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Abstract: High uncertainty is an inherent behavior of geotechnical materials. Nowadays, random field
theory is an advanced method to quantify the effect of high uncertainty on geotechnical engineering.
This study investigates the effect of spatial variable soil layers on deformations of deep excavation
via the random finite element method. A procedure based on PLAXIS 2D software was developed to
generate two-dimension random finite element models including multiple variables. Via the K-S test
and S-W test, the excavation deformations basically followed lognormal distribution. With the growth
of standard deviation of soil properties parameters, the distribution of excavation deformations
becomes wider, and the failure probability increases. When the vertical scale of fluctuation ranges
from 1 m to 25 m, the distribution of excavation deformations becomes wider. To analyze system
reliability, this study proposed a fitted multiple lognormal distribution methods, which was a method
with higher efficiency. The results indicated that system reliability was lower than single failure
probability and sensitive to design level. The system failure probability will be over-evaluated or
under-evaluated if the correlation between excavation responses is ignored. This study provided a
novel method to quantify the effect of high uncertainty of soil layer on excavation responses and
proposed an efficient method for system reliability analysis, which is meaningful for excavation
reliability design.

Keywords: spatial variability; system reliability; serviceability limit state; Cholesky decomposition;
multiple log-normal distribution

1. Introduction

Braced excavations are widely used in underground structures and subway stations,
which is an important part of the city building system and traffic system. There are two
main requirements in reliability analysis, one is the requirement of ultimate limit state
(ULS), and another is the requirement of serviceability limit state. For braced excavation,
ULS requirements mainly include bearing capacity of support system, safety factor against
basal heave and slide, etc. SLS requirements include limitation of wall deflection, ground
settlement, basal heave, and so on. For most braced excavations in busy cities, in order
to protect the serviceability of underground structures and surrounding tunnels, SLS
requirements are usually stricter than ULS requirements. However, the deformations of
excavation depend on many points. The uncertainty of parameters of soil property makes
a great influence on evaluating deformations of excavation. Different from materials of
structure engineering, the uncertainty is an inherent behavior of soil due to its geological
history [1,2]. Vanmarcke and his colleagues pointed out that the variance of the spatially
averaged soil property over some domains is less than the variance at the point [3]. The
variance of soil property will decrease with the enlarging of the sizes of the domain.
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Therefore, Vammarcke proposed the variance reduction function method. In addition, the
random field theory is another effective method to address this problem [3]. The random
finite element method (RFEM) is a combination of random field theory and finite element
analysis, which can evaluate the effect of spatial variability on geotechnical engineering.
There are three main methods to establish a random finite element model, including spatial
averaging [4], Cholesky decomposition [5], and K-L expansion [6]. Random field theory
has been applied in bearing capacity and settlement of shadow foundation [7,8], slope
reliability [9–18], tunnel reliability [5,19], and so on.

For braced excavation, RFEM was adopted to analyze the effect of soil spatial variabil-
ity on safety factors against basal heave [4,20]. Luo et al. evaluated the effect of soil vertical
spatial variability on wall deflection, ground settlement, and structure responses of braced
excavation [21]. Gong et al. proposed a new framework used for probabilistic analysis of
the performance of a supported excavation [22]. Gholampour et al. applied conditional
random field in reliability analysis of braced excavation in unsaturated soils [23]. On the
other hand, in addition to spatial variability of soil properties, the correlation between
multiple failure modes is also a key point to assess the serviceability reliability of braced
excavation. In previous decades, the empirical method [24], field observation [25], statisti-
cal analysis [26], and machine learning method [27–29] was applied in the evaluation of
deformations of braced excavation. Nowadays, more machining learning methods were
applied in reliability analysis and risk assessment of deep excavation, such as extreme
gradient boosting [30], optimization algorithms [31–33], support vector machine [34], and
random-set finite element method [35]. However, the study about the effect of soil spatial
variability on braced excavation was less reported. The system reliability analysis of deep
excavation considering spatial variable soil layers and multiple failure modes is still a
challenge. This study aims to explore the character of deformations induced by excavation
in spatial variable soil layers and develop a system reliability model which can consider
multiple failure modes.

In this study, random finite element models were automatically generated by MATLAB
and PLAXIS 2D software. Via probabilistic analysis and parametric study, the effect of soil
spatial variability on excavation responses was systematically investigated. Additionally,
the authors analyzed the correlation of different failure modes in spatial variable soil
layers. A system reliability model based on SLS was presented to evaluate system failure
probabilities considering multiple failure modes.

2. Methodology
2.1. Random Finite Element Analysis Method

For RFEM, there are four main steps to generate random fields, concluding generation
of random samples in standard normal space, determination of autocorrelation matrix ρ
and correlation matrix R, Cholesky decomposition, and mapping random fields.

For reliability analysis, failure samples were important, however, most failure
samples were located in the tail of the distribution. Compared with other sampling
methods, the Latin hypercube sampling technique covers the upper and lower bounds
value of probability distribution more uniformly. Therefore, the initial random samples
ξ(n×m) =

[
ξ1
(n×1), ξ2

(n×1), · · · , ξm
(n×1)

]
are generated in standard normal space by a Latin

Hypercube sampling technique. In general, five general types of autocorrelation functions
were adopted to represent the autocorrelation of soil parameters in spatial space [36]. In
this study, the exponential function was used, which could be expressed as Equation (1).

ρ
(
τx, τy

)
= exp

[
−2
(

τx

δh
+

τy

δv

)]
(1)

where τx =
∣∣xi − xj

∣∣, τy =
∣∣yi − yj

∣∣, (xi, yi) is the central coordinate ith of the random field
element. δh and δv are the horizontal and vertical scales of fluctuation, respectively.
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On the other hand, there was more than one random field (such as cohesion and friction
angle), and the correlation matrix (R) was used to represent the relationship between differ-
ent random fields in standard normal space. Furthermore, via the Cholesky decomposition
of matrix ρ and R, the Upper triangular matrix L1 and L2 can be obtained (Equation (2)).{

L1LT
1 = R(m×m)

L2LT
2 = ρ(n×n)

(2)

where m is the number of random fields, and n is the number of random finite elements.
Then, based on the Cholesky decomposition, the normal random fields were obtained

by Equation (3):
G(n×m) = L2 · ξ(n×m) · L1 (3)

Lastly, via the transformation equations between normal distribution and lognormal
distribution (Equation (4)), the exponential random field can be determined:

σiln =
√

ln
(
1 + σ2

i /µ2
i
)

µiln = ln µi − 0.5σ2
iln

Ei
(n×1) = exp

(
µiln + σiln · G

i
(n×1)

) (4)

where µi and σi are the mean value and standard deviation of ith random variables, µiln and σiln are the
corresponding value in lognormal space. Ei

(n×1) and Gi
(n×1) are the part of E(n×m) and G(n×m), re-

spectively.
(

E(n×m) =
(

E1
(n×1), E2

(n×1), · · · E
m
(n×1)

)
, G(n×m) = (G1

(n×1), G2
(n×1), · · · , Gm

(n×1))
)

.

2.2. Deterministic Finite Element Model

In this study, the finite element software PLAXIS 2D was adopted to model braced
excavations. The numerical case was referred in previous studies by Goh et al. [4]. The
value of m ranges from 0 to 1, which decreases with the growth of soil stiffness [37]. Figure 1
shows the deterministic analysis finite element model (FEM). Due to the symmetry of the
model, only the left half of the excavation was modeled. The horizontal length and vertical
height of the model were set at 70 m and 60 m, respectively. The groundwater table
is located 2.0 m below the ground surface. In the FEM simulation, the hardening soil
model (HS) and hardening soil with a small strain model (HSS) are used to simulate deep
excavation. However, in this study, clay soil was considered a spatial variable layer. For
HS and HSS models, it is hard to evaluate the spatial variability in random finite element
analysis. As recommended by Luo et al. [4,21], the Mohr-Coulomb model (MC) and HS
model were used to simulate the clay soil layer and sand soil layer, respectively. The
drained type, and undrained type A was adopted to simulate the sand layer and clay layer,
respectively. The struts were modeled as spring elements, and the diaphragm walls were
modeled as linear elastic materials. Detailed construction steps and parameters for retaining
the structural system were shown in Table 1. The construction steps of excavations followed
the principle of dewatering water first, installing struts later, and excavating finally. The
depth of each excavation stage was 4 m. The depth of four struts is 1 m, 5 m, 9 m, and 13 m,
respectively. For random finite element models, their calculation steps were the same as the
deterministic model. Because of larger samples of random analysis, to improve calculation
efficiency, the installation of struts and excavation were coupled into one construction step.
The parameters for soil properties were shown in Table 2.
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Figure 1. Finite element model for deterministic analysis.

Table 1. Construction steps and parameters of retaining structural system.

Stage Construction
Parameter of Retaining Structural System

EA (kN) EI (kN·m2)

1 Initial confined consolidation - -
2 Activate diaphragm wall 3 × 106 2.5 × 106

3 Lower the ground water to GL −9 m - -
4 Excavate to −4 m and activate the first strut at GL −1 m 2 × 106 -
5 Excavate to −8 m and activate the second strut at GL −5 m 2 × 106 -
6 Lower the ground water to GL −17 m - -
7 Excavation to GL −12 m and activate the third strut at GL −9 m 2 × 106 -
8 Excavate to GL −16 m and activate the fourth strut at GL −13 m 2 × 106 -

Notes: GL is ground level in finite element model.

