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Abstract: The management of prefabricated component staging and turnover lacks the effective
integration of informatization and complexity, as relevant information is stored in the hetero-
geneous systems of various stakeholders. BIM and its underlying data schema, IFC, provide
for information collaboration and sharing. In this paper, an automatic classification and coding
system for prefabricated building, based on BIM technology and Random Forest, is developed
so as to enable the unique representation of components. The proposed approach starts with
classifying and coding information regarding the overall design of the components. With the
classification criteria, the required attributes of the components are extracted, and the process of
attribute extraction is illustrated in detail using wall components as an example. The Random
Forest model is then employed for IFC building component classification training and testing,
which includes the selection of the datasets, the construction of CART, and the voting of the
component classification results. The experiment results illustrate that the approach can automate
the uniform and unique coding of each component on a Python basis, while also reducing the
workload of designers. Finally, based on the IFC physical file, an extended implementation process
for component encoding information is designed to achieve information integrity for prefabricated
component descriptions. Additionally, in the subsequent research, it can be further combined
with Internet-of-Things technology to achieve the real-time collection of construction process
information and the real-time control of building components.

Keywords: prefabrication; IFC; Random Forest; automatic coding; information classification

1. Introduction

Construction is the leading industry in China’s economy, and it is essential in pro-
moting national economic development. As an environmentally friendly, energy-saving,
and efficient building method, prefabricated buildings compensate for the low productiv-
ity, poor production environments, and high safety risks encountered in the traditional
construction industry. They can also meet the development requirements of the modern
construction industry [1]. Assembly uses off-site construction, where prefabricated
components are produced in a factory and are then transported to the construction site
for assembly [2]. Compared with traditional building construction methods, the prefab-
ricated components and assembly structures of prefabricated buildings are complex and
delicate, involving many related variables, large-scale production, and several uncertain-
ties in the process of production and assembly. Therefore, it is necessary to consider the
efficient integration of informatization and the delicate management of prefabricated
components. The construction organization of prefabricated buildings requires planning
for the production, transportation, stacking, and assembly of components, in which the
production and transportation of the prefabricated components are not performed at
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the construction site [3]. It is necessary to apply building information modeling (BIM)
technology to the above processes in order to facilitate the collaboration and sharing of
information among all the participants in the life cycle of the building and to perform
comprehensive information management for the building. BIM has been used for the
parametric design [4], automated scheduling and control [5], life cycle assessment (LCA),
and life cycle costing (LCC) [6] of industrialized buildings. Therefore, the combination
of BIM technology and prefabricated buildings can promote the unification of informa-
tization and industrialization [7]. In the application of BIM technology, several BIM
tools adopt different data standards, and the interoperability between different software
is poor. Thus, standards and interactivity can present obstacles to the development
of BIM [8]. A study also highlights that the interoperability of BIM is crucial for the
integration of the industrialized construction process [9]. The effective way to solve this
problem is to use a unified standard data storage format. Industry Foundation Classes
(IFC) offer an open and neutral ISO standard, which play a crucial role in enabling
interoperability [10].

A component is considered to be the basic unit of a prefabricated building. Due
to the characteristics of large quantities, variety, heaviness, complex structure, and the
large amount of information required for prefabricated components, problems such as the
storage and utilization of component-parameterized information and the component entity
model have become prominent. Thus, the efficient management of component information
has become essential to ensure the smooth development of the entire assembly project.
Modern information and communication technologies, such as radio frequency [11], two-
dimensional code, BIM, coding, and component database technologies, provide technical
support for component tracking and the optimization of supply chain operation. Jeong
et al., mention that the management of prefabricated components can efficiently extract
the information of prefabricated components from IFC physical files and correctly classify
prefabricated components, thus improving the efficiency of production management, re-
ducing costs, and improving the quality of the prefabricated components [12]. The coding
of prefabricated components after classification is conducted by computer identification
and processing [13]. Through this process, the characteristics and attributes of individual
components are classified, expressed by code, and then combined according to the actual
meaning in order to perform the unique expression of specific objects. Coding is the process
of assigning a code to something. It is a technical means of unifying people’s understand-
ing and exchanging information, minimizing misunderstandings and losses caused by
the inconsistent naming and description of information. Information coding is directly
related to the efficiency and level of automation of information processing, transmission,
and retrieval.

While some studies have attempted to code prefabricated components, traditional
manual coding requires a lot of time and human resources, and it is error-prone. Some
researchers have explored the use of machine learning (ML) and natural language recog-
nition (NLP) technologies to perform the automatic coding of project information [14]. In
contrast to the current manual coding method, intelligent coding technology can make
use of the efficient computing power and logical analytic ability of the algorithm to initial-
ize, organize, and program the building model information according to pre-customized
coding rules and specifications, and perform automatic coding. This paper proposes a
method for component automatic classification and coding by machine learning. This
study aims at performing the intelligent coding of prefabricated components in prefabri-
cated buildings. The core idea of the proposed approach consists in using the component
attributes in BIM models in order to train machine learning models to recognize and
distinguish BIM model elements. Given a new IFC model file, the trained models can au-
tomatically classify and code the components. The process can be divided into three main
steps. The first step consists of initializing the model, extracting the component attribute
characteristics from the IFC file, obtaining the relevant information of the prefabricated
component, and performing intelligent identification of the component. The second step
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consists of training the Random Forest model to perform automatic coding according
to pre-established component coding principles. Finally, through the IFC extension, the
coding results are output in an IFC file, and the coding is completed. The advent of auto-
matic coding provides new opportunities to further exploit the efficiency of prefabricated
components. In the BIM technical standard, information coding is a process of giving
information element codes in information processing in order to facilitate the storage,
retrieval, and use of information. Through the collection and acquisition of component
information, the dynamic management of prefabricated components is performed to solve
the problem of information asymmetry in the process of construction management. The
proposed method is of great significance to the actual prefabricated building construction
process and provides technical support for the accurate management and long-term
development of prefabricated buildings.

2. Literature Review
2.1. Intelligent Management of Prefabricated Components

With the development of prefabricated buildings, problems caused by the extensive
management mode in the use of prefabricated components have gradually emerged. Some
researchers have begun to pay attention to the studies on the information and intelligent
management of prefabricated components. The application of BIM technology in the pre-
fabricated building industry is the main content of prefabricated component information
research, which can integrate all of the information in the whole life cycle of prefabricated
buildings [15]. BIM has been used widely in computer design [7], sustainable develop-
ment [16], on-site logistics planning and control [17], etc. However, the application of BIM
technology in prefabricated building engineering is not enough to further improve the
collaborative work and decision-making efficiency of on-site assembly services. In other
words, the information sharing efficiency of building components in Building Lifecycle
Management needs to be improved. BIM technology gradually integrates various new
information technologies to be applied in prefabricated buildings. Solihin et al., have effec-
tively transformed BIM data into an open and queryable database for better visibility into
BIM data [18]. More studies on BIM and RFID integration can be seen from Majrouhi [19],
who identifies and tracks construction materials using radio frequency identification (RFID)
technology. Li et al., have also developed an IoT-enabled platform by integrating the Inter-
net of Things and BIM technologies to supervise the construction progress and approximate
cost information in a real-time manner for providing various decision support tools and
services to different stakeholders [20].

The previously mentioned study discusses the application prospect of information
technology, such as BIM, in each stage of prefabricated construction engineering, but it
lacks attention to the information flow in the supply chain of prefabricated components. In
order to perform the information sharing of assembly components, it is necessary to code
the component information into a unified and identifiable language.

In this paper, the prefabricated components of prefabricated buildings are reclassified
to form a coding system suitable for prefabricated components of prefabricated buildings,
with reference to the OmniClass information classification method to realize the unique
identification and the integrity of information descriptions of prefabricated components
based on BIM.

2.2. Information Classification and Coding System

The Building Information Classification System (BICS) was fully developed in the
USA and Europe in the early 20th century. Due to differences in national laws, regulations,
and building environments, significant differences exist in the classification methods, classi-
fication structures, and scope of application in the different regional classification systems.
These differences seriously hinder the application of information technology within the
construction context and have a negative impact on the international development of
the construction industry. In the 1990s, in order to make IT more fully developed in the
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construction industry, a number of developed countries and the International Standards
Organization (ISO) issued classification systems, such as ISO 12006, based on studies
on building information systems. The ISO 12006-2 standard for building classification
is intended to be used by organizations in order to develop a framework for a building
classification system on a national or regional basis. The United States gradually estab-
lished relatively complete engineering project coding systems, such as Uniformat II and
MasterFormat in the 1970s, which have had far-reaching influence in North America and
achieved constancy and use in a wide range of applications. Among them, the positioning
of UNIFORMAT II is for the full cycle of engineering projects, and the coding structure is
used for description, cost analysis, and project management [21], while it does not include
civil engineering components. UNIFORMAT II uses a mixed coding approach, combining
letters and numbers, with the code levels reflecting the classification levels. MasterFormat
is jointly published by the Canadian Building Code Association and the American Institute
of Architects. Its classification is for trades/materials, and it is mainly designed for North
American construction projects and serves as a platform for communication between archi-
tects, contractors, subcontractors, and suppliers. The MasterFormat classification system
uses numeric coding, with the four levels identified by eight digits. OmniClass has been
developed and maintained by the Construction Specifications Institute (CSI) and the Cana-
dian Construction Specifications Council (CSC) in order to meet the need for information
classification for all disciplines and construction projects throughout the whole-body life
cycle. This is a complete building information classification exercise based on the existing
building classification systems, such as MasterFormat, UNIFORMAT II, and EPIC, for
example. OmniClass is intended to be the means for organizing, sorting, and retrieving in-
formation and deriving relational computer applications [22]. Currently, several developed
countries, such as the United States, the United Kingdom, Europe, Canada, Singapore, and
other countries, have developed a unified construction project coding system as required
by the domestic construction industry. The application of coding in project management
plays a crucial role in promoting the development of the construction industry. Several do-
mestic and international standards for construction information classification methods and
coding systems exist. Each one of them has typical characteristics, significant differences,
and connections.

UNIFORMAT II and OmniClass play a crucial role in integrating the industry’s new,
dynamic BIM technologies. Currently, there are no good standards to standardize the
information classification and coding systems for prefabricated building components
in China. From this perspective, based on existing information classification and do-
mestic and international coding systems, this study investigates coding methods for
prefabricated buildings and proposes a classification method which is suitable for the
characteristics of prefabricated buildings in order to better suit the trending constru-
ction industry.

2.3. Random Forest

The use of machine learning methods to classify BIM objects has important research
and practical implications. The existing studies focus on exploring BIM information, text, or
image recognition classification. A method is proposed to automatically categorize BIM case
studies by measuring and comparing the similarities between the definitions of BIM uses
and phrases, using unsupervised learning methods [23]. Support vector machines are used
to classify building elements for checking the semantic integrity of building information
models [14]. Yuan et al., develop a terrestrial, laser-scanner-data-based classification
method for common building materials using machine learning techniques [24]. The
Random Forest (RF) algorithm was proposed by Breiman in 2001 [25]. As an important part
of machine learning methods, artificial neural networks (especially back-propagation (BP)
neural networks) [26], Random Forest and support vector machine (SVM) have been widely
used for prediction. In the 1980s, a classification tree algorithm was proposed. It greatly
reduces the amount and time of computation by repeating the classification or regression
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of binary data. In 2001, some researchers combined many classification trees into random
forests [27], which enhances the prediction ability of Random Forest without increasing
the calculation amount. Random Forest is an efficient prediction model in the machine
learning algorithm. It is an effective combination of a combinatorial classifier algorithm
and a decision-tree classification algorithm. Compared with other classification algorithms,
Random Forest integrates single classifiers for voting, which can lead to higher classification
accuracy, minimize the total classification error rate and process class-imbalanced data.
Therefore, it is widely used in classification prediction. Its theory and method research
have been relatively mature, and it has been applied to industrial automation [28], food
science [29], medicine [30], image recognition, architecture [31], and many other application
domains. Upon a review of machine learning approaches based on relevant literature and
experiments with multiple machine learning, Random Forest was identified as the classifier
which is most suited to meet the aforementioned requirements.

This study aims to solve the above-mentioned deficiencies in the management process
of prefabricated components and provide an automatic classification and coding system
for prefabricated components based on BIM technology and random forests. In this way,
the automatic classification and coding of prefabricated components will be realized, and
the purpose of intelligent query and management of construction process information will
be achieved.

3. Methodology

Figure 1 shows the overall process developed for this study. The automatic classifica-
tion and coding of prefabricated components is divided into three stages. The first stage
aims to create a coding system suitable for prefabricated components. The prefabricated
component information is classified, and the overall design of the component coding is
detailed. The second stage describes the training and testing process of a Random For-
est model for the classification of IFC building components, based on the comparison of
different machine learning classification models. It involves selecting features that reflect
the key characteristics of prefabricated components, as well as generating a feature vector
set. A classification and regression tree (CART) is then constructed, and the results of the
component classification are voted on. In addition, ten classified features are analyzed
with a feature index, and each feature is assigned a reasonable weight. A prefabricated
component classification model based on a weighted Random Forest classification is then
developed. Section 3 describes the component code information extension process. Based
on the latest release of IFC4, the IFC standard format and entity representation methods are
systematically analyzed. Consequently, the coded information of prefabricated components
is extended using an attribute-set-based approach to achieve the integrity of BIM-based
prefabricated component information description. The automatic classification and coding
process of prefabricated components is finally performed, which improves the management
efficiency of prefabricated components.
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Figure 1. Overall Research Methodology.

3.1. Classification Criteria and System Design of Coding for Prefabricated Components

The classification of component information should have the characteristics of integra-
tion, systematization, and standardization. For a long time, neither a unified consensus nor
unified standards have been shared among all parties involved in construction projects.
This leads to poor information transfer efficiency, low sharing capacity, and the ineffective
use of information, which results in information redundancy. Therefore, issues faced in
the process of information management of construction projects can be improved based on
the building components, thus improving the management and efficiency of each stage in
order to strengthen the whole construction cycle.

3.1.1. Information Classification of Prefabricated Components

Building information should be classified and coded according to the needs of infor-
mation management in the construction field. This includes relevant national standards,
industry standards, and enterprise standards, as well as the characteristics of different types
of information content. Certain principles and methods are used to distinguish and classify
information and develop a coding system in order to ensure the uniqueness of information
exchange, management, and use. The classification table that the industry has created is
the OmniClass standard. Specifically, the OmniClass Construction Classification System
(OCCS) is a classification system for the construction industry which incorporates many of
the classification systems in use as the basis for its tables, such as the use of MasterFormat
as the basis for a classification table for construction components. More precisely, the
scope of OmniClass encompasses a multi-scale description of the whole built environment
from erection to completion. In addition, it is applicable to the building life cycle, from
conception, design, and construction to final demolition and recycling. Therefore, the
OmniClass information classification system contributes to the development of assembled
buildings in China, particularly in terms of information classification and integration. The
classification method for prefabricated components designed in this paper is based on
reference to, and borrowing from, the OmniClass classification system.
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This study mainly refers to OmniClass information classification ideas for information
classification. Prefabricated buildings can be divided into four main categories of structural
systems: prefabricated frame, prefabricated shear wall, prefabricated frame–shear wall,
and steel structure. The application scenarios of each structural system are different.
The prefabricated elements used in prefabricated buildings are also different from one
structural system to another. For instance, the prefabricated frame structures mainly use
prefabricated beams, prefabricated columns, prefabricated floors, and prefabricated stairs.
The prefabricated shear wall structures include prefabricated walls, floors, and stairs. This
paper uses the prefabricated components as the object of classification and the whole life
cycle of precast building structures and precast components as the main classification basis
for the classification of information. An example of an assembled concrete frame structure
is shown in Table 1.

Table 1. Information classification of precast integrated concrete frame structure.

Structure Type Component Category Component Name Component Classification Component Subdivision

Assemble integral
concrete frame

structure

Precast beam

Precast beam
Precast main beam

Precast secondary beam

Precast composite beam Prestressed composite beam
Ordinary composite beam

Precast lintel

Precast slab

Precast slab

Prestressed hollow slab
Prestressed laminated slab
Common laminated slab

Steel bar truss laminated slab
Prestressed grooved slab
Common grooved slab

Precast balcony Fully precast balcony
Precast balcony slab

Precast stair

Precast slab stair
Precast beam stair

Precast single run stair
Precast double run stair

Precast scissor stair
Precast clockwise stair

Precast counterclockwise stair

Prefabricated canopy

Prefabricated aluminum alloy
sunshade canopy

Prefabricated plastic steel canopy
Prefabricated French canopy

Prefabricated mobile push–pull
canopy

Prefabricated shrinkage push–pull canopy
Prefabricated air

conditioning panel
Precast
column Precast column

Precast wall

Precast exterior wall Precast non-bearing exterior wall

Precast GRC insulation
exterior wall panel

Precast sandwich insulation
exterior wall panel

Precast single exterior wall
panel

Precast hanging exterior wall
panel

Precast side connected
exterior wall panel

Precast wall hanging
panel

Precast fiber cement exterior wall hanging panel
Precast metal wall hanging panel
Precast PVC wall hanging panel

Precast solid wood wall hanging panel
Precast stone wall hanging panel

Precast interior wall
panel Precast non-load bearing interior panel

Precast solid interior wall
panel

Precast hollow interior wall
panel

Precast integrated door
and

window wall panel

Precast integrated door and
window solid wall panel

Precast integrated door and
window laminated wall panel

Precast parapet

Prefabricated window
Prefabricated bay

window
Prefabricated inner bay window

Prefabricated exterior bay window
Ordinary prefabricated

window
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3.1.2. Component Coding System

In this study, the OmniClass classification system is used to implement the coding
of assembled prefabricated components. According to the characteristics of assembled
buildings, the coding system is created based on the component as unit. The code combines
the idea of tracking information throughout the life cycle of a project. The first level
of numbering distinguishes the life cycle by production, construction, operation, and
maintenance. The second level of coding distinguishes the structure by frame, shear wall,
frame shear wall, steel structure, and connections. The third, fourth, and fifth level of coding
then indicate the large, medium, and small categories of components, in that order. Finally,
the sixth level of coding segments indicates the component size information. In view of the
speed of identification in production construction, a mixture of abbreviations and numbers
is used for the coding. The result is a six-segment, nine-digit code. The structure of the
sixth code segment, representing dimensional information in the code, is different for the
different component categories. The specific structure of the sixth code segment for the
different component categories is presented as follows, while all the measurements are
in millimeters:

(1) Beam: The sixth code segment is composed of three numbers. From front to back, the
width, height, and length of the section are respectively denoted. The numbers for
each segment are connected by “-”.

(2) Slab: The sixth code segment is composed of a number, which is the value of the
slab thickness.

(3) Column: The sixth code segment is composed of two numbers. From front to back
are, respectively, the values for the cross-section side length of the column and the
length of the column, with a “-” connecting each segment of numbers.

(4) Wall: The sixth code segment is composed of a number, which is the wall thickness.
(5) Stair: The sixth code segment is composed of four numbers. The width of the ladder

section, the riser height, the tread depth, and the number of risers is sequentially
denoted. Each number is connected by “-”.

The content of the sixth code segment should be filled in with specific information
about the component. Therefore, in the table of the classification and the coding of in-
formation on the construction process, only the contents of the first five code segments
are provided for the sake of simplicity and clarity. Table 2 presents the coding struc-
ture. Figure 2 shows the meaning of the variables in each formula and the relationship
between them.

Table 2. Table of significance of prefabricated component code segments.

Code Segment Names Code Segment System Code Segment Description

Life Cycle Stages P Produce
Life Cycle Stages C Construct
Life Cycle Stages O Operate

Structure Type FS Frame structure
Structure Type SW Shear wall structure
Structure Type FW Frame–shear wall structure
Structure Type SS Steel structure
Structure Type AP Adapting piece

Component Category BE Beam
Component Category SL Slab
Component Category CO Column
Component Category WA Wall
Component Category WI Window

Component Name 01 Precast beam
Component Name . . . . . .
Component Name 16 Ordinary prefabricated window

Component Classification 01 Precast main beam
Component Classification . . . . . .
Component Classification 40 Ordinary prefabricated window
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Figure 2. The coding structure.

3.2. Training and Testing of the Machine Learning
3.2.1. Information Extraction Based on IFC Schema

In component classification coding, it is necessary to obtain data information from
the model that is relevant to the classification. It is necessary to first define the component
information, which is detailed in the IFC standard, as well as the geometric and attribute
information of the components contained in the data format. Therefore, this paper scruti-
nizes the basic information and system information, as well as the geometric and attribute
information of the BIM model components based on the IFC standard, in order to achieve
the fast and accurate extraction of information from the model. The features of each com-
ponent are extracted using libraries from IfcOpenShell, an open source (LGPL) software
library which is used to process the IFC file format. IfcOpenShell provides a powerful API
through which IFC entities can be directly and easily retrieved. These features are then
presented in tabular form for subsequent machine learning.

The physical files of the IFC standard expresses the model through entities which
are the basic units of the IFC physical files. In an IFC physical file, any entity describes
its information by attributes that are divided into three types: direct attributes, export
attributes, and inverse attributes. The direct attributes can be directly expressed in a single
entity statement in a physical file, usually as scalars or strings, such as Globalid, Name
and ObjectType, for example. The export attributes are described by other entities, such as
OwnerHistory, ObjectPlacement, and Representation. The inverse attributes are associated
with a component through an associated entity so that the component has the attributes of
the attribute entity. The material properties of a building component are inverse properties.
The associated entity associates the component with the material so that the component
has the material properties associated to it.

The properties of IFC entities are obtained by inheritance. For instance, the building
component “IfcBeam” has 33 properties in IFC4, but only one property is a PredefinedType,
while the other 32 properties are inherited from the properties contained in IfcRoot to
IfcBuildingElement. In the IFC physical file, the statement IfcBeam shows only 9 attributes,
including direct and exported attributes, while the remaining 24 attributes are inverse
attributes (see Figure 3).
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Figure 3. Definition of the IFC Architecture of a Beam.

3.2.2. Comparison of Machine Learning

Testing as to whether or not the proposed features can successfully classify prefab-
ricated building elements is performed by creating a sample IFC dataset, generating the
representative feature vectors, and then training machine learning models using the features.
Considering the performance of different classifiers, the individual algorithms are tested and
compared based on their prediction accuracy in order to select the classifier which most fits
the building element classification. In order to train and test the machine learning for classi-
fying building elements of IFC, the dataset is divided into training and test sets by a ratio
of 8:2, which is a standard ratio used and recommended in the machine learning literature
(Koo, 2019). A 10-fold cross-validation is performed on the training set. Cross-validation can
be used to validate the performance of a classifier, as measured by evaluation metrics, such
as accuracy, precision, recall, and F1-score. The accuracy represents the number of correctly
classified test instances as a proportion of the total number of test instances, as shown in
Equation (1). However, in the case of a positive and negative sample imbalance, evaluation
by accuracy alone is not scientific. Recall is designed for the original sample and indicates
how many positive classes in the sample are correctly predicted, as shown in Equation (2).
The precision is the proportion of positive examples of the data predicted correctly to those
predicted as positive for the predicted outcome, as shown in Equation (3). The F1-score is
the harmonic average of the precision and recall, as shown in Equation (4). The effectiveness
of machine learning in classifying IFC instances is measured using these metrics. Figure 4
shows the meaning of the variables in each formula and the relationship between them. TP
(true positive) represents the number of predicted positives. TN (true negative) denotes the
number of predicted negative. FP (false positive) is the number of predicted positives, and
FN (false negative) represents the number of predicted negatives.

accuracy =
TP + TN

TP + FP + FN + TN
(1)

Recall =
TP

TP + FN
(2)
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Precision =
TP

TP + FP
(3)

F1score =
2 ∗ precision ∗ recall

precision + recall
(4)

Figure 4. Truth Table Confusion Matrix.

3.2.3. Training and Testing of the Random Forest Models

Step 1: Randomly Select Datasets

The original sample set is composed of multiple types of prefabricated component
data. The original sample set is divided into the training set and test set, according to a
ratio of 8:2. The bootstrap sampling method is used to randomly select N subsample sets
from the training set in order to construct N classification and regression trees (CARTs).

Step 2: CART Construction Based on Random Component Dataset

Since CART decision trees are used for the construction of the random forest, the
Gini coefficient, which is the criterion of CART, is also used to evaluate the classification’s
effectiveness. For classification problems (assigning a sample to a category), i.e., discrete
variable problems, CART uses the Gini value as an evaluation criterion, which is expressed
as Equation (5):

Gini = 1−∑[p(i) ∗ p(i)] (5)

where p (i) is the proportion of class i samples in the dataset on the decision tree’s node.
For example, divided into 2 classes, there are 100 samples on the decision tree’s node, 70 of
which belong to the first category, while 30 of which belong to the second category. Thus,
Gini = 1− 0.7× 0.7− 0.3× 0.3 = 0.42.This shows that the more evenly distributed the
categories, the larger the Gini value, while the more unevenly distributed the categories,
the smaller the Gini value.

The number of decision trees in the random forest and the maximum depth of each
decision tree directly affect the final performance of Random Forest. A too-small or too-
large decision tree number degrades the performance of the Random Forest prediction. The
smaller the maximum depth of each decision tree, the more likely it is to be underfitted,
while the larger the maximum depth, the more likely it is to be overfitted. Therefore, in
this paper, the grid search method is used to determine the optimal number of decision
trees and the maximum depth, while the number of decision trees is between 20 and
100 searches, and the maximum depth is between 2 and 20 searches. The grid search
method performs training and testing on each combination in order to reach an optimal
quantity and depth. The optimal combination in this study is a maximum depth of 16 with
69 decision trees, as shown in Figure 5:
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Figure 5. Maximum Depth and Number of Decision Trees.

Step 3: Component Classification Result Voting

After the construction of n CART decision trees, the test set data is used for verification.
The test sample a is input as the random forest, and the output of the K-th decision tree is
calculated using Equation (5).

fk(a) = i, i =
{

0
1

,
,

Not such a component
Such a component

(6)

The output of the Random Forest classification model is given by:

fRF(a) = argmax
i=0,1

{
n

∑
k=1

[ f k(a) = i]

}
(7)

where fk is the single decision-tree classifier model, i is the classification result of a single
decision tree (i = 0 indicates that the predicted result is a nonsuch component, and
i = 1 indicates that the predicted result is a such component), fRF is the Random Forest
classification model output, and n is the Random Forest model containing the total number
of decision trees.

3.2.4. Component Coding Information Extension Based on IFC

The IFC standard is open, and users can extend the IFC data model according to their
actual needs by referring to the model architecture of the IFC standard. This provides three
extension mechanisms: extension based on adding entity definitions, extension based on
IfcProxy entities, and extension based on attribute sets.

In this paper, the code to be extended is the attribute information of the components.
The components, such as columns, beams, and slabs, have already been defined in the
IFC standard. Therefore, the attribute-set-based extension can be used. Figure 6 shows
the flow of a property-set-based extension, where the property set is described by the
IfcPropertySet entity and each property set contains at least one property, as described by
the IfcProperty entity. The property sets are linked to the corresponding entities through the
associated entity IfcRelDefinesByProperties, so that the entity has the property information
described by the property set. Based on the latest release of IFC4, this study provides a
systematic analysis of the IFC standard format and entity representation methods. On this
basis, the prefabricated component coding information is extended in order to achieve the
completeness of the BIM-based, prefabricated component information description.

Figure 6. IFC Extension Process Based on Attribute Sets.
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4. Experiment

The experiment performed in this paper is divided into four steps. The first step aims
at feature extraction of wall instances from the original IFC file based on IfcOpenShell. The
second step consists of of classifying and labeling the extracted data according to their
characteristics. The third step consists of training the Random Forest model according to
the dataset, and measuring the performance based on the accuracy of the prediction using
the 10-fold cross-validation. Finally, the coding information of the component is written
into the IFC physical file through the IFC extension, and the extension results are verified.

Due to the absence of an available dataset, this experiment collects some Revit models,
extracts relevant attributes through IfcOpenShell, and annotates the component features
through attribute Name, ObjectType, and the viewing of the location of components in
BIM model. Therefore, there is the problem of a small amount of data in the experiment.
On the other hand, we selected wall components for this experiment. The classification of
building components is universal and can be easily extended from wall components to all
building components.

4.1. Data Collection and Preparation

Nine building information models are considered for study based on their availability
and scope. They are all architectural models, including villas, office buildings, flats, etc.
The goal is to collect wall instances from the models for training and testing purposes.
All of the wall instances are extracted using libraries from IfcOpenShell, which is an
open source (LGPL) software library for working with the IFC file format. IfcOpenShell
provides a powerful API through which IFC entities can be directly and easily retrieved.
These features are then presented in tabular form for subsequent machine learning. The
IfcWallStandardCase is considered since it has the largest number of elements and several
different sizes, locations, and materials for easy classification. The attribute “Name” is a
label added to the IFC entity when exporting the IFC physical file, the value of the attribute
can be null, and the description of the actual component entity of this attribute usually
corresponds to the modeled component “Name”. As the names of different components
are not usually identical, the entity name can distinguish between the components in the
project. ObjectType is similar to the Name attribute. The latter is the IFC label added to
the entity in the physical file. However, the difference is that the value of the ObjectType
attribute is the same for components of the same type, such as columns and beams of
the same section, doors and windows of the same size, etc. Therefore, the entities in IFC
physical files can also be classified according to the attribute value of the ObjectType of
the components. However, Name and ObjectType are not part of the input. Each instance
is manually labeled by referring to the characteristic attributes, and each component
is observed in the BIM software in order to construct a dataset. In fact, the location
and material properties of the components are important bases for their classification.
Using the different characteristics of the different prefabricated components based on
walls—Name, CartesianPointX, CartesianPointY, Material, MaterialThickness, LoadBearing,
External, LocationX, LocationY, and LocationZ—the position attribute, material attribute,
and thickness of each material layer of the wall are related to its actual use. According to
these characteristics, they can be input into the machine learning algorithm for classification.
In addition, due to the greater workload of component management in prefabricated
buildings, a component identification is required in the construction process, and the
components can be templated. Therefore, the research object focuses on prefabricated
components. In fact, different projects of cast-in-situ components have great differences.
Thus, the specific classification attributes should be considered in combination with the
reality. Note that this paper does not study cast-in-situ components.
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4.2. Implementation of Automatic Classification and Coding for Prefabricated
Building Components
4.2.1. Step 1: Data Extraction and Annotation

A total of 1718 wall instances (see Figure 7) are first collected in the model, and the
following characteristic variables are selected: Name, CartesianPointX, CartesianPointY,
Material, MaterialThickness, LoadBearing, External, LocationX, LocationY, and LocationZ.

Figure 7. Data Extraction.

These characteristics for each instance are extracted using libraries in the IfcOpenShell
and stored in the matrix in the form of Python data boxes. The complete code is summarized
as Algorithm 1 show:

Algorithm 1 Extract IFC

products = f.by_type('IfcProduct') #Instantiate object
for product in products:

if(product.is_a() == 'IfcWallStandardCase'):
dict = [['null','Name',0,0,'NULL',0,'NULL',0,'NULL',0,'NULL',0,'NULL',0,

'NULL',0,'NULL',0,'NULL',0,'NULL',0,'NULL',0,'T','T',0,0,0,'NULL']]
dict[0][0] = product.id() #ID Property
dict[0][1] = product.Name #Name Property
dict[0][2] = product.ObjectPlacement[1][0][0][0] #CartesianPointX Property
dict[0][3] = product.ObjectPlacement[1][0][0][1] #CartesianPointY Property
i = 0
#Take out the types and properties of materials 1 ~ 9 in turn
for c in product.HasAssociations[0][5][0][0]:

dict[0][4+i] = c[0][0] #Material type
dict[0][5+i] = c[1] #Material thickness
i += 2

for definition in product.IsDefinedBy:
if definition.is_a('IfcRelDefinesByProperties'):

property_set = definition.RelatingPropertyDefinition
if(property_set[2] == ('Pset_WallCommon')):

dict[0][24] = property_set[4][1][2]
#LoadBearing Property, whether or not to bear weight

dict[0][25] = property_set[4][3][2]
#IsExternal Property, Whether the representative is outside
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Algorithm 1 Extract IFC

#LocationX, LocationY, LocationZ
dict[0][26] = product.ObjectPlacement.RelativePlacement.Location[0][0]
dict[0][27] = product.ObjectPlacement.RelativePlacement.Location[0][1]
dict[0][28] = product.ObjectPlacement.RelativePlacement.Location[0][2]
#ObjectType

dict[0][29] = product.ObjectType
frame1 = pd.DataFrame(dict,columns=
('id','Name','CartesianPointX','CartesianPointY','Material1','Material1thickness','Material2',
'Material2thickness','Material3','Material3thickness','Material4','Material4thickness','Material5',
'Material5thickness','Material6','Material6thickness','Material7','Material7thickness','Material8',
'Material8thickness','Material9','Material9thickness','Material10','Material10thickness',
'LoadBearing','IsExternal','LocationX','LocationY','LocationZ','ObjectType'))

frame = pd.concat([frame1,frame], axis = 0 ,ignore_index = True)

The matrix is exported to an Excel file, and each instance is manually annotated. A
new column of “Class” is then created at the end of the table to annotate the data, as shown
in Figure 8.

Figure 8. Data Annotation.

The used format of the classification and annotation is W-AB-XX-YY-000. W represents
the meaning of the wall instance, A indicates whether the component is load-bearing (0
for non-load-bearing, 1 for load-bearing), B indicates whether the component is inside
the building (0 for internal walls, 1 for external walls), XX represents its category (the
corresponding rules are 01 for basic walls, 02 for infill walls, 03 for parapet, 04 for decorative
partition walls, and 05 for curtain walls), YY indicates the wall material (the corresponding
rules are 01 for block, 02 for concrete, 03 for aluminum panels. and 04 for corrugated
panels), and 000 represents the wall thickness (e.g., 150/200/300, in millimeters).

4.2.2. Step 2: Training and Testing of the Random Forest Model

Before starting the model training, a simple data cleaning and pre-processing is per-
formed. Data normalization is performed for numerical attributes, while non-numeric
attributes are converted into the form of one-hot code, and pre-processing is conducted
by breaking up and rearranging the data. The models are trained and tested using the
RandomForestClassifier package and the GridSearchCV package in the scikit-learn frame-
work. Scikit-learn (sklearn) is a common, third-party module for machine learning which
encapsulates common machine learning methods, and users can directly call its library
functions to use powerful machine learning algorithms. The Gini coefficient is used as the
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criterion for evaluation. In the RandomForestClassifier package, a random forest is formed
by the default use of a CART decision tree, and, therefore, the Gini coefficient is used as
a criterion. The sampling method of the random forest is considered in a put-back form,
which ensures randomness and reduces the problem of overfitting to a certain extent. The
Random Forest model is an integration of decision trees. The used number of decision trees
and the maximum depth of each decision tree directly determine the performance of the
Random Forest model. Therefore, the GridSearchCV package is used for the grid-search
method, while the number of decision trees searched is between 20 and 100, and the max-
imum depth of decision trees searched is between 2 and 20. Ten-fold cross-validation is
used to automatically divide the datasets into 8:2. The prediction accuracy on the test set is
used as the evaluation index. A part of the code is provided as Algorithm 2 show:

Algorithm 2 Random Forest training

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
param_grid = [{‘n_estimators’:range(20,100),’max_depth’:range(2,20)}]
forest_clf = RandomForestClassifier()
grid_search = GridSearchCV(forest_clf,param_grid,cv=5,scoring=‘accuracy’)
grid_search.fit (X,Y)

4.2.3. Step 3: Component Coding and IFC Extension

The definition of an attribute set includes the attribute set name, the entity, the type of
value, and the attribute set description. Table 3 presents the definition of the attribute set
for the wall component code. The attribute set name is Pset_CodeOfWall. The definition of
the attribute includes the attribute name, attribute type, and attribute value type, where
the attribute is the coded value of the component. The attribute definitions are provided
in Table 4.

Table 3. IFC wall component code attribute set definition.

Attribute Set Name Pset_CodeOfWall

Entity IFCWall
Type Value Wall/UserDefined
Description Description of the IFCWall entity instance coding information

Table 4. Code attribute definition.

Attribute Name Attribute Type Attribute Value Type

Code IfcPropertySingleValue IfcIdentifier

The information for the prediction component of the Random Forest model is written
back into Excel, and a new Pred-Class column is created to save the prediction information.
In order to extend the component-encoding information in the IFC file, an ExtensionIfcClass
function, which first creates an identifier and then creates a single value for the IFC property
associated with it, is defined. The IfcPropertySet property set contains GlobaliD and
OwnerHistory. Therefore, the Python’s UUID module is introduced to create a global ID.
The UUID module can create a universally unique identifier, and then create a PropertySet.
Finally, the IfcRelDefinesByProperties association “property” is created in order to associate
the PropertySet with the product component passed into the function, completing the
IFC extension.

After the definition of the function, each component is iteratively correlated. The
Excel table, in which the prediction information has been stored, is first loaded. Each
wall instance is then traversed to obtain the ID of the wall. Afterwards, the PredClass
information corresponding to the ID in the table is searched. Finally, the ExtensionIfcClass
function is executed for correlation.
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The iterative code is shown in Algorithm 3:

Algorithm 3 Extension Ifc

writer_1=pd.read_excel(‘C:\\Users\\Administrator\\Desktop\\handson-ml-
master\\wow.xlsx’)
products = f.by_type(‘IfcProduct’)
for product in products:

if(product.is_a()==‘IfcWallStandardCase’):
id = product.id()
tag=writer_1[(writer_1[‘id’] == id)][‘PredClass’].max()

#Use Max function to convert the returned information into tag
extensionIfcClass(product,tag)

5. Result and Discussion
5.1. Results
5.1.1. Classification Results

Different machine learning algorithms are compared. The best algorithm shows an
average classification accuracy of 98.9%. Table 5 shows the results of different machine
learning methods. Validated on a test set containing 343 instances, the precision, recall,
and F1-scores of the Random Forest model are all equal to 0.99. The metric scores of the
different classifiers demonstrate that the Random Forest model has an advantage over SVM
and KNN, and it can be used to better classify elements.

Table 5. Classification results of different machine learning algorithms.

Machine Learning Precision Recall F1-Score Accuracy

RF 0.99 0.99 0.99 98.9%
SVM 0.95 0.96 0.95 95.7%
KNN 0.90 0.90 0.88 89.5%

After model training, the results show that the Random Forest model composed
of 69 decision trees with a maximum depth of 16 has the highest precision. Its classi-
fication accuracy reaches 98.9%. Table 6 shows the classification results of RF for each
component type.

Table 6. RF Classification results.

Code Precision Recall F1-Score Support

W-00-01-01 0.98 1.00 0.99 41
W-00-01-02 0.98 1.00 0.99 53
W-01-01-02 1.00 1.00 1.00 2
W-10-01-01 1.00 0.99 0.99 76
W-10-01-02 1.00 0.99 0.99 82
W-10-01-04 1.00 1.00 1.00 7
W-10-02-01 1.00 1.00 1.00 55
W-10-03-02 1.00 1.00 1.00 12
W-10-04-01 1.00 1.00 1.00 8
W-10-05-01 1.00 1.00 1.00 2
W-10-05-03 1.00 1.00 1.00 4
W-11-01-02 1.00 1.00 1.00 1

5.1.2. IFC Extension Results

We use BIM vision to verify the classification results of machine learning algorithm.
BIM Vision is a free-to-use IFC model viewer. It can view the virtual models coming from
Revit systems. The results of the Random Forest output are written into the Classification
of forecasts, and the results of the IFC extension are shown in Figure 9.
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Figure 9. IFC Extension Results.

The line shows that the #289608 correlation property is created, associating #2318
with #289607. The #2318 and #289607 properties are shown in Figure 10, where #289607
represents the property set, #2318 is a wall instance, and the result shows that the extended
property set has been associated with the wall instance #2318.

Figure 10. IFC Extension Verification.

The extended property is then accessed from wall instance #2318 by another method
of verification. #289608 is exactly the property just created. Accessing the #289607 attribute
of #289608 yields an attribute set described as Pset_WallCommon, while accessing #289606
of #289607 yields an attribute value described as “Classification of forecasts” that contains
the classification information W100101200. This shows that the described implementation
based on the extension of the attribute set is valid, and the semantics of the resulting IFC
physical file are correct.

Finally, one must write it back into IFC, as Algorithm 4 show:

Algorithm 4 Write back IFC file

f.write(‘./ifc library/Four story double row villa(Modified).ifc’)

5.2. Discussion and Limitation
5.2.1. Discussion of Results

Random Forest is an integrated algorithm composed of decision trees. It exhibits a high
level of performance in many classification tasks. The Random Forest algorithm introduces
randomized samples and randomized features, making it noise-resistant and giving it an
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advantage over other algorithms. As Random Forest is a combination of decision trees, it
can handle non-linear data. It is also able to handle very high dimensional data and does
not need to do feature selection, making it highly adaptable to the dataset. In addition,
it can handle both discrete and continuous data, and the dataset requires normalization.
Therefore, it performs much better in the experiment. The classical SVM model used in
this experiment requires great care in the pre-processing all the data. Through the grid-
search method of SVM parameters and kernel function to obtain the best parameters, it is
deduced that the performance of SVM classification is close to that of the Random Forest
algorithm. SVM shows good potential in this task. The performance of SVM may be further
improved using more advanced SVM optimization techniques, which paves the way to
further studies, while the KNN algorithm is unable to cope with sample imbalance, leading
to the lowest performance in the classification for this task.

Table 7 provides the classification results in the form of a confusion matrix for the
Random Forest model.

Table 7. Confusion Matrix.

W000101 W000102 W010102 W100101 W100102 W100104 W100201 W100302 W100401 W100501 W100503 W110102

W000101 41 0 0 0 0 0 0 0 0 0 0 0
W000102 0 53 0 0 0 0 0 0 0 0 0 0
W010102 0 0 2 0 0 0 0 0 0 0 0 0
W100101 1 0 0 75 0 0 0 0 0 0 0 0
W100102 0 1 0 0 81 0 0 0 0 0 0 0
W100104 0 0 0 0 0 7 0 0 0 0 0 0
W100201 0 0 0 0 0 0 55 0 0 0 0 0
W100302 0 0 0 0 0 0 0 12 0 0 0 0
W100401 0 0 0 0 0 0 0 0 8 0 0 0
W100501 0 0 0 0 0 0 0 0 0 2 0 0
W100503 0 0 0 0 0 0 0 0 0 0 4 0
W110102 0 0 0 0 0 0 0 0 0 0 0 1

Through a series of indicators and the confusion matrix mentioned above, we found
that the Random Forest algorithm has a good level of performance for the component
classification task. The misclassification observed through the confusion matrix indicates
that additional features may need to be added to distinguish components. For example,
there is a w100101 element that is incorrectly classified as w000101. A possible reason
for this is that there may be a lack of related load-bearing features in some components.
Adding other related features may help to correct such errors. This requires further research
to determine which features need to be added to improve the accuracy of prediction.

Second, when applying machine learning methods, we also found that making large
datasets is very important. BIM models typically have a disproportionate number of com-
ponents in various wall components. In this study, the number of some wall components is
large. Too few other wall components create an “unbalanced” dataset, which in turn can
lead to incorrect classification. Although the RF algorithm has good performance in the
task of dealing with some unbalanced datasets, it is necessary to carefully create evenly
balanced datasets and use indicators, such as accuracy and recall, ensuring the correct
evaluation of performance.

5.2.2. Limitations

In this paper, the construction process information classification and coding system
design based on BIM technology and its application, exhibit a high level of performance,
using wall components as example. However, some deficiencies and limitations still
exist. Although this study classifies the component information of prefabricated concrete
buildings and improves the coding system for component types, some missing component
types still exist in the coding system. Moreover, this paper uses a machine learning approach
to perform the component classification, and there is still room for improvement in the
selection of the dataset. The dataset considered in this paper also has some limitations.



Buildings 2022, 12, 688 20 of 22

In fact, it lacks a large amount of data. This study has verified the feasibility of the
classification system, but it needs to establish a larger dataset in engineering practice. In
addition, noise exists in some samples. In the manual annotation stage, it was deduced
that the properties of some instances of walls are inconsistent with their real types, and that
has an impact on the robustness of the model. Although some standards have been issued
for BIM technology, the fine management of construction enterprises is far from enough.
Therefore, it is necessary to further perfect the unified BIM format and design standards.

5.3. Practical Application

In subsequent research, it can be further combined with Internet-of-Things technology.
For example, in the production process of prefabricated components, the classification code
is written into the RFID chip to realize the real-time collection of construction process infor-
mation and achieve the purpose of real-time control of construction process components.
Specifically, at the design stage, BIM technology is used to create a BIM information model
of the prefabricated components library, and the classification and coding standards of
the proposed project are compiled and uploaded to the BIM collaborative management
platform for sharing. In the component production stage, RFID chips are embedded, con-
taining the code and basic information of the components to ensure that each component
corresponds to a unique identification, ensuring the number of components produced,
the transportation order, stacking location, and lifting order. Once an RFID tag is added
to a part, and the computer system is notified, the part becomes trackable. During the
construction phase of the components, there are many different types and large numbers
of components on site, and through BIM and RFID technology, the specific location of the
corresponding coded components is determined. RFID-based systems have been used
in different applications in construction and maintenance, such as asset tracking and lo-
cating, inventory management, equipment monitoring, progress management, facilities
management, tool tracking, material management, and quality control.

6. Conclusions

This study explores the use of the Random Forest algorithm to automatically clas-
sify and code prefabricated components, with the goal of improving the efficiency of
prefabricated component management. The main results are summarized as follows:

(1) An information classification and coding system based on BIM technology is proposed.
Based on the OmniClass classification system, this paper proposes an information clas-
sification method based on the structure and function of the prefabricated components.
In addition, it designs a BIM-based coding system for prefabricated components based
on this classification method.

(2) Comparing the performance of the Random Forest, SVM, and KNN algorithms in a
prefabricated component classification task, we find that the Random Forest algorithm
can better deal with the task of component classification of prefabricated components.
The intelligent labelling of building component information based on BIM technology
is performed. Based on the above information classification and coding rules, an
automatic coding program for prefabricated components is also developed. Through
the Python-based building information component property, information extraction
and Random Forest model training, the unified coding of prefabricated components is
automatically carried out, which performs the unique identification of prefabricated
components and reduces the workload of designers.

(3) The extension of IFC-based component coding information is proposed. Based on the
IFC4 version, the IFC standard format and entity expression methods are analyzed.
Based on the IFC physical file, the process of implementing the extension of component
coding information is designed to realize the integrity of the BIM-based prefabricated
component information description. This provides a data basis for construction
management combined with the Internet of Things. In addition, it is more suitable for
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the concepts of standardizing the design of prefabricated buildings and industrializing
the production of components in future developments.

Overall, the integration of information on prefabricated components is achieved by
proposing a model for the classification and coding of components in IFC files. Future
work includes the information tracking of prefabricated components included in the code
by combining with the Internet of Things technology. We further propose a BIM-RFID
technology application scheme based on the automatic coding of prefabricated compo-
nents in all phases of assembled buildings, which would have a positive effect on the
circulation and sharing of the coded information of prefabricated components. Thus, the
proposed approach could save further time and effort by simplifying the process of com-
ponent information exchange and improving the efficiency of prefabricated component
information management.
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