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Abstract: Dynamic environmental circumstances can sometimes be incompatible with proactive
human intentions of being safe, leading individuals to take unintended risks. Behaviour predictions,
as performed in previous studies, are found to involve environmental circumstances as predictors,
which might thereby result in biased safety conclusions about individuals’ inner intentions to engage
in unsafe behaviours. This research calls attention to relatively less-understood worker intentions
and provides a machine learning (ML) approach to help understand workers’ intentions to engage
in unsafe behaviours based on the workers’ inner drives, i.e., personality. Personality is consis-
tent across circumstances and allows insight into one’s intentions. To mathematically develop the
approach, data on personality and behavioural intentions was collected from 268 workers. Five
ML architectures—backpropagation neural network (BP-NN), decision tree, support vector ma-
chine, k-nearest neighbours, and multivariate linear regression—were used to capture the predictive
relationship. The results showed that BP-NN outperformed other algorithms, yielding minimal
prediction loss, and was determined to be the best approach. The approach can generate quantifiable
predictions to understand the extent of workers’ inner intentions to engage in unsafe behaviours.
Such knowledge is useful for understanding undesirable aspects in different workers in order to
recommend suitable preventive strategies for workers with different needs.

Keywords: machine learning; personality configuration; unsafe-behaving intentions

1. Introduction

The construction sector plays a significant role in the economy, contributing 13% to the
growth in global GDP in 2018 [1]. However, safety issues follow upon such achievements.
In recent years, the construction sector has reached record-high accident rates. In the
United States, the construction sector caused 1171 non-fatal and fatal injury claims in
2018, which accounted for 18% of all industrial accidents [2]. In the UK, construction was
responsible for the largest portion of all occupational injuries in 2018, with an incidence
rate of 21% [3]. Although the application of safety management practices seems to have
made an impact on the reduction of injury and fatality rates, occupational accidents remain
a pervasive issue [4].

Research has found that many occupational accidents are foreseeable, being the result
of people’s unsafe behaviour from a retrospective point of view [5]. It has been suggested
that behaviour prediction could be useful in the identification of vulnerable workers
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who are risk-takers and in the design of preventive strategies prior to the occurrence
of accidents to contribute to the reduction of injury rates [6]. Behaviour predictions, as
performed in previous studies, have been found to involve environmental circumstances
as predictors [7–12]. However, environmental circumstances have dynamic changes which
can sometimes be incompatible with proactive human intentions of being safe and lead
individuals to take unintended risks [13]. For example, an individual intends, but fails,
to use protective equipment such as a dust mask due to temporary unavailability in
the workplace. Thus, existing literature suggests that behaviour predictions involving
environmental circumstances might result in biased safety conclusions about individuals’
inner intentions to engage in safe or unsafe actions [5], which is known as the intention–
behaviour gap [1].

While decreased accuracy in predicting behaviour is expected in a dynamic con-
struction environment [13], prediction based on individuals’ intentions may be a more
suitable approach to carrying out safety-related assessments in order to reveal people’s
inner susceptibility to unsafe behaviours [14]. Intention refers to an individual’s cognitive
stance of exerting physical effort to perform a specific behaviour [15]. Referring to the
prevailing behaviour theories, such as the Theory of Planned Behaviour (TPB) [16] and
Self-determination Theory (SDT) [17], an individual’s intention to engage in a safe or unsafe
behaviour is indicative of the individual’s “favourable/unfavourable” or “should/should
not” evaluation for that behaviour, which reflects an individual’s inner susceptibility to
engaging in unsafe behaviours and allows more accurate predictions. As stated [18], “in
literature related to understanding human behaviour, the concept of intention holds a cen-
tral place” (p. 153). Since the beginning of the 21st century, researchers have increasingly
focused on applying approaches from behavioural ecology in studying intentions [14].
Existing studies, e.g., [14,19–21] have accumulated substantial evidence from humans
and other diverse animal species and found that “across a variety of animal taxa (includ-
ing human race), individuals within populations often display remarkable differences in
behavioural intentions that are consistent across time and contexts” [21] (p. 339).

Although the advantages of conducting safety assessments on individuals’ inner
intentions to engage in unsafe behaviours can be identified, there have been only a few
empirical tests in this field, i.e., [1,22]. In addition, the studies [1,22] have been descriptive
in nature and provided insufficient insights into the constitution of predictors for workers’
behavioural intentions, which prevents these studies from reaching an operative prediction
framework. To contribute to the growing research literature in this field, this research
aims to:

1. Conduct literature review to investigate the predictors for workers’ unsafe behavioural
intentions at the individual level;

2. Develop a predictive model of construction workers’ intentions to engage in unsafe
behaviours based on the predictors identified using machine learning (ML) methods,
and test its prediction performance;

3. Gain an enhanced understanding of the weights of each predictor in the prediction
practice, as the weights constitute the predictive basis for workers’ safety behavioural
intentions; and

4. Discuss the predictive model’s theoretical and practical implications.

This paper is organised as follows. A review of relevant academic literature to identify
the predictors is presented first. The conceptual model section theoretically formulates the
modelling framework of workers’ intentions to engage in safety-related behaviours and the
predictors. The research method specifies the stages involved to mathematically develop
the predictive model. Then the data collection is presented. The results involve the training
and evaluation of the predictive model, and the insights into the weight of each predictor
for predicting workers’ intentions. The discussion section interprets the model’s theoretical
and practical implications. Finally, the conclusions summarise the results, discuss the
limitations of this study, and recommend future research directions.
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2. Literature Review

Research has found that many occupational accidents are foreseeable, being the result
of people’s unsafe behaviour from a retrospective point of view [4,23,24]. It is suggested
that behaviour prediction can be useful in the identification of vulnerable workers who are
risk-takers and in the design of preventive strategies prior to the occurrence of accidents to
contribute to the reduction of injury rates [8–11]. A review of the existing literature reveals
that current studies have developed forecasting models as a function of environmental
circumstances to predict construction workers’ potential future behaviours [7–12]. However,
researchers have suggested that these predictions might not forecast behaviours well in a
practical setting [23–25]. According to the prevailing behaviour theories such as the TPB [16]
and SDT [17], a behaviour prediction approach is regarded useful only if individuals’
subsequent behaviour is performed as predicted. As meta-analyses have shown [26,27],
human safety behaviour is not only driven by individuals’ own decision-making processes
but is also determined by environmental circumstances. The construction environment
has dynamic changes, sometimes unforeseeable, where task- and context-related dynamics
exist and can sometimes cause individuals to subsequently fail to act on the behavioural
consequences as predicted [7,25].

In particular, task-related dynamics refer to the dynamic changes of environmental
circumstances that are immediately related to the accomplishment of work tasks such
as workplace real-time supply of safety equipment and personal protective equipment
(PPE) (e.g., availability of dust masks and sunscreen) [23]. Context-related dynamics refer
to the dynamic changes of environmental circumstances that surround the accomplish-
ment of work tasks such as workplace real-time housekeeping (e.g., tidy housekeeping
or electrical power cords laying across walkways) and real-time supervision for safety
commitment (e.g., the work shifts of site managers could result in different styles of
supervision) [23]. For example, the lack of health and safety management efforts could
result in PPE supply–demand imbalances and thereby the emergence of PPE availability–
unavailability dynamics [28,29]. Prediction based on PPE availability–unavailability dy-
namics could be irrelevant to future occurrences (e.g., an individual fails to act as predicted
to wear PPE due to workplace unavailability). Thus, these circumstances can be incompati-
ble with proactive human intentions of being safe, leading individuals to take risks that are
not factually intended [30,31]. In this regard, research shows that site management practices
tend to follow a linear process to investigate why unsafe behaviours happen, lacking a
holistic understanding of behavioural causation with workers at the “sharp end” of the
system (usually) being incorrectly blamed [32,33]. On this account, research has suggested
that the unforeseeable nature of environment circumstances could diminish the accuracy in
predicting human behaviour and sometimes result in incorrect safety conclusions about an
individual’s unsafe-behaviour intentions [13].