Table 2. Parameters of soil properties.

Number Soil Layer T γ ν E cu ϕ Ψ Eref
50 Eref

oed Eref
ur m

(m) (kN/m3) - (MPa) (kPa) (◦) (◦) (MPa) (MPa) (MPa) -

1 Clay 20 17 0.3 9 30 20 - - - - -
2 Sand 40 19 - 0 32 2 40 40 120 0.5

Notes: T is thickness of each soil layer. γ is unit weight of soil layer. E, cu, ϕ is elastic modulus, soil cohesion and
friction angle for MC model.

The horizontal distance of struts equals to 5 m.
ψ is dilation angle. ψ = ϕ− 30◦; if ϕ < 30◦, ψ = 0◦. From PLAXIS manual [37].
Ere f

50 , Ere f
oed and Ere f

ur were reference secant stiffness in standard drained triaxial test,
reference secant stiffness for primary oedometer loading, reference unloading/reloading
stiffness, respectively. Ere f

50 : Ere f
oed : Ere f

ur = 1 : 1 : 3, From PLAXIS manual [37].
m is power for stress-level dependency of stiffness. The value of m ranges from 0 to 1,

which decreases with the growth of soil stiffness [37].
Figure 2 shows the ground settlement curve and wall deflection curve during deep

excavation. The ground settlement curve was similar to “V” and the wall deflection
curve was similar to a bow, which is the classical character of deep excavation with inner
struts [38,39]. The maximum value of ground settlement equaled 2% of excavation depth,
which was 0.7 times of excavation depth away from the excavation boundary. The major
settlement region ranged from 0–2 times of excavation depth, and the secondary settlement
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region ranged from 2–4 times of excavation depth. The wall deflection increases with the
growth of excavation depth. The maximum wall deflection equaled 4.5% of excavation
depth, which is located at the final depth of excavation.
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Figure 2. Deformation curve of deterministic model: (a) ground settlement curve; (b) wall deflection curve.

2.3. Modeling of Braced Excavation in Spatial Variability Soil

Based on the deterministic finite element model, the two key parameters (cohesion
cu and friction angle ϕ) of clay soil were considered, as two negative correlated random
fields, the relationship factor between cu and ϕ was equal to −0.5 [9]. For clay soil, there
is a high linear correlation between elastic modulus and cohesion of soil [4], which can
be approximately represented by empirical formulas. In addition, the high correlation
between two random fields would disturb the Cholesky decomposition, it is hard to
calculate Equation (2). Therefore, it is necessary to separate random variables with high
correlation from the correlation matrix. Consequently, in this study, elastic modulus (E) is
set as E = 300cu [4,40]. In other words, E is considered a random field that is related to cu.
Other parameters are treated as constant.

In a random finite element model, spatial variability of soil was mapped onto each
finite element mesh. For PLAXIS 2D software, automation of random finite element
modeling was conducted by the following Figure 3.
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In Figure 3, there are five steps:

(1) Establish a sample model of the random finite element method. Different from the
deterministic model shown in Figure 1, the clay layer was divided into 560 regions,
corresponding to random field elements. Meanwhile, the statistical characteristics
of random fields are determined, such as the mean value (µ), Coefficient of varia-
tion (COV), correlation matrix R, and fluctuation of scale in horizontal and vertical
directions (δx and δy).

(2) Based on the statistical characters in step 1, generate two negative correlated random
fields of cu and ϕ via MATLAB codes, from Equations (1)–(4). The random fields of cu
or ϕ can be expressed as strength cloud charts (Figure 4).

(3) Via batch file and command codes in PLAXIS 2D, automatically import the informa-
tion of random fields into finite element mesh. Similarly, calculate the random finite
element models automatically by batch files and PLAXIS codes.

(4) Export response data of excavations into EXCEL by Python codes [37], such as wall de-
flection, ground settlement, basal heave, and bending moment of the diaphragm wall.

(5) Using the response data in step 5, calculate single mode failure probability and system
failure probability.
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From Figure 4, the value of cu and ϕ obey the three-deviation criterion. With the
increase of fluctuation of scale, the deviation of cu or ϕ will decrease, and the random finite
element models gradually transform into random variable models.

From statistics from Phoon et al. [1,2], the uncertainty of friction angle is lower than
soil cohesion or undrained shear strength. Therefore, there are 14 cases in this paper, as
shown in Table 3. Three levels of cohesion (COVcu = 10%, 20%, 30%), three levels of friction
angle (COVϕ = 10%, 15%, 20%), six levels of vertical distance δy = 1 m, 2.5 m, 5 m, 10 m,
25 m, 50 m are considered. Cases 1~9 aimed to evaluate the effect of spatial variability of
soil properties on responses of excavation. Cases 3, 10~14 aimed to evaluate the effect of
the scale of fluctuation on responses.

