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Abstract: As the basic spatial unit of urban planning and management, it is necessary to know the
distribution status of urban functional areas in time. Due to the complexity of urban land use, it is
difficult to identify the urban functional areas using only remote sensing images. Social perception
data can provide additional information for the identification of urban functional areas. However, the
sources of remote sensing data and social perception data differ, with some differences in data forms.
Existing methods cannot comprehensively consider the characteristics of these data for functional
area identification. Therefore, in this study, we propose a multimodal deep learning method with
an attention mechanism to fully utilize the data features of these two modalities and apply it to
the recognition of urban functional areas. First, the pre-processed remote sensing images, points
of interest, and building footprint data are divided into block-based target units of features by the
road network. Next, the remote sensing image features and social perception data features of the
target unit are extracted separately using a two-branch convolutional network. Finally, features are
extracted sequentially along two separate dimensions, being channel and spatial, to generate an
attention weight map for the identification and classification mapping of urban functional areas. The
model framework was finally applied to the Ningbo dataset for testing, and the recognition accuracy
was above 93%. The experimental results deduce, as a whole, that the prediction performance of the
deep multimodal fusion model framework with an attention mechanism is comparatively superior
to other traditional methods. It can provide a reference for the classification of urban land use and
provide data support for urban planning and management.

Keywords: multimodal data; attention mechanisms; data fusion; urban planning

1. Introduction

Urban functional areas are the important spatial carriers of various urban economic
and social functions, as well as the specific performance units of natural and socio-economic
resources. As rapid urbanization is taking place around the world, various elements are
being taken into different spaces of the city, thus forming functional area differentiation at
different regional scales. As such, unreasonable urban planning will lead to an array of
tangible problems, such as a single-function structure, spatial differentiation, and improper
resource allocation in cities. Therefore, accurately identifying the urban spatial and social
structures is important to reasonably delineate urban functional areas, thereby functionally
coordinating human-land relations, effectively optimizing urban spatial strategies, and
improving urban planning [1–6].

With accelerated advances in remote sensing technology, we are able to acquire high-
resolution satellite and aerial imagery, allowing us obtain more texture detail from high-
altitude images than ever before. Traditionally, urban functional zone identification relies on
planning maps of land use and field surveys. Nevertheless, the survey-based methodology
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often consumes significant labor resources and a large amount of time, and even the
reliability is presumably influenced by the subjectivity of human perceptions. Moreover,
the information obtained from a single data source is not comprehensive enough and is,
therefore, limited. There is enormous potential in extracting and analyzing the functions
of urban areas from high-resolution spatial remote sensing imagery, which influences the
evolution of research regarding urbanization. Further, this technique has proven to be
one of the most convenient and effective methods in many applications such as Earth
observation and urban structure analysis [7–9]. For instance, Pacifici [10] employed multi-
scale texture metrics from very high-resolution panchromatic images to classify urban land
use categories. Pacifici’s outcomes demonstrate that, in a multi-scale approach, it is possible
to discriminate different asphalt surfaces, such as roads, highways, and parking lots due to
the different textural information content. Later, Soe [11] experimentally verified that the
spectral information presented by pixels plays a pivotal role in the process of classification.
Zhang [12] developed a joint deep learning model that fully incorporates a multilayer
perceptron (MLP) and convolutional neural network to enhance the spatial and spectral
representation, subsequently achieving land refinement classification. Li [13] completed the
urban land classification based on the geometric, morphological, and contextual attributes
of the target objects with the corresponding land use indicators. However, most of these
studies employ physical features of ground components (e.g., spectral, shape, and textural
features) to extract urban land use patterns, which can only be associated with low-level
semantic land covered with the information of ground features, and it is difficult to harvest
high-level semantic information of urban spatial structures [14–18].

It is noteworthy to mention that the fusion of remote sensing images with social
perception data is a new, alternative direction [19]. A series of recent studies have reflected
that the exploitation of social sensing data, such as Point of Interest (POI), taxi track data,
cell phone data, social media data, and street view data, performs well in identifying
functional urban areas [20–25]. Take, for example, the case of TU [26] combining remotely
sensed images with cell phone location data, landscape, and activity indicators that are
calculated to cluster functional areas. Gong [27] combined nighttime remote sensing
images, satellite images, POI, and cell phone data in order to create a national land use
map. Liu [28] integrates probabilistic thematic models and support vector machines (SVM)
to fuse natural physical features from high-resolution images and socio-economic semantic
features from multi-source social media data, working to build a lexicon of land use words
in a framework to analyze fine-grained urban structures and to monitor urban land use
changes. These studies encourage the great potential of multimodal data in revealing the
functional zoning of urban areas.