The above discussion draws on the relevant academic literature to interpret why
previous researchers have suggested that existing behaviour prediction tools might not
forecast behaviours well in a practical setting. Behavioural prediction based on individuals’
intentions, which is consistent across time and contexts and independent of environment
dynamics, seems to be a more suitable approach to carry out safety-related assessments in
order to reveal actual unsafe-behaviour potentials.

Investigating the mechanism responsible for consistent individual differences in in-
tentions has been of long-standing interest to the scientific community [34]. Over the
past few years, the understanding of human intentions has progressed significantly, and
a considerable body of evidence has accumulated documenting that the formation of
human intentions has personality origins, e.g., [27,35]. Decades of research involving
hundreds of thousands of individuals have revealed two meta dimensions of personal-
ity traits—stability (including sub-traits neuroticism, agreeableness, and conscientious-
ness) and plasticity (including sub-trait extraversion)—which provide a basic model for
portraying human personality [35]. Genetic polymorphisms in dopamine and serotonin
transmembrane proteins determine individual differences in the density and responsive
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efficiency of dopamine and serotonin [36]. Dopamine and serotonin levels and signalling
efficiencies are found to exert regulatory effects on the magnitude of physiological pro-
cesses in the brain system such as cognition and pleasure seeking, which set individuals
out on different personality trajectories for stability and plasticity and are expressed in
behavioural intentions [34,35,37–41]. In previous studies [26,42–46], it has also been docu-
mented that subjects with less-efficient dopamine and serotonin systems were observed to
consistently be more agreeable and conscientious but less extraverted and neurotic, and
exhibited stronger intentions to undertake solicitous behaviours (e.g., caring for colleagues’
safety at work) but diminished intentions to take risks (e.g., sensation seeking); conversely,
the opposite.

Research corroborates that it is not a single trait but a configuration of traits that consti-
tutes the individually expressed intentions to engage in unsafe behaviours [47]. Each dimen-
sion of the meta-traits stability and plasticity is one component of the configuration, and an
individual’s trait levels in the configuration (i.e., how high or low the individual scores on
each trait compared to others) drive quantitatively the scale of the individual’s inner desire
to take risks and help colleagues [47,48]. For example, extensive empirical evidence has
shown that individual variation in trait scores is reflected upon different scales measuring
individuals’ intentions about behaving safely (e.g., “strongly proactive”, “proactive”, “nei-
ther proactive nor negative”, “reactive”, or “strongly reactive”) [25,49–52]. These studies
further pointed out that extraversion and neuroticism are positive regulators, and agree-
ableness and conscientiousness are negative regulators, in the configuration of individuals’
unsafe-behaviour intentions, and that the opposite is true for solicitous behaviours (e.g.,
caring for colleagues’ safety at work). Based on these findings, it has been suggested that
the intention to engage in safety-related behaviours at the individual level can be predicted
on the basis of quantifying such individual variations in personality configurations [47].

Thus, in this research, the authors develop an approach to predict construction workers’
intentions to engage in unsafe behaviours by quantifying workers’ individual variations
in personality.

3. Research Method

As researchers have pointed out [51], in order to mathematically build a predictive
function (to address the research objectives of this study), a conceptual model should
be firstly proposed to reflect explicitly its operational architecture to allow numerical
simulations of the model to be built (i.e., the input and output matrices). In this research,
the conceptual model shapes the modelling framework of construction workers’ personality
configurations and safety behavioural intentions. The personality configurations and
dimensions of safety behavioural intentions of construction workers as the input and output
matrices are thereby interpreted. As shown in the literature review, human personality is
multidimensional, which can be represented by extraversion, neuroticism, agreeableness,
and conscientiousness. Behavioural intentions are found to be involved in the decision-
making processes for safety compliance and safety participation, which represent the
basic dimensions that constitute people’s safety performance in the workplace [53]. Safety
compliance refers to compliance-related behaviour that individuals carry out to keep
themselves safe, such as not taking shortcuts, using safety equipment, and following
safety procedures and rules. Safety participation refers to solicitous safety activities such
as reporting co-workers’ safety problems, keeping the workplace clean, and caring for
colleagues’ safety, which may not directly contribute to one’s own safety but helps to
develop an environment that supports safety.

A conceptual model is proposed to represent the modelling framework of the per-
sonality configuration and behavioural intention dimensions, as ascertained. As shown
in Figure 1a, the conceptual model holds a multiple-input-multiple-output architecture.
The input consists of an nx4 matrix, which represents n samples of four personality traits
(i.e., extraversion, agreeableness, conscientiousness, and neuroticism). The output is a nx2
matrix, which characterises n samples of two behavioural intention dimensions, namely,
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safety compliance and participation intentions. The conceptual model was then sketched
in MATLAB using the Simulink Model function (see Figure 1b), which provides an abstract
description of the mathematical simulation to be performed. After gathering the digital
data on construction workers’ personality and safety behavioural intentions, the abstract
description in the Simulink Model function will be able to absorb digital data as its input
and output signals to mathematically build the predictive framework.

Figure 1. (a) Conceptual model; (b) Simulink model.

To achieve the objectives of this research, numerical simulations of the modelling
framework were firstly carried out to establish the model’s mathematical framework. To
perform the numerical simulations, the gathering of relevant data concerning construction
workers’ personality configurations and behavioural intentions is one critical step in this
research and is discussed in the data collection section. To further ‘crack the code’ of
the conceptual model into its mathematical equivalent, ML algorithms were applied. In
recent years, ML has seen an exponential rise in its usage due to its outstanding ability
to iteratively learn from data to look into hidden insights and evolve its architecture to
accommodate new findings [54]. Since there are a variety of ML algorithms that can perform
data mining tasks, this research experimented with different ML algorithms and evaluated
which algorithm is more accurate to capture the predictive relationship between workers’
personality configurations and behavioural intentions, to establish a robust and reliable
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predictive model. Specifically, five ML algorithms—backpropagation neural network (BP-
NN), decision tree (DT), support vector machine (SVM), k-nearest neighbours (KNN), and
multivariate linear regression (MLR)—were utilised in this research (Figure 2).

Figure 2. The architecture of utilised machine learning algorithms: (a) neural network; (b) decision
tree; (c) support vector machine; (d) K-nearest neighbours; (e) multivariate linear regression.