The number of Latin hypercube sampling in each case is 500, which can guarantee the
convergence of calculation results (Figure 5).
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Table 3. Values of parameters in design cases.

Case Number COVcu σcu /kPa COVϕ σϕ/◦ δy (m) δx (m)

1 30% 9 10% 2 2.5 25
2 30% 9 15% 3 2.5 25
3 30% 9 20% 4 2.5 25
4 20% 6 10% 2 2.5 25
5 20% 6 15% 3 2.5 25
6 20% 6 20% 4 2.5 25
7 10% 3 10% 2 2.5 25
8 10% 3 15% 3 2.5 25
9 10% 3 20% 4 2.5 25

10 30% 9 20% 4 1 25
11 30% 9 20% 4 5 25
12 30% 9 20% 4 10 25
13 30% 9 20% 4 25 25
14 30% 9 20% 4 50 25
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Taken case 1 for example, as shown in Figure 5, COVµ and COVσ of wall deflection
are 0.25% and 5.75% when the number of simulations equals to 500, which is satisfied with
the condition of convergence [5,41].

3. Effect of Spatial Variability on Responses of Braced Excavation
3.1. The Influence of COVcu and COVϕ

In this part, the effect of spatial variability on responses of excavation (wall deflection,
ground settlement, and basal heave, etc.) is investigated. Following the automatic RFEM
procedure developed in this study (Figure 3), the mean value and standard deviation of
responses of excavation in each case are shown in Appendix A.

The statistical characters of responses to excavation are shown in Figure 6. For ex-
ample, from Figure 6a, the histogram of wall deflection in case 3 is similar to log-normal
distribution, and the corresponding fit curve of the log-normal probability density function
is displayed by a black dash-dotted line. In order to validate the assumption, the goodness
of fit test is a useful method. Via Kolmogorov-Smirnov (KS) test with a 95% confidence
interval, the p value of the KS-test was 0.9905. Via Shapiro-Wilk (SW) test with a 95%
confidence interval, the p value of the SW-test was 0.878 and the value of test statistics was
0.998. Both KS-test and SW-test supported that wall deflection followed log-normal distri-
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bution. In addition, in the Quantile-Quantile plot of wall deflection shown in Figure 6b, the
quantiles of lognormal distribution are basically consistent with the quantiles of samples.
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The coefficient of determination is 0.9984, which also verifies the reasonableness of
the assumption. The other responses of excavation in each case are shown in Appendix A,
most of them can be considered as random variables following log-normal distribution.
By considering responses of excavation as log-normal distribution models, single-mode
failure probability and system mode failure probability can be evaluated, this part will be
discussed in Section 4.

As shown in Figure 6c–e, the mean value of basal heave is close to the value in the de-
terministic model. Different from the mean value of basal heave, the mean value of ground
settlement and wall deflection is a little higher than the value of the deterministic model.
Based on random finite element analysis for foundation capacity, Griffiths proposed that
ground settlement was subjective to the influence of lower stiffness soil [8]. Furthermore,
with the increase of COVcu, the COV of responses of excavation increased. For example, in
case 3 (COVcu = 30%, COVϕ = 20%), the range of basal heave was 46–114 mm, while in case
9 (COVcu = 10%, COVϕ = 20%), the range of basal heave was 53–96 mm. It is noticeable that
the COV of basal heave was 15.657% in case 1, while the COV of ground settlement and
wall deflection was 6.644% and 4.778%, respectively. Basal heave was more easily affected
by spatial variability of soil properties.

Furthermore, the influence of COVϕ and COVcu on the responses of excavation is
shown in a boxplot chart. In Figure 7, the boxplot is divided into three parts, which repre-
sent COVcu = 10%, 20%, and 30%, respectively. Each part contains three cases, representing
COVϕ = 10%, 15%, 20%. In each boxplot, the black is the mean value of each case, which
is close to the median values. It is proved that the excavation responses approximately
follow a log-normal distribution. Compared with soil cohesion (cu) and elastic modulus
(E), friction angle (ϕ) makes a lower influence on responses of excavation. There are few
changes for median value with different COVϕ, only the standard deviation slightly in-
creases with the growth of COVϕ. The mean value of wall deflection and basal heave
slightly increases with the growth of COVcu. However, COVcu has no effect on the mean
value of the ground settlement.