However, remotely sensed and socially sensed data are relatively different in terms of
sources and modalities. In general, remotely sensed images cover a study area, where as
social sensing data are location-based and are represented as points, dashes, or polygons. In
addition, the features of social sensing data may be time-based rather than space-based [29].
To fuse these two types of multi-source and multi-modal data is not an easy task, especially
when mitigating the modal gaps and heterogeneity between them [30,31]. Nicolas [32]
exploited the multi-source satellite sensor data through an improved Segnet network, thus
providing better performance for urban feature recognition compared to the one that uses
fully connected convolutional networks (FCN). Cao [33] integrated the long short-term
memory (LSTM) extraction of user time series feature data with Resnet extraction of remote
sensing image features as it seeks to work out functional area identification. Although the
extracted modal data features are able to accomplish the classification task, the features
independently existed without any interrelationship between them. It is likely that when
the deficiency occurred in data collecting, the recognition effect could be influenced by the
gap between data forms.

Deep-learning-based fusion methods have great potential for integrating multi-source,
multi-modal remote sensing and social remote sensing data. Significant improvements
have been made in many domains so far, including hyperspectral image analysis [34],
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image scene classification [35], target detection [36], and so forth. The main advantage
of deep learning methods lies in its capability of learning high-level features from large
amounts of data automatically, which is crucial to bridge the gap between different data
patterns at the feature level. In particular, the recently emerged attention mechanism [37]
further strengthens the feature representation and advances the functions of multi-source
multimodal data in urban functional area identification applications.

In this paper, we propose a deep-learning-based framework where multi-modal data
are perfectly fused in urban functional zoning recognition, which consists of three main
contributions. First, a multimodal data fusion framework is proposed to reveal the layout
of urban functional zones by introducing building footprint and POI data. Second, after
feature extraction by deep convolutional neural networks, an attention mechanism is intro-
duced to focus on the main features of multimodal data and enhance the interconnection of
different modal data. The results show that using the multimodal network model based
on the attention mechanism to extract features can improve the prediction performance.
Third, we further compare different fusion methods with different fusion stages to further
validate the robustness of the method. Therefore, our method can help to refine the urban
land use classification and provide data to support the refinement of urban management.

The paper is organized as follows: Section 2 brings forward how the dataset was
created for the region of Ningbo. In Section 3, we present the proposed model in detail.
Section 4 illustrates the experimental setup and results, while in Section 5 the applicability
of the method is comprehensively discussed. Section 6 concludes the paper.

2. Study Area and Data Sources
2.1. Study Area

Located on the southeast coast of China, Ningbo is home to 9.4 million people, with
an area of 9816 km2. As an important economic center of the Yangtze Delta megalopolis,
Ningbo has continuously established rich types of urban functions to meet the needs of the
booming advances in tertiary industries and fast expansion in foreign trade. The research
area of this paper encompasses several parts of Ningbo. Study area 1 is situated on the
intersection of the Jiangbei District, the Haishu District, and the Yinzhou District, with an
area of about 48.78 km2, including Tianyi Square, which is the largest urban commercial
area that integrates recreation, commerce, tourism, catering, and shopping in Ningbo.
Study area 2 is Vanke Square, a newly developed commercial center with its surrounding
areas in Zhenhai District, covering an area of 17.63 km2. There is much common ground
between these two regions. Both are highly concentrated on the commercial and industrial
development, residential and public services, medical and health care, and sports and
leisure facilities, with a similar distribution of regional buildings and rich POI data, setting
good examples to give the full picture of a comparative study of urban functional zoning
in this paper. The two study areas are shown in Figure 1.
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Figure 1. The two study areas utilized in this paper.

2.2. Data Sources

Gaofen (GF)-2 data are used as the high-resolution spatial remote sensing data source
in this experiment. Launched in 2014, the satellite was equipped with panchromatic and
multispectral sensors with resolutions of 1 m and 4 m, respectively. The images of the
study areas were acquired on 16 June 2019. Preprocessing the illustrations intensively
helps us make the full use of high-resolution spatial image information and spectral
feature information. First, the parameters given by the China Resources Satellite Data and
application center are used for radiometric calibration. Second, atmospheric correction
is carried out to eliminate the errors caused by atmospheric scattering, absorption, and
reflection. Third, the rational polynomial model is used for positive correction. Next,
multispectral images and panchromatic images are fused to obtain multispectral data with
a 1 m spatial resolution. Finally, according to the range of the study areas, the images
of two study areas are cut from the preprocessed images. The size of study area 1 is
6217 × 11,544 pixels and that of study area 2 is 4327 × 4782 pixels.

