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Abstract: Aiming at the characteristics of high computational cost, implicit expression and high
nonlinearity of performance functions corresponding to large and complex structures, this paper
proposes a support-vector-machine- (SVM) based grasshopper optimization algorithm (GOA) for
structural reliability analysis. With this method, the reliability problem is transformed into an opti-
mization problem. On the basis of using the finite element method (FEM) to generate a small number
of samples, the SVM model is used to construct a surrogate model of the performance function,
and an explicit expression of the implicit nonlinear performance function under the condition of
small samples is realized. Then, the GOA is used to search for the most probable point (MPP),
and a reasonable iterative method is constructed. The MPP information of each iteration step is
used to dynamically improve the reconstruction accuracy of the surrogate model in the region that
contributes most to the failure probability. Finally, with the MPP after the iteration as the sampling
center, the importance sampling method (ISM) is used to further infer the structural failure probability.
The feasibility of the method is verified by four numerical cases. Then, the method is applied to a
long-span bridge. The results show that the method has significant advantages in computational
accuracy and computational efficiency and is suitable for solving structural reliability problems of
complex engineering.

Keywords: structural reliability; failure probability; machine learning; support vector machine;
grasshopper optimization

1. Introduction

The reliability of the structure helps to evaluate the performance of a part or the whole
system, which is directly related to people’s safety. Structural reliability analysis is carried
out around uncertainty, determined by random variables that represent and differentiate
system performance, and based on the performance function of random variables [1].
The performance functions of large and complex engineering structures are often highly
nonlinear and implicit. Their function values generally need to be obtained by means
of numerical calculation methods, such as the finite element method (FEM), which usu-
ally consumes considerable time [2]. For traditional reliability problems, the mean-value
first-order second moment (MVFOSM) method, the first-order second moment (FOSM)
method and the second order reliability method (SORM) can achieve good results and
have been widely used [3]. However, for complex problems with high computational cost,
these methods are not suitable, because they require explicit expression of performance
functions [4–6]. The Monte Carlo simulation (MCS) method and the importance sampling
method (ISM) can obtain the ratio of the failure number to the total number of samples

Buildings 2022, 12, 855. https://doi.org/10.3390/buildings12060855 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings12060855
https://doi.org/10.3390/buildings12060855
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://doi.org/10.3390/buildings12060855
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings12060855?type=check_update&version=1


Buildings 2022, 12, 855 2 of 16

through a large number of random samplings to calculate the failure probability of struc-
tures. They are suitable for solving the structural reliability of implicit functions with high
calculation accuracy. However, to ensure calculation accuracy, the random sampling times
of the MCS method and ISM method are very large. In a recent study, Aroob et al. [7]
conducted reliability analysis of fiber-reinforced polymer (FRP) reinforced panels by MCS
method, and determined the specific target reliability index of the material, verifying the
applicability of the MCS method in reliability analysis. For complex engineering structures,
whose mechanical response to physical quantities, such as stress and deformation under
load, are difficult to obtain directly through simple calculation formulas, the calculation
time of single structural reliability analysis is very long, which leads to a great limitation of
the MCS method and ISM method in practical engineering applications [8–10].

In recent years, the surrogate model method, which constructs explicit performance
functions to approximate implicit performance functions in order to simplify calculation,
has gradually emerged and become an important means to reduce the high computational
cost in the process of reliability solution [11,12]. As a classical surrogate model, the response
surface method (RSM) based on polynomial regression is widely used in the research of
structural reliability analysis [13,14]. However, the reconstruction accuracy of this method
is low in highly nonlinear problems. With the continuous development of machine learning
in the field of artificial intelligence, machine learning models, such as artificial neural
networks (ANN) [15], radial basis functions (RBF) [16], kriging [17], and support vector
machines (SVM) [18,19] have been used as surrogate models of the actual performance
function and achieved good results. Existing MCS-based surrogate model methods, such
as ANN-MCS [20], RBF-MCS [21], and Kriging-MCS [22], have the advantages of clear
concept, no need to calculate checkpoints, and easy implementation. However, models
such as ANN and RBF have limitations, such as insufficient extrapolation ability and
“overfitting” under the condition of small training samples, and these methods all have
the problem of over-reliance on preset samples. Therefore, for reliability problems with
high-dimensional random variables, a large number of preset samples are required to
ensure the accuracy of the surrogate model. The number of samples grows exponentially
with the increase in dimensions, resulting in high construction costs of surrogate models.

In order to reduce the construction cost of the surrogate model, some scholars in
recent years have proposed to combine the bionic optimization algorithm with the sur-
rogate model method to approximate the real failure domain boundary of the structure
by using its powerful global optimization capability. Bionic optimization algorithm refers
to the computing technology and method used to solve various optimization problems,
developed by simulating the structural characteristics, evolutionary law, behavior and
thinking structures of human, nature and other biological populations [23]. At present, the
application scope of bionic optimization algorithm includes various fields, such as industry,
agriculture, science, and technology. In the field of structural reliability, J. Cheng first
combined ANN and genetic algorithm (GA), using ANN to import the explicit expression
of approximate limit state function, so that GA became more effective after obtaining a clear
limit state function, thus saving a lot of time-consuming finite element calculations [24].
In 2010, J. E. Hurtado and D. A. Alvarez combined the SVM surrogate model with the
particle swarm optimization algorithm (PSO), and proposed a reliability evaluation idea
different from MCS as the core [25]. In addition, the authors also pointed out that the
swarm intelligence optimization algorithm can be combined with other machine learning
models, which lays the foundation for the development of this method. Shortly afterwards,
novel bionic optimization algorithms, such as the artificial bee colony algorithm (ABC) [26],
the salp optimization algorithm (SOA) [27], and the firefly algorithm [28] were respectively
combined with different surrogate models to further improve the computational efficiency
of implicit and nonlinear reliability problems.

The purpose of this research is to establish a new dynamic updating surrogate model
method to solve the problem of structural reliability with implicit, high nonlinear perfor-
mance functions that are difficult to solve. In this method, a novel support-vector-machine-
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based grasshopper optimization algorithm (GOA) for structural reliability analysis is
proposed. Combined with finite element calculation software and ISM, this algorithm has
made great breakthroughs in solving problems that the implicit high nonlinear performance
function cannot readily solve. The method is applied to an actual bridge project, and the
results show that it has significant advantages in accuracy and efficiency, which verifies the
superiority and practicability of this method in reliability analysis of complex structures.

2. Related Work
2.1. GOA

In 2017, a swarm intelligence optimization algorithm called GOA emerged, showing
excellent global optimization capability [29]. The algorithm regards a single individual as a
search operator and simulates the large-range fast movement of imagoes and local slow
movement of larvae into global and local optimization, respectively. In the optimization
process, with additional iterations, the global optimization stage is gradually transformed
into the local optimization stage [30]. In the stage of global optimization, the operator
performs a rapid search in the model space over a large range to obtain the overall infor-
mation of the model space and lock down a local area. In the stage of local optimization,
the operator searches carefully in this local area and optimizes the accuracy of the solution
through continuous iteration. According to the distance between the two operators, spatial
regions can be divided into attractive regions, comfortable regions and repulsive regions
(Figure 1).
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Figure 1. The figure of the interaction between individual grasshoppers.

When the distance between the two operators is relatively close (less than 2.079 units),
they repulse each other, and the operator is in the repulsion region or within the repulsion
distance. When the distance between the two operators is exactly 2.079 units, there is
neither an attractive nor repulsive force, which is called the comfort region or the comfort-
able distance. In the same way, when the distance between two operators is more than
2.079 units, they attract each other, and thus this distance is called the attraction region or
the distance of attraction [31]. According to this principle, grasshopper operators constantly
adjust their positions with other operators to achieve optimization results.

It is important to note that there is no clear boundary between global and local
optimization. With increasing iteration times, the search area gradually decreases, and
the search gradually changes from global optimization to local optimization. The current
grasshopper operator xi is defined by the grasshopper operator xj, as follows:

p
(
dij
)
=

[
me−

dij
n − e−dij

] xj − xi

dij
(1)
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where dij is the spatial distance between the current ith grasshopper operator and the
jth grasshopper operator m and n are parameters to evaluate the effect of other agents
on the agent; m represents the intensity of attraction, and n represents the spatial scale
of attraction.

The next position of the grasshopper operator xi is defined as follows:

x̂k
i = c1

(
N

∑
j=1

c2
ulk − f lk

2
p
(

dk
ij

) xk
j − xk

i

dk
ij

)
+ Tk

g (2)

where x̂k
i is the position to which the i-th grasshopper operator moves next in the k-th

dimension; N represents the total number of grasshopper operators; ulk and flk represent
the upper and lower limits of the agent in the k-th dimension, respectively; dk

ij denotes
the spatial distance between the i-th grasshopper and the j-th grasshopper in the k-th
dimension; xk

i and xk
j represent the current position of the i-th and j-th grasshoppers in

the k-th dimension, respectively; Tk
g represents the component of the best solution found

thus far in the k-th dimension, and c1 and c2 are known as adaptive shrinkage parameters,
which maintain the relative balance between global and local optimization. If c1 and c2 are
represented by c, their linear change can be calculated as:

c = cmax − t
cmax − cmin

tmax
(3)

where t represents the current iteration number; tmax represents the maximum number of
iterations; cmax is the maximum value of the adaptive shrinkage parameter, and cmin is the
minimum value of the adaptive shrinkage parameter.

The algorithm mainly contains six hyperparameters: the population number N, the
maximum number of iterations tmax, and the upper and lower limits of the search ul and
fl, respectively. The upper and lower limits of the search represent the search space of the
model, which can be reasonably estimated according to actual problems. The number of
populations and iterations have similar effects on the operation of the algorithm: when
the number of populations or iterations increases, the search operator searches in more
detail in the whole model space. If the population or iteration is too large, it causes many
unnecessary searches, greatly increasing the running time of the algorithm and reducing the
efficiency. However, if the population or iteration number is too small, the global optimal
solution cannot be searched, which affects the accuracy of understanding. Therefore, it
is necessary to constantly adjust these two parameters in a scientific way and select a
group of population and iteration times that are more suitable for the current problem.
The adaptive shrinkage parameter c gradually decreases with additional iterations so that
the grasshopper algorithm does not converge quickly, thus affecting the proportion of the
global optimization stage and local optimization stage. A large value of c in the early stage
of the algorithm encourages the grasshopper operator to conduct global optimization, while
a small value of c in the late stage of optimization encourages the grasshopper operator to
conduct local optimization as much as possible and move towards the target.

To demonstrate the good performance of the GOA, we adopt two common multi-
modal test functions: the egg crate function and the periodic function (Figure 2), which are
shown as Equations (4) and (5):

f (x) = f (x1 . . . xn) =
n
∑

i=1
(x2

i + 25 sin2(xi))

xi ∈ [−200, 200], i = 1, 2, . . . , n
(4)

f (x) = f (x1 . . . xn) = 1 +
n
∑

i=1
sin2(xi)− 0.1e

(
n
∑

i=1
x2

i )

xi ∈ [−100, 100], i = 1, 2, . . . , n
(5)
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periodic function.

In the test process for the above two test functions, the dimension D of the test function
is 5. In the egg crate function test, the parameter settings of the GOA are as follows: the
population size N is 200, and the maximum number of iterations tmax is 500. In the periodic
function test, the parameter settings of the GOA are as follows: the population size N is
100, and the maximum number of iterations tmax is 500. The calculation results are shown
in Table 1. It can be seen that the difference between the optimal value searched by the
algorithm and the minimum value of the function is very small. The difference between
the average optimal value of the egg rate function and the minimum value of the function
is only 3.99 × 10−11, and the difference between the average optimal value of the periodic
function and the minimum value of the function is only 4.65 × 10−5, indicating that the
grasshopper algorithm has a strong global optimization ability.

Table 1. Test results of the two benchmark functions.

Test Function The Maximum Number of
Iterations

The Minimum
Value

The Average
Optimal Value

Egg crate 500 0 3.99 × 10−11

Periodic 500 0.9 0.9 + (4.65 × 10−5)

2.2. SVM

The SVM [32] originated from pattern recognition in machine learning and is widely
used, including portrait recognition, text classification, handwritten character recognition,
bioinformatics and so on. In recent years, it has been applied to solve implicit nonlinear
problems and has achieved good results. On the one hand, the SVM is very suitable for
small sample fitting problems; on the other hand, the SVM can accurately represent high-
dimensional functions and overcome the problem of dimension disaster. It can be divided
into support vector classification (SVC) and support vector regression (SVR) according to
the different functions used [33]. According to the properties of the hyperplane, the SVM
can also be divided into linear and nonlinear.

In the SVM, the input is the sample of basic random variables, and the output is the
response of the physical system. For a linearly separable problem yi ∈ y = {1, −1}, the
analytic expression of the SVM is:

g(x) = 〈w, x〉+ b (6)

where <.,.> represents the inner product in Rn, w∈Rn is the weight vector, and b ∈ R is
the threshold.
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Compared to SVC machines, the margin of SVR is replaced by a loss function. The
original optimization model of the SVR problem can be expressed as:

min J = 1
2‖w‖

2 + C
m
∑

i=1

(
ξi + ξ∗i

)
s.t. yi − {w , xi) − b < ε + ξi ∀i ∈ (1, . . . , m)(

ξi + ξ∗i
)
∈ R+ ×R+

(7)

where
(
ξi, ξ∗i

)
∈ R+,n ×R+,n is the relaxation variable and C is the penalty parameter.

By introducing the corresponding Lagrange function, the SVM formula for linear
problems can be derived:

g(x) =
m

∑
i=1

(αi − α∗i )〈x, xi〉 + b (8)

where (α − αi) is a Lagrange multiplier and must be positive.
However, real problems are often non-linear. To extend Equation (8) to nonlinear

functions, we can replace the inner product directly with the kernel function:

g(x) =
m

∑
i=1

(αi − α∗i )K(x, xi) + b (9)

where K(x, xi) is the kernel function.
There are many kinds of kernel functions of SVM, such as linear kernels, polynomial

kernels, neural network kernels, and Markov kernels. One of its advantages is that the
model performance can be improved by selecting appropriate kernel functions. Therefore,
it is very important to choose an appropriate kernel function for a particular problem. The
Gaussian RBF kernel is adopted in this paper, whose expression is given below:

k(x1, x2) = exp
(
− 1

2σ2 ‖x1 − x2‖2
)

(10)

where σ is the width parameter.

3. The Proposed SVM-Based GOA Method
3.1. Basic Concept

In the standard normal space, the geometric meaning of the reliability index is the
shortest distance from the origin of coordinates to the limit state equation. According to
the geometric meaning of the reliability index, the structural reliability can be solved as the
following equation for the constrained optimization problem:

Minβ =

√
n
∑

i=1

(
Xi−µi

σi

)2

s.t. g(X) = g(x1, x2, . . . , xn) = 0
(11)

where X is a random variable, g(X) is a performance function, µi is the mean value of all
design variables, and σi is the standard deviation of all design variables.

By using the penalty function method, the above equation for the constrained optimiza-
tion problem can be transformed into the following unconstrained optimization problem:

Minβ =

√√√√ n

∑
i=1

(
Xi − µi

σi

)2

+ P · [g(X)]2 (12)

where P is the penalty coefficient, which is generally a large constant.
The optimal algorithm is used to solve the above optimization problems, and the

obtained solution is generally called the most probable point (MPP), which is the point
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with the largest contribution to the failure probability in the failure domain. For complex
structures that are time-consuming for a single calculation, the basic principle for achieving
rapid reliability analysis is as follows: On the premise of ensuring a certain calculation
accuracy, we aim to reduce the number of finite element reanalysis calculations.

To achieve high efficiency and precision of reliability analysis, the steps involved in
the proposed method are listed as follows:

a. Using the GOA to solve the reliability index

The GOA, with its excellent searching performance, is used to quickly search the
global optimal solution (MPP) of Equations (11) or (12). When the grasshopper operator
finds the information of the probable optimal solution in this region, it uses the information
as a new knowledge source to replace the old operator and improves the prediction ability
of the SVM model by updating knowledge and gradually approaching the optimal region
to predict the particles closer to the optimal solution.

b. Using the SVM model to construct the surrogate model

In view of the advantages of SVM’s strong generalization ability under the condition
of small samples, a small number of samples are used to train the SVM model as a surrogate
model for performance functions, thereby establishing a nonlinear mapping relationship
between random variables and functional function values. This not only ensures that
the sample generation process does not call too many time-consuming finite element
programs, but also ensures that performance functions with strong nonlinearity can be
reasonably approximated.

c. Using a dynamic surrogate model strategy to improve the calculation accuracy

The key to the surrogate model method is whether it can fit the region near the point
where the maximum contribution to the failure probability of the structure occurs within
the failure region. Therefore, this paper constructs an iterative process to achieve dynamic
updating of surrogate models. In each iteration process, the new MPP searched by GOA
is substituted into the finite element model, and the real performance function value is
calculated to obtain a new sample. Then, the new sample is added into the original sample
set to retrain the SVM model. By iteratively repeating this process, the fitting error of
the SVM surrogate model in the region near the limit state equation can be adaptively
corrected. It should be pointed out that only one FEA is required for each iterative step.
However, the fitting accuracy is effectively improved, thereby reducing the dependence
of the fitting effect on the preset samples and accelerating the convergence speed of the
iterative calculation.

d. Using ISM to further improve computational accuracy

Through the iterative calculation of the GOA-SVM collaborative algorithm, the MPP
and its corresponding reliability index can be obtained. However, when the performance
function in the vicinity of the MPP is strongly nonlinear, the failure probability directly de-
rived from the reliability index may still have a large error, as shown in Figure 3. Therefore,
with MPP as the sampling center, the importance sampling method is used to calculate the
failure probability, which can further improve the calculation accuracy.
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The basic idea of the ISM is to change the center of random sampling so that the sample
points have more chances to fall into the failure domain and increase the chance of structure
performance function Z ≤ 0. Let the structural performance function be Z = g(X) and the
joint probability density function of the random variable X be fx(x); then, the structural
failure probability is

Pf =
∫ +∞

−∞
I[gX(x)] fX(x)dx (13)

where I(x) is an indicative function of x. I(x) = 1 when x < 0, and 0 otherwise.
Assuming that the importance sampling probability density function is PV(v),

Equation (13) can be rewritten as

Pf =

+∞∫
−∞

I[gX(v)] fX(v)
PV(v)

PV(v)dv (14)

If PV(v) is used to sample V, vk(vk1, vk2, . . . , vkn)T (k = 1, 2, . . . , N) is obtained. When
each variable xi is independent of each other, the unbiased estimate of pf is

∧
p f =

1
N

N

∑
k=1

I[g(vk)]
n

∏
i=1

fXi(vki)

pVi(vki)
(15)

3.2. Procedures

The method is realized as shown in Figure 4, and the specific steps are as follows:

Step 1: According to the characteristic distribution of random variable x, the real perfor-
mance function values g(x1, x2, . . . , xn) and g(x1, x2, . . . , xi ± f σi, . . . , xn) are calcu-
lated by the experimental design method. Then, m = 2n + 1 initial training samples
are constructed, where the interpolation coefficient f is generally 2.

Step 2: Train the SVM surrogate model. The nonlinear mapping relationship between
random variables and performance function values is established.

Step 3: According to Equation (12), the global optimal solution, namely, the MPP, is
searched through the GOA to obtain the corresponding reliability index.

Step 4: According to the convergence evaluation formula:
∣∣∣β(w) − β(w−1)

∣∣∣ < 10−3 (absolute
difference of reliability index in successive iteration steps), if convergence is not
satisfied, the MPP and its real function value are re-input into the original training
sample set, and we return to Step 2. Otherwise, convergence is satisfied, and the
iteration ends.

Step 5: The MPP obtained in the final iteration step is taken as the sampling center of
gravity. According to Equation (15) above, the ISM method is adopted to calculate
the failure probability.
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4. Results and Discussion

To verify the feasibility of this method, four numerical examples are given. Cases 1
and 2 are reliability problems with explicit performance functions that can be assumed to
be “implicit” to investigate the feasibility of the method, while Cases 3 and 4 are examples
of structures with implicit performance functions. In addition, after preliminary tests, the
polynomial kernel function, RBF kernel function, and sigmoid kernel function of SVM
were used in the following four cases, and the results had little difference. However, the
calculation time using the polynomial kernel function was the shortest, so the polynomial
kernel function and its corresponding parameters were used in the following cases.

4.1. Case 1

A nonlinear performance function is given as:

g(x) = exp[0.4(x1 + 2) + 7.0]− exp(0.3x2 + 5.0)− 200 (16)

where x1 and x2 are normally distributed.
The parameters of the GOA algorithm are set to N = 20, Cmax = 1.0, Cmin = 1.0 × 10−5,

and P = 1000. The polynomial kernel function of SVM is selected, and the parameters of
SVM model are set to C = 45 (C is the penalty coefficient), and d = 3 (d is the order). Five
initial training samples are generated using the Bucher experimental design, as shown in
Table 2. As seen from Table 2, the SVM-predicted value is very close to the true function
value. The relative errors of the other three randomly selected test samples are shown in
Table 3. It can be seen from this that the maximum relative error is less than 5%, indicating
that the trained SVM model can well approximate the original performance function, thus
replacing the original performance function for MCS sampling. The calculation results are
shown in Table 4. When the results of 106 MCS simulations are used as the exact solution,
compared with methods such as RSM and RBF-based FORM, the results of the proposed
method are very close to the reference exact solution, and the number of finite element
operations is low: only 1/30 of the RBF-based FORM.
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Table 2. The initial training samples and function values of Case 1.

Number x1 x2

Truth Value of the
Performance

Function

Predictive Value of
the Performance

Function

Relative
Error/%

1 −0.19 0.43 648.72 648.72 0.00

2 1.34 −0.69 1554.88 1554.88 0.00

3 −0.05 −0.96 764.36 764.36 0.00

4 −1.28 −0.60 332.25 332.25 0.00

5 −0.34 −0.73 636.31 636.31 0.00

Table 3. The test samples and function values of Case 1.

Number x1 x2

Truth Value of the
Performance

Function

Predictive Value of
the Performance

Function

Relative
Error/%

1 0.51 0.35 1018.18 978.86 4.0

2 0.28 0.30 926.06 891.89 3.8

3 0.03 0.02 784.24 761.98 2.9

Table 4. Comparison of calculation results of Case 1.

Method MCS [13] RSM(f = 2) RBF-FORM SVM-GOA

Pf/10−3 3.63 3.52 3.21 3.60

Relative error/% - 3.03 11.57 0.83

Function calls 106 31 296 10

4.2. Case 2

A nonlinear performance function is given as:

g(x) = −
(

x2
1 + 4

)
(x2 − 1)

20
+ sin

5
2

x1 + 2 (17)

where x1~N(1.5,1) and x2~N(2.5,1).
The parameters of the GOA algorithm are set to N = 20, Cmax = 1.0, Cmin = 1.0 × 10−5,

and P = 1000. The polynomial kernel function of SVM is selected, and the parameters of
SVM model are set to C = 45, and d = 3. Five initial training samples are predefined by the
Bucher experimental design, as shown in Table 5.

Table 5. The initial training samples and function values of Case 2.

Number x1 x2

Truth Value of the
Performance

Function

Predictive Value of
the Performance

Function

Relative
Error/%

1 −2 0 2.31 2.31 0.00

2 0 −2 2.60 2.60 0.00

3 2 0 2.49 2.49 0.00

4 0 2 1.80 1.80 0.00

5 0 0 2.20 2.20 0.00

The calculation results are shown in Table 6. The result of the FORM method is very
poor, and there is a large gap in accuracy and efficiency. Although the RSM method has



Buildings 2022, 12, 855 11 of 16

fewer function calls, the relative error is as high as 94.29%, which means the method has
poor fitting accuracy. The problem can be solved more precisely with the GOA method.
However, the method in this paper is superior to the GOA method in terms of the number
of function calls and relative errors. This case verifies the feasibility of the method in
this paper for solving the reliability problem of highly nonlinear implicit performance
functions, and effectively overcomes the limitation of the low computational accuracy of
traditional methods, such as the FORM and RSM, in solving such problems. Furthermore,
it also proves that GOA-SVM outperforms the GOA method by a large margin in terms of
computational efficiency.

Table 6. Comparison of calculation results of Case 2.

Method MCS RSM FORM GOA SVM-GOA

Pf/10−3 3.15 0.18 30.22 3.32 3.18

Relative error/% - 94.29 1059.37 5.40 0.95

Function calls 106 19 250 126 9

4.3. Case 3

A plane portal frame is shown in Figure 5. The elastic modulus of each unit is
2.0 × 106 kN/m2, and the relationship between the moment of inertia of the section and
the section area is Ii = αiAi

2. Taking the horizontal displacement D(x) of node 3 as the
maximum deformation control, the structure performance function is

g(u3) = 0.01− D(x) (18)

where [u] is the maximum allowable displacement, which is taken as 0.01 m. The sta-
tistical characteristics of the cross-sectional area of random variables A1 and A2 and the
concentrated load P are shown in Table 7.
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Table 7. The statistical parameters in Case 3.

Random Variables Distribution Unit Mean Cov αi

A1 Lognormal m2 0.36 0.036 0.0833

A2 Lognormal m2 0.18 0.018 0.1667

P Extreme
value type I kN 20 5.0 -

The parameters of the GOA algorithm are set to N = 20, Cmax = 1.0, Cmin = 1.0 × 10−5,
and P = 1000. The polynomial kernel function of SVM is selected, and the parameters of
the SVM model are set to C = 45 and d = 3. Four methods are proposed to calculate the
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displacement response value, and the results are shown in Table 8. The result of the MCS
method is used as the reference solution. Compared with methods such as RSM and ANN-
MCS, the calculation accuracy of the proposed method is the closest to the exact solution,
and the number of function calls is 34% of that of RSM and 42% of that of ANN-MCS.

Table 8. Comparison of calculation results of Case 3.

Method MCS RSM ANN-MCS [20] SVM-GOA

Pf/10−3 2.8160 2.8405 2.8338 2.8135

Relative error/% - 0.870 0.632 0.089

Function calls 106 41 33 16

4.4. Case 4

A ten-bar truss structure is shown in Figure 6, in which the cross-sectional area of
each bar is Ai(i = 1, 2, . . . , 10), the elastic modulus is E, and the external loads are P1,
P2, and P3. There are 15 basic random variables in total, and they all obey the normal
distribution. The statistical parameters are shown in Table 9. The function is established
with the specification of node 2, not allowing the vertical displacement D(x) to exceed
4 mm:

g(X) = 0.004− D(X) (19)
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Table 9. The statistical parameters in Case 4.

Random Variables Distribution Unit Mean Cov

L Lognormal m 1 0.05

Ai Lognormal m2 0.001 0.00015

E Lognormal GPa 100 5

P1 Lognormal kN 80 4

P2 Lognormal kN 10 0.5

P3 Lognormal kN 10 0.5

This is a high-dimensional implicit performance function structural reliability prob-
lem. The vertical displacement D(x) in the functional function is calculated by ANSYS
FEA software.

The parameters of the GOA algorithm are set to N = 20, Cmax = 1.0, Cmin = 1.0 × 10−5,
and P = 1000. The polynomial kernel function of SVM is selected, and the parameters of
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SVM model are set to C = 45, and d = 3. The calculation results of different methods are
shown in Table 10. It can be seen that the relative error of the RSM method is the largest.
The results of the SVM-based FORM are not much different from the results of the method
in this paper, but the number of finite element calls required by the method in this paper is
reduced by 66%, indicating that it has good adaptability to the structural reliability problem
of high-dimensional implicit functions.

Table 10. Comparison of calculation results of Case 4.

Method MCS [34] RSM [34] SVM-FORM [34] SVM-GOA

Pf/10−3 4.643 2.626 4.756 4.723

Relative error/% - 43.44 2.43 1.72

Function calls 106 155 155 52

5. Engineering Application

A two-way six-lane suspension bridge is 1440 m long and has a main span of 616 m
in two directions. The south tower of the bridge is 118.972 m high, and the north tower is
139.704 m high. The general arrangement of the bridge is shown in Figure 7 [35].
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According to the General Specification for Highway Bridge Design of China (JTG D60-
2004), the maximum allowable vertical deflection of the main girder under vehicle loading
(excluding impact) is [u] = L/400 = 616/400 = 1.54 m. The normal use state performance
function is given as:

g(x) = 1.54− uv(x) (20)

where uv(x) is the maximum vertical deflection of the main beam, which can be calculated
by ANSYS finite element software.

In the process of static reliability analysis of the bridge, the finite element software
ANSYS is needed to calculate the structural response of the MPP generated in the initial
training sample and the iteration step, namely, the real performance function values.
Figure 8 shows the ANSYS model. In the modeling process, the main tower and the
main beam use spatial beam elements, and the main cable and hanger use spatial truss
elements. Master–slave constraints are established between the main tower and girder
and the double cable planes. The connection between the main tower and the foundation
is simplified to a solid connection. In the lower beam of the main tower, the main girder
and the beam are set up by rigid arms in the Z and Y directions, with the X-axis along the
bridge direction, the Y-axis along the transverse bridge direction, and the Z-axis vertical.
In the ANSYS command stream, the random variables of bridge reliability analysis are set
as variables, and ANSYS is started directly through the MATLAB executable file in the
analysis. The random variables obtained in the MATLAB program analysis are assigned to
the corresponding variables in the ANSYS command stream through the data interface file,
and the structural response value is obtained. Then, the structural response value obtained
by ANSYS is returned to MATLAB to calculate the functional state of the structure through
the data interface file, which ensures smooth progress of the iterative program in MATLAB.
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The parameters of the GOA algorithm are set to N = 20, Cmax = 1.0, Cmin = 1.0 × 10−5,
and P = 1000. The polynomial kernel function of SVM is selected, and the parameters of
SVM model are set to C = 45, and d = 3. This computation is carried out on a PC (Intel Core
i5-2320 CPU @ 3.0 GHz).

The calculation results are shown in Table 11. It can be seen that compared with
the RSM method, the method in this paper is closer to the calculation results of the MCS
method, and the number of function calls in the finite element software is approximately
1/4 that of the RSM. The engineering application shows that the proposed method has
good applicability in the reliability analysis of complex structures.

Table 11. Comparison of calculation results.

Method MCS RSM SVM-GOA

Reliability index 2.36 2.59 2.34

Relative error/% - 9.75 0.85

Function calls 106 255 52

Computing time/min 506,000 131.8 27.9

6. Conclusions

This paper combines the GOA, the SVM model and the ISM method and proposes a
new structural reliability analysis method called the GOA-SVM-based dynamic surrogate
model. This method not only makes use of the characteristics of the GOA, which can
quickly and accurately search for the MPP of highly nonlinear performance functions in the
global space, but also makes full use of the strengths of the SVM model, which effectively
reduces errors and improves accuracy through the establishment of the dynamic response
correction mechanism and the introduction of the ISM. The results show that the proposed
method can efficiently and accurately solve the reliability problem of multi-peak highly
nonlinear performance functions. It effectively solves the problems of large calculation
errors or non-convergence of iterations that occur when the structural performance function
is highly nonlinear or the failure probability is low, and overcomes the shortcomings of over-
reliance on preset samples. Moreover, it is easy to combine with the existing FEA software
or structural analysis program, which is convenient for practical engineering applications.
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