Spatial variability also makes a great influence on the failure path, for example, in the
500 models in case 3, the maximum value of basal heave is 114.8 mm, while the minimum
value of basal heave is 46.7 mm. The strain cloud chart of these two models is shown in
Figure 8. In the first model, the main deformation is basal heave, the second deformation
is a deflection of the wall. On the contrary, in the second model, wall deflection is the
main deformation.
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3.2. The Influence of Vertical Fluctuation of Scale

From Table 3, case 3 and cases 10~14 are used to investigate the effect of vertical fluc-
tuation of scale (δv) on excavation responses. Similarly, the curves of the fitting probability
density function of each case are shown in Figure 9. The distribution is wider with an
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increase of δy when δy ranges from 1 m~25 m. When δy is larger than 25 m, the distribu-
tions of excavation responses basically remain convergence. Compared with COVcu and
COVϕ, δy has a larger impact on excavation responses. Based on the statistical data, δy
of soil usually ranges from 1 m~6 m, and the excavation depth is usually at the level of
5 m~50 m. Therefore, it is necessary to determine the value of δy via field observation data
and geological statistic method.
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3.3. Correlation Analysis of Excavation Responses

Based on the results of random finite element models, the relationship between re-
sponses of excavation can be described by the Spearman correlation matrix. Different from
the Pearson matrix, the Spearman matrix can describe a nonlinear relationship between
variables. Spearman correlation matrix in Case 3 is shown in Figure 10.
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The relationship between excavation responses in the deterministic model was re-
ported by some previous studies [26]. In the probabilistic model, there are also some similar
tendencies. From Figure 10, there is a high level of linear correlation between δd and δs
(0.77 for Spearman matrix). In addition, there is also a middle level of correlation between
δd and δb, δs and δb, M and V (0.53, 0.47, 0.51 for Spearman matrix). The axial force of
struts has a low level of correlation with other responses. However, the correlation between
responses of excavation plays an important role in system reliability analysis, which is
introduced in Section 4 in detail.

4. System Reliability Model Based on Serviceability Limit State

Generally speaking, most deep excavations are designed as underground structures,
such as subway stations, underground commercial streets, and parking lots. Therefore, in
order to guarantee the safety and serviceability of underground structures, the excavations
should satisfy the demand of capacity and deformation at the same time, which is called
the ultimate limit state (ULS) and serviceability limit state (SLS), respectively. In this
study, a system reliability model based on the serviceability limit state was proposed. The
serviceability limit state function of excavations can be expressed as follows:

f (δd) = δd − δdmax
f (δs) = δs − δsmax
f (δb) = δb − δbmax

(5)

where δd, δs, δb is wall deflection, ground settlement, and basal heave, respectively, which
are considered as random variables following log-normal distribution. The key parameters
of the log-normal distribution are obtained from Section 3.1.

[
δdmax δsmax δbmax

]T is
the limit deformations of excavations based on the standards, rules, or empirical formulas.
In this study, the thresholds were obtained from Technical specifications for retaining and
protecting building foundation excavations (JGJ 120-2012) [42], Code for Design of Build
Foundation (GB 50007-2011) [43].



Buildings 2022, 12, 722 13 of 19

From Equation (5), the single failure mode probability can be expressed as follows:
p f1 =

∫ +∞
δdmax

f (δd)dδd

p f2 =
∫ +∞

δsmax
f (δs)dδs

p f3 =
∫ +∞

δbmax
f (δb)dδb

(6)

where f (xi) is the probability density function of log-normal distribution,

f (xi) =
1√

2πσixi
· exp

[
−(ln xi−µi)

2

2σ2
i

]
xi ∈ (−∞,+∞) .

Via numerical integral methods (in MATLAB 2020a software, the function name is
integral and logncdf ), the failure probabilities in Equation (6) were determined. For example,
according to JGJ 120-2012, the limit wall deflection of excavations (δdmax) depends on the
design level, excavation depth (H), and surrounding building environment. In general,
δdmax equals to 65 mm (0.4%H), 80 mm (0.5%H), 95 mm (0.6%H) for first, second and
third level of excavations, respectively. The failure probabilities are 0.997, 9.54 × 10−2,
and 0 (the value is lower than 10−16 in MATLAB, which is considered 0). With different
values of δsmax, there is a great difference between failure probabilities, which is shown in
Figures 11 and 12.
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From Figure 11, δsmax ranges from 65 mm to 85 mm. The curves represent failure
probability at different thresholds of wall deflection (p f1) with COVcu = 30%, 20%, 10%,
respectively. With the increase of COVcu, the gradient of the curve gradually decreases.
For COVcu = 10%, the failure probability dramatically changes at 70~76 mm. However, for
COVcu = 10%, the failure probability dramatically changes at 65~85 mm, which contains
more uncertainty. In other words, for the same level of deformation thresholds, the larger
COVcu is, the larger the failure probability is. Similar conclusions can be reached on basal
heave failure mode from Figure 11b. Figure 12 shows the effect of δy on failure probability.
The notable change of failure probability based on wall deflection limitation occurs when
δb ranges from 55 mm to 105 mm, which is larger than COVcu (Figure 11a). At the same
level of wall deflection limitation, the failure probability grows with δb. The reason is that
the fit distribution function becomes wider with the increase of δb, which is mentioned
in Section 3.2.
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Figure 12. Effects of δy on failure probability at different thresholds of: (a) wall deflection;
(b) basal heave.