Drawing from Gaode map API (https://lbs.amap.com/tools/picker) in 1 June 2019,
four types of attributes involving the name, function, address, longitude and latitude
constitute the POI data. It is worth noting that POI is not generated by physical information
on the surface, but by attribute labels and geographical points triggered by human economic
activities. To some extent, it shed light on the people’s activities in specific places. We
collected 48,886 records covering the study area from Gaode API. Although POI data
contains semantic information that largely mirrors the socio-economic attributes inside
the buildings, not all POI data can help identify urban functional areas and may even
provoke interference to a certain degree. It is those invalid factors, such as public toilets,
newspaper kiosks, traffic stations, etc., that are removed from the original data. First POI
data is filtered to exclude the data without detailed category identification and coordinate
information. Second, derived from the standard of classification and planning of urban
land for Construction, issued by the Ministry of Housing and Urban Rural Development of
the People’s Republic of China, the POI is reclassified into 14 categories, including public
facilities, catering services, education and cultural services, shopping services, companies
and enterprises, medical services, accommodation services, commercial residences, life
services, landscapes, transportation facilities services, financial and insurance services,
sports and leisure services, government agencies, and social organizations. Finally, the

https://lbs.amap.com/tools/picker
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aforementioned POI data is corrected from the Mars Coordinate System referenced by
Gaode Map to the WGS84 Coordinate System with the remote sensing image techniques.
After going through these intense processes, study area 1 contains 31,240 POI data records
and study area 2 contains 5632. The distribution of the POIs is shown in Figure 2.
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Figure 2. Point of interest (POI) data for Ningbo in June 2019. (a) Spatial distribution of POIs.
(b) Density of POIs counted in segmentation units.

Building contour data, obtained in 1 June 2019, are from Bigemap (http://www.
bigemap.com). Study area 1 contains 6808 data records, with 3510 records being contained
in study area 2. It is obvious that a closed topological relationship exists between buildings
and their corresponding plot units. The differences in the physical properties of a building
complex reflect the functional attributes of a region, such as a residential area. The building
contour data we obtained encompasses three types of attributes: area, length, and floor.
First, area represents the actual floor area of a building. We calculated the total area and
average area of all buildings in the region, and counted the frequency of buildings in a
certain area range. Some differences appear in the fluctuation range of the average area of
different functional areas. For example, the internal building area of the residential area is
similar, and the building height is unified. The floor area of the office building is small, while
the floor area of the shopping center is large. Regional functional attributes can be inferred
from the difference of the area. Second, the building perimeter distinctly expresses the
length of the building outline, which measures the length difference between buildings in an
area. Different types of functional zoning can be inferred by calculating the total perimeter
and average perimeter, as well as by counting the frequency of buildings in a certain
range interval. The differences in the height of buildings reflected in floors are variously
distributed in different functional areas. For example, business office constructions are
usually located in the center of the area, with a floor height that is higher than ordinary
residential buildings. Here, we employ floor height, average floor height, and statistics of
the frequency of buildings within a certain height range to infer the functional attributes of
the area. The distribution of the building footprint is shown in the Figure 3.

It is worth mentioning that OSM data, obtained in 1 June 2019, comes from Open-
StreetMap (https://www.openstreetmap.org), which is currently the largest open autho-
rized geospatial data database. OpenStreetMap gives a full picture of different sorts of GIS
information, including road infrastructure, built environment, etc., thus, to some extent,
providing an alternative solution to proprietary or authoritative data in many projects, as
several studies have evaluated the spatial accuracy of OSM. In short, an array of literature
verifies the reliability of OSM data.

http://www.bigemap.com
http://www.bigemap.com
https://www.openstreetmap.org
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distribution. (c) building area distribution.

3. Method

The features extracted by traditional methods of identifying urban functional area are
independent of each other among the modal data since the features are not interrelated
with each other. However, multimodal feature fusion on the basis of deep learning maps all
features into a common subspace as well as completes the classification task in the light of
the similarity and measurability of data between modalities, somehow marginalizing the
main features of the modal data and weakening the feature extraction expression capability
of the network. Therefore, this study improves the ability of the convolutional structure
in the network to extract each modal data by using the modal data reconstruction loss
function. In addition, an attention mechanism is introduced to strengthen the feature
expression capability and optimize the network performance by giving more weight to the
main features from both spatial and channel dimensions.

In this paper, the urban functional area identification framework is implemented by a
perfect combination of remotely sensed images and socio-economic attribute data, such
as points of interest (POI), road networks, and building footprints. As shown in Figure 4,
three major steps are involved in the process of the multi-modal urban functional area
identification framework. First, it is clear that the road network segments the preprocessed
remote sensing image, POIs, and building footprint data. Next, in the light of the segmented
block, the convolution network is applied to further extract the features. Third, the features
picked up by step 2 are input into the spatial attention mechanism and channel attention
mechanism modules as it looks to fetch the attention weight map. Finally, we multiply the
features used in step 1 with the generated feature attention map in step 2 to harvest the final
feature map, a key factor to settle city functional area recognition classification mapping.
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Figure 4. Framework of urban functional area identification.

3.1. Block Generation by Osm

Blocks are the basic units that carry social and economic functions in urban man-
agement and urban planning. Long and Liu contend that the land parcel is a polygon
surrounded by a road network as the dividing boundary of the urban area [38]. In this
study, we adopted this method, using OSM road network data to form block units. As
shown in Figure 5a–c, first, preprocessing operations such as simplification, merging, and
geometric correction are performed on the road network data. