorithm with precorrecting for each mode. It is worth noting that the displacements
obtained from TL-ϕ algorithm are nearly in total agreement with the exact solution for all
the loading conditions while those obtained from the other three algorithms possess obvious
period distortions and amplitude errors. Tables 6–9 list two error indicators, including the
aforementioned NRMSE and normalized energy error (NEE), for displacement responses
of the system (m50) under harmonic excitation with different ω̃. In general, NEE reflects
signal energy and is sensitive to amplitude differences of the dynamic responses, defined as

NEE =

∣∣∣∣∣∑
m
i=1 u2

ES,i −∑m
i=1 u2

NS,i

∑m
i=1 u2

NS,i

∣∣∣∣∣ (29)

where, the meaning of the subscript NS, ES and m are the same as those for NRMSE in
Equation (14).

It is worth noting that both NEE and NRMSE are the minimum for “TL-ϕ” in any case,
confirming that precorrecting for each mode of an MDOF system will achieve great accuracy.
In addition, the value of ωc chosen for ϕ has a noticeable effect on the two errors, especially
when the system suffers from a rather high excitation frequency. An appropriate value of
ωc chosen for ϕ will result in relatively smaller errors in both amplitude and period when
compared with other algorithms. This verifies the effectiveness of the proposed criterion in
selecting ωc when applying the TL-ϕ algorithm to MDOF systems.



Buildings 2022, 12, 863 12 of 21
fig6a

（a）

fig6b

（b）

fig6c

（c）

fig6d

（d）

Figure 7. Displacement responses for m50. (a) ω̃ = 1 rad/s. (b) ω̃ = 6 rad/s. (c) ω̃ = 16 rad/s.
(d) ω̃ = 40 rad/s.

Table 6. Displacement errors for m50 (ω̃ = 1 rad/s, %).

Error Index TL-ϕ(ωc = ω1) TL-ϕ(ωc = ωp) TL-ϕ Chang/CR/TL

NEE 0.0057 0.0072 0.0048 0.0074
NRMSE 0.0091 0.0249 0.0014 0.0273
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Table 7. Displacement errors for m50 (ω̃ = 6 rad/s, %).

Error Index TL-ϕ(ωc = ω1) TL-ϕ(ωc = ωp) TL-ϕ Chang/CR/TL

NEE 0.0120 0.0805 0.0046 0.0461
NRMSE 0.1062 0.1978 0.0057 0.1329

Table 8. Displacement errors for m50 (ω̃ = 16 rad/s, %).

Error Index TL-ϕ(ωc = ω1) TL-ϕ(ωc = ω3) TL-ϕ(ωc = ωp) TL-ϕ Chang/CR/TL

NEE 2.7093 0.2905 0.4701 0.00001 2.8479
NRMSE 3.1614 1.0127 1.0930 0.0414 3.2922

Table 9. Displacement errors for m50 (ω̃ = 40 rad/s, %).

Error Index TL-ϕ(ωc = ω1) TL-ϕ(ωc = ω7) TL-ϕ(ωc = ωp) TL-ϕ Chang/CR/TL

NEE 63.224 5.4002 6.6519 4.6284 63.793
NRMSE 24.353 7.0159 7.0351 1.6679 24.356

5.2. Case 2: Undamped Linear MDOF System under Arbitrary Load

A five-story shear building under an arbitrary load is shown in Figure 8. Two groups
of the structural property are intentionally designed to investigate the effect of MPF on
determining ωc, including (1) mi = 105 kg, ki = 107 N/m (i = 1, 2 . . . 5); (2) m1 = 107 kg,
m2 = m3 = 105 kg, m4 = m5 = 103 kg, and ki = 107 N/m (i = 1, 2 . . . 5). The initial natural
frequencies and the modal shapes of the building for the two groups (labelled G1 and G2)
are shown in Tables 10 and 11.

1

2

3

4

5

fig7

1

2

3

4

5k5

k4

k3

k2

k1

m5

m4

m3

m2

m1

f5(t)

f4(t)

f3(t)

f2(t)

f1(t)

Figure 8. Schematic diagram of a five-story shear frame building without damping.

Table 10. Natural frequencies and modal shapes of the building (G1).

Mode Frequency/rad/s
Φ

φ1 φ2 φ3 φ4 φ5

1 2.8463 0.2846 0.7635 1.0000 0.9190 0.5462
2 8.3083 0.5462 1.0000 0.2846 −0.7636 −0.9190
3 13.097 0.7635 0.5462 −0.9190 −0.2846 1.0000
4 16.825 0.9190 −0.2846 −0.5462 1.0000 −0.7635
5 19.190 1.0000 −0.9190 0.7635 −0.5462 0.2846
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Table 11. Natural frequencies and modal shapes of the building (G2).

Mode Frequency/rad/s Φ
φ1 φ2 φ3 φ4 φ5

1 0.9898 0.9700 −0.0165 −0.0039 0.0000 0.0000
2 6.1955 0.9897 0.6014 1.0000 0.0000 0.0000
3 16.142 0.9997 0.9885 −0.6019 −0.0165 −0.0038
4 62.401 0.9999 0.9962 −0.6354 0.6106 1.0000
5 161.89 1.0000 1.0000 −0.6524 1.0000 −0.6170

The building is excited by an arbitrary load F = [ f1, f2, f3, f4, f5]
T with a spatial load

distribution vector of R, i.e., F(t) = R · p0sin(ω̃t). In this case, p0 = 100 kN and ω̃ = 3 rad/s
are employed. Considering R = φ2, φ3 and φ5, this will accentuate the responses in the
2nd, 3rd and 5th mode of the building, respectively. The corresponding ωc selected in this
case should be equal to ω2, ω3 and ω5 based on the proposed criterion of MPF, and then
ϕ = 0.9977, 0.9943, 0.9880 for G1 while ϕ = 0.9987, 0.9914, 0.6285 for G2, respectively. The
displacement responses obtained from the Newmark algorithm with [α, β] = [1/2,1/4] and
∆t = 0.005 s are considered as the “Exact” solution for comparison, while the time step
of ∆t = 0.02 s is employed to compute the seismic responses for using TL-ϕ algorithms
and TL algorithm. Numerical results for the initial conditions of U = 0 m, U̇ = 0 m/s are
displayed in the following. Figure 9 shows the displacement responses of the 5th story for
G1 while those for G2 are plotted in Figure 10. Errors of the displacement responses for G1
and G2 are listed in Tables 12 and 13.

Regarding G1, it can be seen from Figure 9a–c that the displacements derived from
the TL-ϕ algorithm with ωc = ω2 for R = φ2, ωc = ω3 for R = φ3 and ωc = ω5 for R = φ5
are almost in total agreement with the “Exact” solution. Displacement errors shown in
Table 12 distinctly indicate that a much higher accuracy can be obtained when ωc is equal
to the frequency corresponding to the mode with the largest value of MPF. For G2, it can be
seen in Figure 10a–c and Table 13 that TL-ϕ algorithm with ωc = ω̃c can result in a better
solution while larger errors are found in the results obtained from TL-ϕ algorithm with
ωc = ωi(i = 2, 3, 5). This illustrates that the availability of determining ωc based on MPF
depends on the mass distribution of the system. The more evenly the mass is distributed,
the greater the influence of MPF on determining ωc. On the contrary, the determination of
ωc should depend mainly on DMF.

Table 12. Displacement errors of the 5th floor (G1).

R Error Index TL-ϕ(ωc = ω1) TL-ϕ(ωc = ω2) TL-ϕ TL

φ2
NEE 0.3915 0.1559 0.1559 0.4186
NRMSE 1.4177 0.6355 0.6355 1.6489

R Error Index TL-ϕ(ωc = ω1) TL-ϕ(ωc = ω3) TL-ϕ TL

φ3
NEE 0.5104 0.1625 0.1625 0.5247
NRMSE 4.5327 0.8258 0.8258 4.7661

R Error Index TL-ϕ(ωc = ω1) TL-ϕ(ωc = ω5) TL-ϕ TL

φ5
NEE 0.4686 0.1969 0.1969 0.4709
NRMSE 7.4568 1.0506 1.0506 7.4800
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Table 13. Displacement errors of the 5th floor (G2).

R Error Index TL-ϕ(ωc = ω1) TL-ϕ(ωc = ω̃c) TL-ϕ(ωc = ω2) TL-ϕ TL

φ2
NEE 0.3415 0.3382 0.1407 0.1163 0.3470
NRMSE 0.8922 0.8842 0.7590 0.7358 0.9059

R Error Index TL-ϕ(ωc = ω1) TL-ϕ(ωc = ω̃c) TL-ϕ(ωc = ω3) TL-ϕ TL

φ3
NEE 0.3230 0.3202 0.6018 0.1138 0.3276
NRMSE 1.1331 1.1281 4.1863 0.9102 1.1418

R Error Index TL-ϕ(ωc = ω1) TL-ϕ(ωc = ω̃c) TL-ϕ(ωc = ω5) TL-ϕ TL

φ5
NEE 0.4934 0.3865 109.34 0.2195 0.5015
NRMSE 1.0423 0.7724 27.200 0.8470 1.0666
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Figure 9. Displacement responses of the 5-story building (G1). (a) R = φ2. (b) R = φ3. (c) R = φ5.
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Figure 10. Displacement responses of the 5-story building (G2). (a) R = φ2. (b) R = φ3. (c) R = φ5.

5.3. Case 3: Damped Linear MDOF System under Seismic Input

A four-story shear building under seismic input is shown in Figure 11. The structural
properties are m1 = 105 kg, m2 = m3 = 104 kg, m4 = 103 kg, ki = 107 N/m (i = 1, 2, 3, 4),
and the natural frequencies are 8.88, 21.08, 50.65, and 105.41 rad/s. Assuming Rayleigh
Damping, the damping matrix can be determined by combining the mass and the stiffness
matrices as follows,

C = a0M + a1K (30)

in which, a0 and a1 are the two proportionality factors evaluated by the following equation:{
a0
a1

}
=

2ξ

ω1 + ω3

{
ω1ω3

1

}
(31)

where, ξ = 0.05 is the damping ratio; ω1 and ω3 are the two specific frequencies selected
for Rayleigh Damping.
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Figure 11. Schematic diagram of a four-story shear frame building with damping.

The system is subjected to the ground acceleration record of the El Centro wave, where
the peak ground acceleration (PGA) is scaled to 0.5 g. The sampling interval of the record
is 0.02 s. The time history and response spectrum of the El Centro wave are shown in
Figure 12, noting that the peak frequency of the response spectrum ωp = 24.166 rad/s.
fig10a

2

（a）

fig10c

2

（b）

Figure 12. Spectral characteristics of the El Centro wave. (a) Time history. (b) Response spectrum.

Numerical results for the initial conditions of u(0) = 0 m and u̇(t) = 0 m/s are
displayed in Figure 13, where the numerical solution obtained from the Newmark al-
gorithm with [α, β] = [1/2, 1/4] and ∆t = 0.005 s is considered as a reference solution
for comparison. TL-ϕ algorithms with the time step of 0.02 s are applied to perform the
step-by-step integration. Based on the proposed selection criterion in Equations (20)–(22),
ωc = min(ω̃c1, ω̃c2) = 8.14 rad/s and ϕ = 0.9978. Displacement errors of the 4th story
derived from TL-ϕ algorithms with different values of ωc are shown in Table 14. It can
be seen that both NEE and NRMSE are minimal for “TL-ϕ(ωc = 8.14 rad/s)”, indicating
that the proposed selection criterion of ωc is applicable for an MDOF that is subjected to a
seismic wave.
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Table 14. Displacement errors for the 4th story.

Error Index TL-ϕ(ωc = 8.14 rad/s) TL-ϕ(ωc = ω1) TL-ϕ(ωc = ωp) TL-ϕ

NEE 0.7147 1.1606 16.039 1.7891
NRMSE 0.5929 0.6582 4.1664 0.6330
fig12a

Figure 13. Displacement responses of the 4th story.

5.4. Case 4: An MDOF System with Softening Stiffness

The five-story shear building shown in Figure 8 is used in this case. The initial
structural properties are mi = 105 kg, ki,0 = 107 N/m (i = 1, 2 . . . 5), ξ = 0.02, and the
natural frequencies are as shown in Table 10. The softening stiffness of the system after
deformation is designated as ki = ki,0(1−

√
|ui − ui−1|), where subscript i refers to the ith

story and (ui − ui−1) is the inter-story drift of the ith story.
The system with zero initial conditions is subjected to the ground acceleration record

of the Loma Prieta wave, where PGA = 1.05 g. The sampling interval of the record is 0.01 s.
The time history and response spectrum of the Loma Prieta wave are shown in Figure 14,
noting that the peak frequency of the response spectrum ωp = 10.134 rad/s.

TL-ϕ algorithms with the time step of 0.01 s are applied to perform the step-by-
step integration, while the numerical solution obtained from the Newmark algorithm
with [α, β] = [1/2, 1/4] and ∆t = 0.005 s is considered as a reference solution for com-
parisons. According to the proposed selection criterion in Equations (20)–(22), ωc =
min(ω̃c1, ω̃c2) = 2.28 rad/s and ϕ ≈ 1.0000. Displacement errors of the 4th story de-
rived from TL-ϕ algorithms with different values of ωc are shown in Table 15, and the
responses are ploted in Figure 15. It can be seen that both NEE and NRMSE are minimal
for “TL-ϕ(ωc = 2.28 rad/s)”, indicating that the proposed selection criterion of ωc is still
applicable for non-linear MDOF systems.

Table 15. Displacement errors for the 4th story.

Error Index TL-ϕ(ωc = 2.28 rad/s) TL-ϕ(ωc = ω1) TL-ϕ(ωc = ωp) TL-ϕ

NEE 4.9178 4.9193 4.9808 5.0293
NRMSE 0.8277 0.8312 0.9501 0.8514
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Figure 14. Spectral characteristics of Loma Prieta wave. (a) Time history. (b) Response spectrum.

fig13

Figure 15. Displacement responses of the 4th story.

6. Conclusions

TL-ϕ algorithms represent newly proposed SDIM that possess controllable numerical
dispersion properties by introducing a precorrection parameter ϕ. This precorrection
parameter depends on the critical frequency ωc of a system. When TL-ϕ algorithms are
applied to an MDOF system, the first and most important issue is the determination of ωc
for ϕ. Precorrection for each frequency (mode) of the system may achieve high accuracy,
but is time consuming especially when the number of DOFs is huge. Indeed, relatively
high accuracy of the dynamic responses can still be obtained by precorrecting a specific
mode (deemed to be ωc) that dominates the total responses of an MDOF system, and then
ϕ will reduce to a constant scaling ϕ for all the modes of the system.

In this work, the choices of ωc are fully discussed by investigating the relationship
between ωc and ω1 as well as ω̃ (or ωp). It is worth noting that the value of ωc selected
for ϕ has a significant influence on the structural responses, and its determination should
consider both the initial structural properties of the system and the numerical character-
istics of external excitation. Two factors that control the importance of any mode in the
total dynamic responses, including DMF and MPF, are taken into account to obtain the
optimal critical frequency. Empirical formulas of ωc for systems subjected to both harmonic
excitation and seismic waves are obtained by numerical calculation of NRMSE. A total of
four numerical cases are intentionally designed to examine the feasibility of the selection
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criterion ωc proposed in this work. By studying the two error indicators of NEE and
NRMSE, it is illustrated that a smaller period distortion in dynamic responses derived
from TL-ϕ algorithms can be achieved when ωc is determined according to the proposed
criterion. This will lead to further improvements of the numerical dispersion property of
TL-ϕ algorithms in solving structural dynamic problems of MDOF systems.
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Abbreviations
The following abbreviations are used in this manuscript:

EOM equation of motion
SDOF single-degree-of-freedom
MDOF multi-degree-of-freedom
SDIM structure-dependent integration method
SIIM structure-independent integration method
AM amplitude decay
PE period elongation
DMF dynamic magnification factor
MPF modal participation factor
NRMSE normalized root-mean-square error
NEE normalized energy error
MSM modal superposition method
PGA peak ground acceleration
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