Different from traditional reliability analysis, the system reliability model should take
multiple failure modes into account. Every failure mode is considered as an element in an
integral system, while multiple failure modes are considered as a series system, parallel
system, or series-parallel system. In order to guarantee safety and serviceability, a series
system was adopted in this study. Therefore, the system failure probability can be evaluated
by a multidimensional lognormal distribution model:

psys
f = 1−

∫ δdmax

−∞

∫ δsmax

−∞

∫ δbmax

−∞
f (δd, δs, δb)dδddδsdδb (7)

where f (δd, δs, δd) is the three-dimensional log-normal distribution model.
The three-dimensional log-normal distribution model can be expressed as Equation (8):

f (x1, x2, · · · , xn) =
1

(2π)n/2|C|n×n∏n
i=1 xi

exp
[
−1

2
(ln x− µ)T · C · (ln x− µ)

]
(8)

where x is the vector of random variables, µ is the vector of the mean value of random
variables, C is the covariance matrix of random variables.

From Equation (8), the correlation matrix is a key parameter to determine covari-
ance matrix C. In this study, the Pearson matrix was adopted to calculate system failure
probability. There are two main reasons:

(1) Compared with the Spearman correlation matrix, the Pearson matrix only describes
the linear correlation of random variables. However, in the system reliability analysis
of the underground pipe gallery, Fu et al. adopted the Pearson correlation factor to
characterize the correlation between multiple failure modes [44,45].

(2) On the other hand, there is no doubt that the Pearson correlation factor is available
for normal distribution. Other distributions can be transformed into standard normal
space via Nataf transformations. One important assumption of Nataf transforma-
tion is that the correlation between random variables will not change during Nataf
transformation. Moreover, Nataf transformation is only available for the Pearson
correlation factor. Therefore, the Pearson correlation factor is still the main method to
characterize the correlation of random variables in system reliability analysis.

Based on the above, the Pearson correlation matrix is used to establish a three-
dimensional log-normal distribution model. Via the numerical integral method (in MAT-
LAB 2020a software, the function called integral3), Equation (7) can be calculated easily. In
addition, the function mvncdf in MATLAB2020a is also available if the three-dimensional
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log-normal distribution model was transformed into a three-dimensional normal distribu-
tion model via Nataf transformation. From JGJ 120-2012 and GB 50007-2011 [42,43], the
failure probability of single failure mode and system failure probability in each case are
shown in Table 4.

Table 4. Probabilities of failure in different cases.

Case Number Design Level pf1
pf2

pf3
psys

f

1
I 9.983 × 10−1 3.916 × 10−1 9.467 × 10−1 9.991 × 10−1

II 8.060 × 10−2 1.787 × 10−2 5.682 × 10−1 5.757 × 10−1

III 2.874 × 10−7 9.487 × 10−5 1.571 × 10−1 1.571 × 10−1

2
I 9.981 × 10−1 3.649 × 10−1 9.490 × 10−1 9.989 × 10−1

II 8.533 × 10−2 6.780 × 10−3 5.705 × 10−1 5.771 × 10−1

III 4.475 × 10−7 6.327 × 10−6 1.555 × 10−1 1.555 × 10−1

3
I 9.974 × 10−1 3.699 × 10−1 9.513 × 10−1 9.986 × 10−1

II 9.535 × 10−2 7.510 × 10−3 5.778 × 10−1 5.857 × 10−1

III 1.26 × 10−7 8.15 × 10−6 1.592 × 10−1 1.592 × 10−1

4
I 1.000 1.988 × 10−1 9.779 × 10−1 1.000
II 1.022 × 10−2 3.134 × 10−5 4.288 × 10−1 4.294 × 10−1

III 1.343 × 10−14 4.362 × 10−12 2.441 × 10−2 2.441 × 10−2

5
I 1.000 2.013 × 10−1 9.791 × 10−1 1.000
II 1.495 × 10−2 3.537 × 10−5 4.355 × 10−1 4.366 × 10−1

III 3.890 × 10−13 6.022 × 10−12 2.511 × 10−2 2.511 × 10−2

6
I 9.999 × 10−1 2.170 × 10−1 9.809 × 10−1 9.999 × 10−1

II 2.300 × 10−2 6.758 × 10−5 4.481 × 10−1 4.501 × 10−1

III 1.538 × 10−11 3.260 × 10−11 2.676 × 10−2 2.676 × 10−2

7
I 1.000 2.248 × 10−2 9.998 × 10−1 1.000
II 6.651 × 10−6 3.331 × 10−16 1.744 × 10−1 1.744 × 10−1

III 0.000 0.000 2.576 × 10−6 2.576 × 10−1

8
I 1.000 3.731 × 10−2 9.998 × 10−1 1.000
II 1.037 × 10−4 1.922 × 10−13 1.847 × 10−1 1.847 × 10−1

III 0.000 0.000 3.105 × 10−1 3.105 × 10−1

9
I 1.000 6.539 × 10−2 9.998 × 10−1 1.000
II 7.863 × 10−4 1.955 × 10−10 2.010 × 10−1 2.011 × 10−1

III 0.000 0.000 4.393 × 10−1 4.393 × 10−1

10
I 9.999 × 10−1 2.696 × 10−1 9.667 × 10−1 1.000
II 2.001 × 10−2 1.245 × 10−3 4.240 × 10−1 4.274 × 10−1

III 4.775 × 10−12 1.104 × 10−7 3.237 × 10−2 3.237 × 10−2

11
I 9.832 × 10−1 4.237 × 10−1 9.188 × 10−1 9.908 × 10−1

II 1.716 × 10−1 3.765 × 10−2 5.704 × 10−1 5.885 × 10−1

III 2.408 × 10−4 6.932 × 10−4 2.064 × 10−1 2.065 × 10−1

12
I 9.540 × 10−1 4.555 × 10−1 8.930 × 10−1 9.740 × 10−1

II 2.354 × 10−1 8.504 × 10−2 5.613 × 10−1 5.893 × 10−1

III 3.342 × 10−3 6.223 × 10−3 2.312 × 10−1 2.324 × 10−1

13
I 9.113 × 10−1 4.746 × 10−1 8.747 × 10−1 9.468 × 10−1

II 2.897 × 10−1 1.402 × 10−1 5.570 × 10−1 5.882 × 10−1

III 1.662 × 10−2 2.339 × 10−2 2.489 × 10−1 2.534 × 10−1

14
I 8.905 × 10−1 4.807 × 10−1 8.701 × 10−1 9.308 × 10−1

II 3.097 × 10−1 1.659 × 10−1 5.578 × 10−1 5.850 × 10−1

III 2.713 × 10−2 3.632 × 10−2 2.557 × 10−1 2.620 × 10−1

MCS a
I 9.965 × 10−1 3.931 × 10−1 9.499 × 10−1 9.970 × 10−1

II 7.823 × 10−2 1.752 × 10−2 5.667 × 10−1 5.747 × 10−1

III 0.000 1.000 × 10−3 1.580 × 10−1 1.590 × 10−1

Error (%) b
I 0.19 0.3 0.33 0.21
II 3.03 3.05 0.27 0.17
III - 90 0.53 1.16

a The aim of this case is to verify the accuracy of failure probabilities obtained by probabilistic density functions
(PDF). b The error of pf between probabilistic density functions and Monte Carlo simulations (Take case 1 as
an example).
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From Table 4, the failure probability is sensitive to design levels. For the first design
level, the failure probability is close to 1, while for the third design level, the failure
probability is close to 0. In addition, the influence of COVϕ on failure probability is less
obvious than COVcu and δy. Based on the statistical characters of responses to excavation,
similar conclusions are reached in Section 3. For the same level of COVcu, in design level
III, system failure probabilities have a tendency to grow with δy when δy ranges from
1~25 m. For design level I, there is a negative correlation between p f1 , p f3 and δy, while the
correlation between p f2 and δy is positive. For design level II, there is a positive correlation
between p f1 , p f 2 and δy, while p f3 become larger then smaller with the increase of δy. The
reason is that δy has an impact on the mean value of excavation responses. Therefore,
sometimes, the correlation between δy and p f is not monotonic.

On the other hand, system failure probability psys
f is larger than single failure prob-

ability and it is usually close to the maximum single failure probability. Moreover, if all
failure modes are considered independent events, the system failure probability equals the
product of each single failure probability. For example, in Case 11 (design level II), psys

f will

be 0.343 if all failure modes are considered independent events. However, in Table 4, psys
f

equals 0.589. Therefore, it is necessary to consider the correlation between failure modes.
As mentioned in Section 3.1, the probability density functions (PDF) of excavation

responses were obtained via the K-S test. In order to verify the accuracy of failure proba-
bilities obtained by PDF, case 1 was selected as an example and a 2000-times Monte Carlo
simulation (MCS) was conducted.

As shown in Table 4, the errors between the two methods were small except p f1 and p f2
in Design level III. The reason is the limited time of simulations. Both p f1 and p f2 in Design
level III is too small, which is lower than 10−3. In general, the number of MCS should be
larger than 10/p f [41,46]. Therefore, the 2000-times MCS cannot verify the accuracy of p f1
and p f2 in design level III. However, the results prove that the probability density function
is an efficient method to calculate p f .

5. Discussion

Based on the numerical simulation results. Several issues were priceable to further analyze.

(1) For the Cholesky decomposition method, it was quicker and more accurate to generate
random field samples compared to K-L expansion and local averaging. However, it is
hard for Cholesky to generate random field samples with high correlation variables.
For high correlation variables, coupling the variables with high correlation is an
effective method.

(2) It is noticeable that the function integral3 was adopted to calculate the triple integral.
If the number of random variables is more than three, the function integral3 will
not be available. However, the function mvncdf is available for more than three
random variables.

(3) With considering spatial variability of soil parameters, different failure modes will
occur during deep excavation, such as wall deformation dominating and basal heave
dominating. Different from the deterministic model, the deformation will be subject
to elements with lower stiffness in the random finite element model [8]. The dominate
deformation depends on the location of the lower stiffness elements. However, for
geotechnical engineering, the real distribution of element stiffness is unknown. It is
necessary to quantify the effect of uncertainty of soil parameters via reliability analysis.

(4) From Table 4 and Figure 7, friction angle had little effect on failure probability and
distribution of deformation responses. Similar conclusions were drawn from proba-
bilistic analysis of vault settlement of tunnel [47]. Therefore, if the deformation index
was chosen to evaluate failure probability, the spatial variability of elastic modulus
should be considered first.

(5) For system reliability analysis, a key point is how to characterize the correlation be-
tween each failure mode. From Sections 3.3 and 4, it is concluded that there is a certain
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correlation between failure modes. Due to the limitations of the Pearson correlation
matrix and Nataf transformation, the multiple-dimensional log-normal distribution
model is used to calculate system reliability, which is a convenient method.

(6) In this study, it is verified that the spatial variability of soil has a great influence on
excavation deformations. For practical engineering, it is necessary to decrease the
negative influence. However, the information from the geological survey is not taken
to good use. Conditional random field model is an efficient way to integrate the
geological data into a random finite element model. How to develop a conditional
random finite method and establish a comprehensive system reliability model will be
significant for the next studies.

6. Conclusions

In this study, a comprehensive investigation of the responses and failure analysis of
excavation in spatial variability soil was conducted. A multiple-dimensional log-normal
distribution model is adopted to evaluate system reliability, which can take the correlation
between multiple failure modes into account. Based on the simulation results, the following
conclusions are drawn:

(1) The spatial variability of soil parameters has a negative effect on the safety of deep
excavation. Basal heave is more subjected to soil spatial variability than wall deflection
and ground settlement. The distribution of deformations induced by excavation
becomes wider with the growth of the scale of fluctuation.

(2) Different from ultimate limit state analysis, the deformation responses induced by
excavations are more sensitive to elastic modulus and soil cohesion than friction
angle. In addition, the high uncertainty of soil properties would entail different failure
modes such as wall deflection dominating and basal heave dominating.

(3) The responses of excavation, such as the deflection of the wall, ground settlement,
and basal heave, basically follow log-normal distribution via KS-test and SW-test. The
fitted probabilistic density functions can be used to carry out reliability analysis, which
is an efficient method. Via Latin hypercube sampling technique and K-S test, fewer
samples are needed to estimate failure probabilities than in Mote Carlo simulations.

(4) The multiple lognormal probabilistic density function is a convenient method to
describe the correlation between failure modes and calculate the system reliability of
deep excavation. System failure probability is usually lower than single failure proba-
bilities. The system failure probability is sensitive to the design level of excavation. It
is necessary to determine the design level based on the geometry size of excavation,
geological conditions, and surrounding building environment.
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Appendix A

Table A1. Statistical character of responses of excavation.

Case Number
Wall Deflection (mm) Ground Settlement (mm) Basal Heave (mm)

µ COV µ COV µ COV

1 74.91 4.778% 39.38 6.644% 77.95 15.657%
2 74.94 4.858% 39.30 5.559% 77.97 15.308%
3 74.97 5.068% 39.32 5.618% 78.18 15.258%
4 74.24 3.249% 38.78 3.735% 74.02 10.157%
5 74.28 3.446% 38.79 3.757% 74.15 10.132%
6 74.36 3.702% 38.83 3.880% 74.39 10.119%
7 73.86 1.838% 38.49 1.933% 71.63 5.026%
8 73.92 2.139% 38.50 2.148% 71.78 5.031%
9 73.99 2.481% 38.54 2.477% 71.98 5.048%

10 74.79 3.434% 39.12 3.767% 77.51 11.188%
11 75.21 6.789% 39.54 7.437% 78.77 18.279%
12 75.45 8.697% 39.76 9.355% 79.05 20.696%
13 75.76 11.001% 39.97 11.564% 79.38 22.888%
14 75.91 12.127% 40.08 12.734% 79.57 23.388%
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