A BP-NN consists of multiple layers, where the neurons in the input, hidden, and
output layers are responsible, respectively, for receiving input signals, processing the
received signals, and decoding the processed signals into the outputs [55]. During a training
process, the BP-NN iteratively adjusts the weights (i.e., connection strength between
neurons in the input, hidden, and output layers) to minimise the squared difference
between the BP-NN estimated values and the actual values in the training dataset [56].
Once trained, the BP-NN is able to obtain outputs for a given set of inputs. DT imitates
a tree structure, where binary recursive partitioning is performed to identify the best
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criteria to divide the standardised inputs into terminal branches such that the squared
difference between the values in the terminal branches and the corresponding outputs
in the training dataset can be minimised [6]. In KNN, a new observation is predicted
based on its similarity to the features of certain existing data points in the training set [6].
KNN analyses the Euclidean distance between a new observation and all the existing
data points in the training set and assigns the new observation to the respective class that
indicates the shortest distance, as well as the most similar features [54]. SVM identifies
optimal separating hyperplanes to break off an n-dimensional space into classes such that
a new observation can fall into the rightful boundaries for decision making [55]. MLR
indicates that the sole output to be predicted is a linear function of one or more explanatory
variables [57]: y = b0 + b1x1 + b2x2 + · · ·+ bixi.

The authors acknowledge that these five methods (BP-NN, DT, SVM, KNN, and MLR)
are chronologically not the most up-to-date techniques, as they were firstly published
in 1970 [58], 1986 [59], 1992 [60], 1992 [61], and 1979 [62], respectively. There could be
machine learning methods that are chronologically relatively new compared to the five
methods used in this research. For example, the convolutional neural network (CNN),
which represents a major breakthrough in computer vision, has propelled the deep learning
field [63]. However, as suggested by data scientists [63], in data analytics, choosing a
suitable algorithm for a particular use case (i.e., data type) is an essential task. A CNN
approach works well with data containing spatial features and is mainly used for image
processing, classification and segmentation [63]. This is because neighbouring pixels of
image data indicate spatial features, which are represented in a two-dimensional array
format and are thus suitable for feeding into the architecture of a CNN [63]. In this research,
the data gathered on construction workers’ personality and behavioural intentions is in
a tabular format, which does not form a spatial pattern linking different subjects in the
table; thus, a CNN is not ideal. An extensive review of the existing literature reveals
that the five methods (BP-NN, DT, SVM, KNN, and MLR) are widely used in today’s
research to generate predictions from tabular data. Supporting examples identified in
the literature are from 2018, 2020, and 2021, including technical papers from high-impact
journals such as the Journal of Construction Engineering and Management [6], Automation
in Construction [55], Advanced Engineering Informatics [64], and Safety Science [65,66].
The validity of BP-NN, DT, SVM, KNN, and MLR has been well-scrutinised not only
by their original authors, as mentioned above, but also by other researchers who have
employed these methods, e.g., [55,64–66], and they have been proven highly valid and
robust for tabular data particular use.

BP-NN, DT, SVM, and KNN are data-driven methods that allow for identifying
natural patterns between variables without assuming any preconception in terms of the
mathematical structure of the data [55]. MLR is the rule-driven method in ML which
derives the relationships between variables by imposing a linearity assumption on the
relationships [57]. Although MLR is one of the simplest statistical methods for developing
predictive models and only supports linear solutions, it was utilised in this research in
order to evaluate the performance of a linear method against the other non-linear ones
given the following considerations:

MLR can sometimes outperform data-driven methods such as BP-NN when the
underlying relationship is closer to a linear fashion and a smaller number of predictors
is involved [67].

The personality–intention relationship has been observed in some cases to be linear [1,52],
and the number of personality traits included as the predictors (i.e., extraversion, neuroti-
cism, agreeableness, and conscientiousness) is relatively smaller.

A greater model performance (i.e., minimal prediction loss) usually implies that a more
accurate mapping of the authentic relationships between variables has been captured [67].
In order to explore which algorithm can best model the predictive relationship between
workers’ personality configurations and behavioural intentions, the prediction loss of the
BP-NN, DT, SVM, KNN, and MLR models was evaluated using loss functions including
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mean squared error (MSE), normalized root mean square error (NRMSE), and mean ab-
solute percentage error (MAPE) [68] (see the results section). To gain further insights into
the weight of each trait in the personality configurations for workers’ behavioural inten-
tions, weight analysis was conducted on the ML model that indicated the best prediction
performance, which is discussed in greater detail in the results section. The theoretical and
practical implications of the predictive model are interpreted in the discussion section.

4. Data Collection

Collecting relevant data for numerical simulations is a critical step, which was con-
ducted with the objective of gathering data concerning the conceptual model in terms of
inputs (personality traits) and outputs (behavioural intention dimensions) from workers.
The following subsections discuss in detail the determination of the instruments for data
collection on workers’ personality traits and safety behavioural intentions as well as the
demographic information of the participants.

4.1. Personality Traits

Personality has scales and is hierarchically measurable via its dimensions, including
extraversion, conscientiousness, agreeableness, and neuroticism [27]. The existing scales
measure personality dimensions along a five-category Likert scale continuum [27] (Table 1).

Table 1. Scales of personality dimensions.

Extraversion Conscientiousness Agreeableness Neuroticism

Scale 1 Strongly Extravert Strongly Conscientious Strongly Agreeable Strongly Neurotic
Scale 2 Extravert Conscientious Agreeable Neurotic

Scale 3 Neither Extravert Nor
Introvert

Neither Conscientious
Nor Unconscientious

Neither Agreeable Nor
Disagreeable

Neither Neurotic Nor
Stable

Scale 4 Introvert Unconscientious Disagreeable Stable
Scale 5 Strongly Introvert Strongly Unconscientious Strongly Disagreeable Strongly Stable

The latest research trends indicate that personality is currently being assessed through
explicit techniques [51]. Explicit techniques refer to self-ratings, where individuals are
explicitly asked to report their or others’ personality characteristics using a number of
measurable items in response to certain situations (e.g., “I see myself as someone who tends
to be quiet”; on a five-point Likert scale with anchors ranging from “strongly disagree” to
“strongly agree”) [69]. As researchers have pointed out [51,70], the easy-to-administer per-
sonality items used in explicit measures could offer an optimal balance between diagnostic
accuracy and feasibility. The explicit instruments—the Big Five Inventory (BFI) [71], NEO
Five-Factor Inventory (NEO-FFI) [72], Revised NEO Personality Inventory (NEO-PI-R) [73],
and Frame-of-Reference Big Five Inventory (FOR-BFI) [74]—were introduced in the late
80s and early 90s and are to date the most widely used measures of personality [69]. These
instruments are easy to administer and cost-effective, and they are not merely screening
tools but are built on relevant personality and psychometric theories that were ascertained
through decades of research and testing with individuals [75,76]. The psychometric prop-
erties (i.e., reliability and validity) of these instruments have been well-scrutinised not
only by their original authors, as mentioned above, but also by numerous researchers who
have employed these instruments afterwards [51,77–80], proving to be highly reliable and
valid instruments.

Among the above four prevalent instruments, BFI, as well as NEO-FFI and NEO-PI-R,
were developed purposely for a non-contextualised measure of personality [76,81]. A non-
contextualised assessment is an assessment that examines personality without reference
to any particular context [82]. For instance, the conscientiousness items in BFI, which
include items such as “I see myself as someone who can be somewhat careless” and “I see
myself as someone who tends to be disorganised”, are not contextually defined and are
open to interpretation across a range of contexts (e.g., at work, at home, at school) [83]. In
recent years, psychology researchers have reached the consensus that non-contextualised
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personality items are mostly useful in predicting non-context-dependent criteria (e.g., in-
ternet addiction disorder, conduct disorder) but suboptimal for behaviours or intentions
that take place under certain contexts (e.g., intentions to engage in unsafe behaviours in
the workplace) [80,82–86]. Such consensus reached in the literature also suggests that
“specifying situational contexts will likely reduce the range of expectations given a per-
son’s dispositional tendency, leading to more accurate predictions in linking personality to
behaviour or intention in a certain context” [84] (p. 302). The improvement of predictive
validity by means of contextualisation is referred to as the frame-of-reference (FOR) effect
(viz., FOR-BFI instrument, as mentioned) [83]. Invented by [74], the FOR notion is to
reference a personality instrument to certain contexts via the appendage of contextual
references (e.g., “at work”, “at home”, or “at school”) to each item in the instrument. As
research suggests [82], “simply by asking participants to complete personality scales with a
particular context in mind, the predictive validity of the consequent personality models
can be significantly improved” (p. 153). For example, a meta-analysis [87] and recent
psychology research [82,88] found that instruments composed of contextualised personality
items were able to explain at least two times more variance in individuals’ job performance
than instruments that did not specify a context.

Taking the above considerations into account, FOR-BFI (in a work context) was used as
the instrument for collecting personality data in this research. FOR-BFI (in a work context)
measures the dimensions extraversion, agreeableness, conscientiousness, and neuroticism
of human personality along a five-point Likert scale (from 1 = disagree strongly to 5 = agree
strongly), which is available from https://forms.gle/eREQZH1UpXQH2uFDA (accessed
on 16 May 2022).

4.2. Safety Behavioural Intentions

As ascertained in the conceptual model section, the safety behavioural intention we
aim to evaluate in this paper consists of two components: safety compliance and safety
participation. An extensive review of the existing literature reveals that there are several
instruments—namely the Safety Behaviour Scale (SBS) [89], Safety Diagnosis Questionnaire
(SDQ) [90], Safety Climate Index: Workers’ Health and Safety Behaviour (SCI-WHSB) [91],
Work Safety Scale (WSS) [92], and Safety Performance Scale (SPS) [93]—which appear to
be popular and have been widely used by researchers in occupational safety domains
(e.g., construction, manufacturing) over the years, e.g., [51,70,94–98]. The reliability and
validity of these instruments have been well-scrutinised not only by their original authors,
as mentioned above, but also by other researchers, e.g., [51,94–98] who have employed
these instruments and have been proven to be highly reliable and valid. However, it has
been found that some of the instruments (i.e., SDQ, SCI-WHSB, and WSS) fail to provide a
thorough measure of behavioural intention and lack the evaluation of safety participation,
whereas SBS and SPS have focused on both the safety compliance and safety participation
dimensions of behavioural intention.

SBS and SPS were designed to cover the measurement of the sub-dimensions of safety
compliance and participation [89,93], namely, not taking shortcuts, using safety equipment,
following safety procedures and rules, reporting safety problems, keeping the workplace
clean, and caring for colleagues’ safety. However, it has been found that SPS contains six
items that are all positively worded (e.g., “I use personal protective equipment for the task
I am doing”) [93]. Using purely positive-worded items in an instrument is considered
imbalanced and has the potential to induce positive bias [89]. Meanwhile, in SBS, the
majority of statements (i.e., 10 out of 11 items) are framed using both positive and negative
items [89] (which is available from https://forms.gle/Ht65oKjXyhZh9cuC9 (accessed on
16 May 2022)):

1. Safety Compliance: Q1 and Q2, Q3 and Q8, Q4 (Q7) and Q9 (from the weblink above).
2. Safety Participation: Q6 (Q11) and Q10 (from the weblink above).

In addition, SBS is a concise instrument (11 items) and at the same time contains
adequate contextualised items as needed to measure human intentions to engage in safety-

https://forms.gle/eREQZH1UpXQH2uFDA
https://forms.gle/Ht65oKjXyhZh9cuC9
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related behaviours in the work context [94]. Taking the above considerations into account,
SBS was chosen for use in this research to collect data on construction workers’ safety
behavioural intentions.

4.3. Participants and Demographic Information

Ethical approval was granted by the University of Auckland Human Participants
Ethics Committee. In June 2019, the authors visited six construction projects in Auckland,
New Zealand, and asked frontline workers encountered if they were willing to respond to
an online survey, which was self-administered and anonymous. Gatekeeper permission was
obtained from managers prior to approaching on-site workers. To avoid interference with
the construction progress, workers who agreed to the request were provided with a web
link so that they could respond to the online survey during off-duty hours. Two hundred
and eighty workers finally provided their responses. Twelve out of the 280 responses were
deemed unusable due to having unanswered items and dropped from this study. Table 2
reports the distribution of demographic characteristics of the respondents. In responding to
self-referential statements, individuals are led to recall relevant episodes from their memory
system [94]. It is therefore of great importance that such episodes appear to exist in, or
at least make sense to, the participants, which has been found to be determined, in most
cases, by individuals’ personal experience in the context that is measured (e.g., at work).
To understand whether the participants had adequate on-site experience such that they
were able to provide useful responses, information on their years of work experience and
types of trade was requested for self-reporting. As seen (Table 2), the participants were
composed of individuals employed in different construction trades, and more than half of
them had worked for a minimum of five years on construction projects. It thus appeared
that the participants had adequate on-site experience to generate useful responses.

Table 2. Demographic characteristics.

Features Categories
Respondents

Frequency Percentile (%)

Age Range 20–29 164 61.2
30–39 75 28.0
40–49 27 10.1
>50 2 0.7

Work Experience (Years) 0–5 132 49.3
6–10 45 16.7

11–15 34 12.7
16–20 36 13.4
>20 21 7.9

Type of Trade Mason 44 16.4
Carpenter and Joiner 20 7.5

Electrician 13 4.9
Foreman 11 4.1

Miscellaneous Labourer 84 31.3
Plant Operator 25 9.3

Plumber 24 9.0
Welder 25 9.3

Project Manager 15 5.6
Painter 7 2.6

5. Results
5.1. Data Split Ratio

As specified in the research method section, five ML algorithms—BP-NN, DT, SVM,
KNN, and MLR—were adopted to carry out the numerical simulations of the conceptual
model proposed. To ascertain which algorithm best modelled the predictive relationship,
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the performance (i.e., prediction loss) of the five ML algorithms was evaluated and com-
pared. As such, the whole dataset was split into three groups: the training, validation, and
testing datasets. The training dataset is used to iteratively adjust the modelling parameters
(e.g., the weights between input and hidden neurons of BP-NN) in the ML algorithms
such that the algorithms could be optimised to best map the input–output modelling
framework and produce minimal prediction losses [55]. The validation dataset was used
to determine when training should terminate in order to prevent overfitting [56]. The
testing dataset was used to test the eventual prediction losses of the ML algorithms after
the training process [56].

The criteria for determining the dataset split ratio have been recommend in the
literature [99,100]: (1) The training dataset should be more than two-thirds of the whole
dataset and the validation and testing datasets should be equally split among the rest.
(2) Each of the validation and testing datasets should be approximately one-fourth to one-
eighth of the training dataset. Given the criteria, the commonly applied split ratios include
70:15:15 and 80:10:10 for training, validation and testing datasets [100]. Additionally, the
70:15:15 has been reported to be a more balanced split ratio than 80:10:10, as it includes as
many data points for training as possible and also preserves sufficient data portions for
validation and testing [99]. Thus, the 70:15:15 ratio was selected for use in this research.
The whole dataset had a total of 268 valid samples, of which 188 (70%), 40 (15%), and 40
(15%) samples were randomly assigned for training, validating, and testing of the five
ML algorithms.

5.2. Training Process

Training of the five ML algorithms was performed using MATLAB software. During
the training process, iterative optimisation of the five ML algorithms was performed to seek
the minimal differences between the actual values (i.e., self-reported intentions to engage
in unsafe behaviours from samples included in the training set) and the predictions from
the algorithms. The functions for difference minimisation are referred to as loss functions
(i.e., MSE, NRMSE, and MAPE), where a lower MSE, NRMSE, or MAPE value indicates
a decreased actual–algorithm prediction gap as well as a reduced prediction error [68].
According to the literature [101], MSE, NRMSE, and MAPE values lower than 0.25, 0.1, and
0.1, respectively, are the thresholds that a satisfactory error minimisation must achieve. The
equations of the loss functions are as follows:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (1)

NRMSE =
MSE

yminmax
(2)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (3)

where n = the number of samples in a dataset; yi = the actual value for the ith sample;
ŷi = the algorithm estimated value for the ith sample; ymax = the maximum actual value in
the dataset; and ymin = the minimum actual value in the dataset.

Through the training process, the prediction error was iteratively minimised and
resulted in the MSE, NRMSE, and MAPE values shown in Table 3. BP-NN outperformed
the other algorithms and yielded the lowest errors on the training dataset. According to
the mentioned threshold (MSE < 0.25, NRMSE < 0.1 and MAPE < 0.1), the optimisation
performance of BP-NN, DT, SVM, and KNN was found to be highly satisfactory, whereas
MLR revealed a less-than-satisfactory performance.
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Table 3. MSE, NRMSE, and MAPE for algorithm optimisation on the training dataset.

ML Algorithms
Safety Compliance Intention Safety Participation Intention

MSE NRMSE MAPE MSE NRMSE MAPE

BP-NN 0.042 0.010 0.021 0.073 0.022 0.027
DT 0.051 0.013 0.028 0.103 0.055 0.076

SVM 0.113 0.043 0.047 0.107 0.037 0.047
KNN 0.067 0.020 0.030 0.075 0.023 0.027
MLR 0.450 0.162 0.174 0.634 0.189 0.213

Training to determine the parameters of BP-NN, DT, SVM, KNN, and MLR is inter-
preted in the following sub-sections.

5.2.1. BP-NN

In this research, the BP-NN consists of four input neurons (one corresponds to each
personality trait) and two output neurons (one corresponds to each behavioural intention
dimension). To determine the number of hidden neurons, a method widely recommended
and used in the literature was followed: m ≤ n ≤ 2m, where n is the number of hidden
neurons and m is the number of input neurons, e.g., [102–104]. The BP-NN was thereby
trained repeatedly with varying numbers of hidden neurons (from four to eight) and hidden
layers to identify the number of hidden neurons and hidden layers that can demonstrate
the optimal performance on prediction loss (i.e., minimal MSE). As shown in Table 4,
one hidden layer with eight hidden neurons exhibited the optimal performance among
its alternatives on the loss functions (i.e., minimal MSE, NRMSE, and MAPE for safety
compliance and safety participation predictions), and further addition to the number
of hidden layers and neurons appeared to be no longer able to lead to improved BP-
NN performance.

Table 4. MSE, NRMSE, and MAPE results on BP-NN training with varying numbers of hidden
neurons and layers.

Results on Safety Compliance

Number of Hidden Neurons
Number of Hidden Layers = 1 Number of Hidden Layers = 2

MSE NRMSE MAPE MSE NRMSE MAPE

4 0.203 0.051 0.123 0.453 0.113 0.228
5 0.234 0.059 0.142 0.342 0.086 0.181
6 0.176 0.044 0.088 0.311 0.078 0.156
7 0.099 0.025 0.051 0.297 0.081 0.149
8 0.042 0.010 0.021 0.125 0.032 0.065

Results on Safety Participation

Number of Hidden Neurons
Number of Hidden Layers = 1 Number of Hidden Layers = 2

MSE NRMSE MAPE MSE NRMSE MAPE

4 0.257 0.064 0.142 0.551 0.137 0.286
5 0.192 0.048 0.132 0.367 0.092 0.184
6 0.163 0.041 0.082 0.324 0.085 0.162
7 0.103 0.026 0.052 0.285 0.073 0.143
8 0.073 0.022 0.027 0.112 0.025 0.051

The computation inside a neuron is carried out by means of an activation function,
which determines the output of that neuron, given a set of inputs [54]. As suggested in
the literature [105], rectified linear unit (ReLU), SoftPlus, tansig, logsig, and purelin are
current widely used activation functions. The BP-NN was trained repeatedly with varying
combinations of these activation functions in the hidden and output layers to identify
the combination that demonstrated the optimal performance on the loss functions MSE,
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NRMSE, and MAPE. It was found that the use of tansig and ReLU in the hidden and output
layers, respectively, exhibited the optimal performance for safety compliance and safety
participation predictions (see Table 5), which was thereby determined for the BP-NN.

Table 5. MSE, NRMSE, and MAPE results on BP-NN training with varying combinations of activation
functions in hidden and output layers.

Activation Functions Results on Safety Compliance Results on Safety Participation

Hidden Layer Output Layer MSE NRMSE MAPE MSE NRMSE MAPE

ReLU SoftPlus 0.132 0.035 0.076 0.251 0.062 0.125
ReLU tansig 0.651 0.162 0.325 0.723 0.180 0.361
ReLU logsig 0.442 0.110 0.221 0.571 0.142 0.285
ReLU purelin 0.087 0.022 0.044 0.096 0.024 0.048

SoftPlus ReLU 0.424 0.106 0.212 0.571 0.142 0.285
SoftPlus tansig 0.871 0.218 0.436 0.956 0.239 0.478
SoftPlus logsig 0.654 0.164 0.327 0.590 0.147 0.295
SoftPlus purelin 0.245 0.061 0.123 0.329 0.082 0.164
tansig ReLU 0.042 0.010 0.021 0.073 0.022 0.027
tansig SoftPlus 0.134 0.034 0.067 0.189 0.047 0.094
tansig logsig 0.465 0.116 0.232 0.467 0.116 0.233
tansig purelin 0.589 0.147 0.295 0.674 0.168 0.337
logsig ReLU 0.243 0.061 0.122 0.386 0.096 0.193
logsig SoftPlus 0.351 0.088 0.175 0.467 0.116 0.233
logsig tansig 0.089 0.022 0.044 0.057 0.014 0.028
logsig purelin 0.167 0.041 0.083 0.189 0.047 0.094

purelin ReLU 0.092 0.023 0.046 0.089 0.022 0.044
purelin SoftPlus 0.632 0.158 0.316 0.789 0.197 0.394
purelin tansig 0.562 0.140 0.281 0.684 0.171 0.342
purelin logsig 0.367 0.091 0.184 0.479 0.119 0.239

The computation inside the three-layer BP-NN (i.e., one input layer, one hidden layer,
one output layer) can therefore be expressed using Equations (4)–(7) below.

Hk =

Nj

∑
j=1

wIH
j,k Ij + biasH

k (4)

H′k = fH(Hk) = tansig(Hk) =
2

1 + e−2(Hk)
− 1 (5)

Oi =
Nk

∑
k=1

wHO
k,i H′k + biasO

i (6)

O′i = fO(Oi) = ReLU(Oi) =

{
0

Oi

for
for

Oi ≤ 0
Oi > 0

(7)

where Hk = input to the kth hidden neuron; Ij = input to the kth hidden neuron from
the jth input neuron (the value of Ij is an individual’s score on each personality dimen-
sion); wIH

j,k = weight between the jth input neuron and kth hidden neuron (the values are

provided in Table 6); Nj = the number of input neurons (Nj = 4); biasH
k = bias of the kth

hidden neuron (the values are provided in Table 6); H′k = output of the kth hidden neuron;
fH(x) = activation function for the hidden layer (i.e., tansig); Oi = input to the ith output
neuron; wHO

k,i = weight between the kth hidden neuron and ith output neuron (the values
are provided in Table 6); Nk = the total number of hidden neurons (Nk = 8); biasO

i = bias of
the ith output neuron (the values are provided in Table 6); O′i = output of the ith output
neuron (i = 1, O′i = the prediction for safety compliance intention; i = 2, O′i = the prediction
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for safety participation intention); and fO(x) = activation function for the output layer
(i.e., ReLU).

Table 6. BP-NN weights and biases.

Input/Output Neurons (Ij/Oi) Weights/Bias
Hidden Neurons (Hk)

H1 H2 H3 H4 H5 H6 H7 H8

I1 wIH
1,k 0.617 0.100 −0.459 0.065 3.925 1.434 3.006 −2.514

I2 wIH
2,k −4.368 1.439 −2.976 0.342 3.888 −0.671 1.456 1.332

I3 wIH
3,k 1.888 −1.036 2.561 −0.369 −0.734 −8.384 −1.224 1.200

I4 wIH
4,k 2.222 −0.722 1.070 −0.186 −1.412 −0.783 3.461 0.957

biasH
k −1.303 −1.255 2.168 −0.136 0.190 3.776 3.004 −5.919

O1 wHO
k,1 −0.469 2.493 0.325 −5.334 0.200 1.535 0.038 1.301

O2 wHO
k,2 −0.717 −0.363 −1.189 −4.906 0.284 4.369 −0.826 3.982

biasO
i 0.774 (for O1) 0.513 (for O2)

5.2.2. DT

During the training process, the following parameters of DT were tuned in order to
best fit the training dataset: max_depth, min_sample_split [106]. The parameter max_depth
indicates how deep a DT can be [106]. The parameter min_sample_split represents
the minimum percentage of samples required to split an internal node [106]. As pre-
sented in Figure 3, the training results revealed that (1) for safety compliance prediction,
max_depth = 58 and min_sample_split = 45% indicated the optimal performance among
its alternatives on the loss functions MSE = 0.051, NRMSE = 0.013, and MAPE = 0.018;
(2) for safety participation prediction, max_depth = 64 and min_sample_split = 48% indi-
cated the optimal performance among its alternatives on the loss functions MSE = 0.103,
NRMSE = 0.055, and MAPE = 0.076. The above values of max_depth and min_sample_split
were therefore determined for the DT model in this research.
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5.2.3. SVM

To fit a set of input–output training data [xi, yi] (where xi = input data, yi = out-
put data, i = the number of data points), SVM maps the input data’s original space
into a higher dimensional feature space using a nonlinear Gaussian kernel function
ϕ(x, x′) = exp

(
−
√

x2 − x′2/2σ2
)

[55]. The function indicates that for any two input

instances, x and x′, the Euclidean distance (i.e.,
√
(x− x′)2) of their corresponding points

as mapped in the higher dimensional space is less than the value of σ2. In the higher dimen-
sional feature space, the task becomes the construction of an optimal surface y = ωϕ(x) + b
to fit the input–output data, where ω is the weight and b is the bias [55].

To find the best fit, SVM was trained to mathematically identify the optimal σ2, ω, and
b values that indicated the minimal prediction loss on MSE. As suggested in the literature,
the parameters σ2, ω, and b have no defined value range limits [107]. According to the
training results presented in Figure 4, it was found that (1) for safety compliance prediction,
σ2 = 4.5, ω = 11.3, and b = 4.4 exhibited the optimal performance among its alternatives
on the loss functions (MSE = 0.113, NRMSE = 0.043, and MAPE = 0.047); (2) for safety
participation prediction, σ2 = 6.9, ω = 11.8, and b = 0.1 exhibited the optimal performance
among its alternatives on the loss functions (MSE = 0.107, NRMSE = 0.037, MAPE = 0.047).
The above values of σ2, ω, and b were thus used for the SVM model in this research.
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Figure 4. σ2, ω, b —loss functions (MSE, NRMSE, and MAPE) diagram: (a) for safety compliance
prediction; (b) for safety participation prediction.

5.2.4. KNN

KNN analyses the Euclidean distance between a new observation and all the existing
data points in the training set (Figure 5) and assigns the new observation to the respective
class that indicates the close points as well as the most similar features [54].

Euclidean Distance :

√√√√ k

∑
i=1

(xi − yi)
2 (8)

where k = the number of data points to be considered as the close neighbours to a new
observation; xi = feature values of a new observation (i.e., personality scales in this research);
and yi = feature values of an existing data point in the training dataset (i.e., personality
scales in this research).
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Figure 5. KNN space.

Training of KNN is done to mathematically identify the optimum k value for a given
training dataset, which refers to the number of close neighbours to look at when assigning
a new observation to any respective class for decision making. As presented in Figure 6, the
training results revealed that for a low value of k, KNN overfitted on the safety compliance
and participation datasets, which resulted in high errors on the loss functions MSE, NRMSE,
and MAPE. For a high value of k, KNN considered an excessive number of data points as
close neighbours, which led to poor performance as well. The loss functions reached min-
ima at values of k = 23 for the safety compliance dataset (MSE = 0.067, NRMSE = 0.020, and
MAPE = 0.030) and k = 16 for the safety participation dataset (MSE = 0.075, NRMSE = 0.023,
and MAPE = 0.027). The optimum k values were therefore determined for the KNN model
(i.e., k = 23 for safety compliance, k = 16 for safety participation).

Figure 6. Cont.



Buildings 2022, 12, 841 18 of 28

Figure 6. k-value—loss functions (MSE, NRMSE, and MAPE) diagram.

5.2.5. MLR

MLR indicates that the sole output to be predicted is a linear function of one or more
explanatory variables [108]: y = b0 + b1x1 + b2x2 + · · ·+ bixi. Gradient descent is an optimi-
sation algorithm that is used to identify the optimal values for the collection of MLR model
parameters (b0, b1, . . . , bi) [108]. The aim of gradient descent [108] is to identify a point
of inflection where J(b0, b1, . . . , bi) = ∑ (y− ŷ)2 = ∑ (b0 + b1x1 + b2x2 + · · ·+ bixi − ŷ)2

yields a minimum (y = MLR prediction given training inputs; ŷ = actual value in the
training examples). To identify the point of inflection, the gradient of J(b0, b1, . . . , bi) was
determined as follows:

∇J(b0, b1, . . . , bi) =

(
∂J
∂b0

,
∂J
∂b1

, . . . ,
∂J
∂bi

)
(9)

In this research, the architecture of the MLR prediction of construction workers’ in-
tended safety behaviour was as follows:

y1 = b1,0 + b1,1x1 + b1,2x2 + b1,3x3 + b1,4x4 (10)

y2 = b2,0 + b2,1x1 + b2,2x2 + b2,3x3 + b2,4x4 (11)

where y1 = safety compliance; y2 = safety participation; x1 = extraversion; x2 = agreeableness;
x3 = conscientiousness; x4 = neuroticism; b1,1, b1,2, b1,3, b1,4, b2,1, b2,2, b2,3, b2,4 = weights
of x1, x2, x3, x4 in the prediction of y1 and y2; b1,0, b2,0 = constants in the prediction of y1
and y2.

Through the process of investigating point of inflection using the training dataset, the
minimum of J(b0, b1, . . . , bi) was identified to be 43.20 and 52.87 for the safety compliance
and safety participation datasets, respectively. The corresponding weights and constants
were as follows: b1,0 = 0.658, b1,1 =−0.086, b1,2 = 0.554, b1,3 = 0.543, b1,4 =−0.166, b2,0 = 1.011,
b2,1 = −0.132, b2,2 = 0.755, b2,3 = 0.343, b2,4 = −0.170.

5.3. Prediction Performance

After carrying out the optimisation on the ML algorithms, the prediction performance
(i.e., prediction loss) of the algorithms was evaluated on the testing dataset. The results for
ML predictions on safety compliance and participation intentions are plotted in Figure 7,
showing a comparison between the predicted results and actual results (i.e., workers’
self-reported intentions to engage in unsafe behaviours) for all the testing samples. The
horizontal axis of the plot outlines 40 samples in the testing dataset, and the vertical axis
represents one’s score on safety compliance and participation intentions, where a higher
score indicates better performance in terms of intending to behave safely at work.
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Figure 7. Actual–predicted plot (safety compliance and participation intentions).

Based on the plot (Figure 7), the prediction performance of the ML algorithms was
evaluated using the loss functions MSE, NRMSE, and MAPE (1)–(3), which are measures
of how accurate a trained algorithm’s predictions are compared to the actual results for
previously unseen data [101]. The resulting MSE, NRMSE, and MAPE values are presented
in Table 7. As can be seen, BP-NN continued the outstanding performance to yield the
lowest errors in predicting both safety compliance and participation intentions for the
testing samples. According to the threshold, as mentioned (MSE < 0.25, NRMSE < 0.1, and
MAPE < 0.1), the prediction performance of BP-NN, DT, SVM, and KNN was found to
be highly satisfactory, whereas MLR revealed a less-than-satisfactory performance in the
prediction of both safety compliance and participation intention.

Table 7. MSE, NRMSE, and MAPE for predictions on safety compliance and participation intentions.

ML Algorithms
Safety Compliance Intention Safety Participation Intention

MSE NRMSE MAPE MSE NRMSE MAPE

NN 0.047 0.017 0.027 0.080 0.023 0.030
DT 0.061 0.021 0.033 0.110 0.030 0.045

SVM 0.107 0.041 0.037 0.093 0.027 0.041
KNN 0.083 0.023 0.042 0.087 0.027 0.032
MLR 0.431 0.159 0.162 0.616 0.174 0.193

Given the five ML algorithms’ performance on both the training and testing datasets,
it was substantiated that:
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1. NN outperformed DT, SVM, KNN, and MLR in capturing the modelling framework of
construction workers’ personality traits and intentions to engage in safety-related behaviours.

2. NN, DT, SVM, and KNN all showed highly satisfactory performance in predicting
both safety compliance and participation intentions.

3. MLR yielded greater prediction errors, which significantly exceeded the upper thresh-
olds (MSE < 0.25, NRMSE < 0.1, and MAPE < 0.1). This implies that a nonlinear
relationship exists between construction workers’ personality traits and safety be-
havioural intentions, as the linear method MLR was unable to satisfactorily capture
the relationship.

5.4. Weight Analysis

As interpreted in the Introduction section, it is not a single trait but a configuration
of traits that constitute individuals’ behavioural intentions. Previous studies [1,22] have
either been descriptive in nature or provided insufficient insights into the weight of each
trait in the personality configuration for workers’ safety behavioural intentions, which
prevented these studies from establishing a robust predictive basis. This research tested five
ML algorithms, with BP-NN producing the best performance in modelling the predictive
relationship between workers’ personality configuration and behavioural intentions. In
order to provide further insights, weight analysis was performed on BP-NN, applying
Equation (12), as suggested by Garson [109] and presented below. This method is used to
analyse the weight of each input variable in the configuration of a BP-NN for predicting
the outputs [109], which has been widely utilised in today’s BP-NN research and proven to
be highly effective and reliable e.g., [110,111].

wj,i =

∑Nk
k=1

[( ∣∣∣wIH
j,k

∣∣∣
∑

Nj
j=1

∣∣∣wIH
j,k

∣∣∣
)
×
∣∣∣wHO

k,i

∣∣∣]

∑
Nj
j=1

{
∑Nk

k=1

[( ∣∣∣wIH
j,k

∣∣∣
∑

Nj
j=1

∣∣∣wIH
j,k

∣∣∣
)
×
∣∣∣wHO

k,i

∣∣∣]} (12)

where wj,i = the weight of the jth input variable on the ith output variable; the definitions
and values of Nj, Nk, wIH

j,k , and wHO
k,i can be found in Table 8.

Table 8. BP-NN weights.

Input/Output Neurons (Ij/Oi) Weights
Hidden Neurons (Hk)

H1 H2 H3 H4 H5 H6 H7 H8

I1 wIH
1,k 0.617 0.100 −0.459 0.065 3.925 1.434 3.006 −2.514

I2 wIH
2,k −4.368 1.439 −2.976 0.342 3.888 −0.671 1.456 1.332

I3 wIH
3,k 1.888 −1.036 2.561 −0.369 −0.734 −8.384 −1.224 1.200

I4 wIH
4,k 2.222 −0.722 1.070 −0.186 −1.412 −0.783 3.461 0.957

O1 wHO
k,1 −0.469 2.493 0.325 −5.334 0.200 1.535 0.038 1.301

O2 wHO
k,2 −0.717 −0.363 −1.189 −4.906 0.284 4.369 −0.826 3.982

Note: Nj = the number of input neurons (Nj = 4); Nk = the number of hidden neurons (Nk = 8); wIH
j,k = weight

between the jth input neuron and kth hidden neuron; wHO
k,i = weight between the kth hidden neuron and ith

output neuron.

The weights of each trait on workers’ behavioural intentions were computed based
on Equation (12) and the values provided in Table 8, and the results are presented in
percentage format in Table 9.



Buildings 2022, 12, 841 21 of 28

Table 9. Weights of personality configuration on workers’ safety behavioural intentions.

Personality Configuration
Weights on Safety Behavioural Intentions (%)

Safety Compliance Intention Safety Participation
Intention

Extraversion 11.29 18.48
Agreeableness 32.58 24.85

Conscientiousness 38.19 40.59
Neuroticism 17.94 16.08

Overall 100.00 100.00

It can be observed that conscientiousness with weights of 38.19% and 40.59% exerts
the maximum regulatory effects on workers’ safety compliance and participation intentions.
This result aligns well with the findings of existing meta-analyses of personality traits
and occupational safety [27,112]. One possible explanation for this finding may lie in
the nature of conscientiousness itself. Conscientiousness is the personality trait of being
responsible [71]. The responsibility-oriented nature of conscientiousness leads individuals
to consistently be responsible for both their own and team members’ well-being and behave
safely at work [27]. Such a personality trait would result in the highest involvement in
safety behaviour [29,56,113]. It can also be observed that extraversion, with weights of
11.29% and 18.48%, exerts minimal regulatory effects on workers’ safety compliance and
participation intentions. This result is in agreement with the findings of previous studies
in the occupational and traffic safety field [113,114]. According to these studies [113,114],
extraversion constitutes a relatively less significant factor in workplace unsafe behaviours
compared to the other personality traits (agreeableness, neuroticism, and conscientious-
ness). Lajunen [113] analysed that a possible reason for this finding is that extraversion
is characterised as the extent to which an individual is energetic/active, which implies
how susceptible to fatigue they are [27]. Extraversion-related human errors were found
to occur when fatigue symptoms start to develop, which are at times compared to other
traits that can exert time-continuous influences (e.g., conscientiousness) [113,114]. This
is also reflected in industrial statistics. According to the National Safety Council (NSC),
fatigue accounted for a small portion of construction injuries (less than 5%) in 2019 in the
United States [115].

In addition to conscientiousness and extraversion, the predictive basis also consisted
of agreeableness and neuroticism in the configuration, with the weight values being 32.58%
and 24.85%, and 17.94%, and 16.08%, respectively (see Table 9). Previous studies have
provided insights to explain why agreeableness and neuroticism play significant roles
in the prediction of workers’ intentions to engage in safety-related behaviours [27,116].
According to the theory of purposeful work behaviour [116], personality traits set indi-
viduals out on different intention trajectories in terms of attaining certain goals in the
workplace. Agreeableness induces a craving for the goal of communion, where individuals
with a high level of agreeableness were found to express a reduced intention to perform
unsafely, as unsafe behaviours could put their colleagues’ well-being at risk and damage
interpersonal relationships as a result [27,116]. Neuroticism reduces the craving for the
goal of self-control, where individuals with a high level of neuroticism were found to
express a stronger intention to behave impulsively in the workplace, which could result in
risky actions [27,116].

6. Discussion
6.1. Theoretical Implications

In the literature, extensive empirical evidence has shown that (1) the formation of
human intentions has personality origins [27,35] and (2) individual variation in trait
scores is reflected upon different scales measuring individuals’ intentions about behaving
safely (e.g., “strongly proactive”, “proactive”, “neither proactive nor negative”, “reactive”,
“strongly reactive”) [25,49–52]. Based on the findings, it has been suggested that the in-
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tention to engage in safety-related behaviours at the individual level can be predicted on
the basis of quantifying individual variation in personality [16,47]. However, a dearth of
research in the construction sector provides little empirical evidence. The studies by [22]
and Zhang, Xiang, Zhang, Chen and Ren [1] called attention to this field. However, their
studies are descriptive in nature and provide insufficient insights into the constitution of
personality predictors for workers’ behavioural intentions, which prevents these studies
from reaching an operative prediction framework. This research is an extension of the
existing studies, which addresses the knowledge gap by providing a ML-based approach
to help understand workers’ intentions to engage in unsafe behaviours by quantifying
workers’ individual variations in personality.

There are two other knowledge gaps that are addressed in this research. First, this
research finds that a nonlinear relationship exists between construction workers’ personality
traits and inner intentions to engage in unsafe behaviours, as the linear method MLR was
unable to satisfactorily capture the relationship and yielded greater prediction errors than
the other nonlinear ML methods. Second, this research gains an enhanced understanding
of the weights of each personality trait in the constitution of prediction practice for workers’
intentions to engage in unsafe behaviours.

In addition, the authors have reviewed papers that aim at predicting human behaviour
in other areas such as criminal behaviour using ML techniques [113,117,118]. Our model
did not have higher accuracy compared to these studies, as they have all shown fair
prediction outcomes. However, our research has a technical advantage in the method
design compared to these studies. These studies [113,117,118], only utilised one ML tech-
nique to develop the prediction model (e.g., k-means clustering). In our study, five ML
architectures—backpropagation neural network, decision tree, support vector machine, k-
nearest neighbours, and multivariate linear regression—were used to capture the predictive
relationship between construction workers’ personalities and their intentions to engage in
unsafe behaviours, and the five models were compared. Backpropagation neural network
outperformed other algorithms, yielding minimal prediction loss, and was determined to
be the best approach.

6.2. Practical Implications

The BP-NN approach can be utilised to generate quantifiable predictions to help
understand the extent of workers’ intentions to engage in unsafe behaviours. According
to the decisions of the ML approach, a “low safety compliance” prediction implies a
stronger intention of engaging in non-compliant work behaviours such as taking shortcuts,
not using safety equipment, and violating safety procedures and rules. A “low safety
participation” prediction implies reduced intent to perform solicitous safety activities
such as reporting co-workers’ safety problems, keeping the workplace clean, and caring
for colleagues’ safety. Such knowledge is useful for understanding undesirable aspects
in different workers (at the individual level) in order to recommend suitable preventive
strategies for workers with different needs. Preventive strategies can be safety training
programmes to promote individuals’ behavioural adherence to safety standards and desire
to contribute to organisational safety. For individuals with different “safety compliance”
and “safety participation” scores (predicted), variation in safety training in terms of the
range of intensity can be implemented. Therefore, this study highlights the significance
of predicting workers’ inner intentions to engage in unsafe behaviours for the design of
safety training programmes. In the next step of this research, the safety training intensity
taxonomy in relation to individuals’ prediction scores on “safety compliance” and “safety
participation” will be further studied.

7. Conclusions

This research presents a machine learning (ML)-based approach to help understand
workers’ inner intentions to engage in unsafe behaviours by quantifying workers’ individ-
ual variations in personality. The ML approach is based on the backpropagation neural
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network (BP-NN) architecture and utilises the fundamental configuration of human per-
sonality (i.e., extraversion, neuroticism, agreeableness, and conscientiousness) to predict
workers’ intentions, which consist of safety compliance and safety participation dimensions.

The ML approach performed satisfactorily on the cross-validation test, yielding mini-
mal prediction loss in the loss functions MSE, NRMSE, and MAPE for both the training
and testing datasets (training dataset: MSE = 0.042, NRMSE: 0.010, and MAPE: 0.021;
testing dataset: MSE = 0.047, NRMSE = 0.017, and MAPE = 0.030). Weight analysis was
then performed on BP-NN to gain insights into the weights of each trait in the personality
configuration for workers’ intentions to engage in safety-related behaviours, which con-
stitutes the foundation for the modelling and prediction framework. The results showed
that the weights of conscientiousness, agreeableness, neuroticism, and extraversion on
workers’ safety compliance and participation intentions are 38.19% and 40.59%, 32.58% and
24.85%, 17.94% and 16.08%, and 11.29% and 18.49%, respectively. The ML approach can
be utilised to generate quantifiable predictions to help understand the extent of workers’
intentions to engage in unsafe behaviours. Such knowledge is useful for understanding
undesirable aspects in different workers (at the individual level) in order to recommend
suitable preventive strategies for workers with different needs.

There are limitations to this research. First, due to resource constraints only a lim-
ited number of construction projects in NZ were visited to collect data. The sampling
process might leave out sections of the population that could be significant to this study.
Nevertheless, the researchers attempted to overcome this issue by approaching workers
from as many construction sites as possible. It would be interesting for future research
to expand the data collection from both New Zealand and the international construction
community to test the ML approach. Second, as mentioned previously, for individuals with
different “safety compliance” and “safety participation” scores (predicted), variation in
safety training in terms of the range of intensity can be implemented. In the next step of
this research, the safety training intensity taxonomy in relation to individuals’ prediction
scores on “safety compliance” and “safety participation” will be further studied.
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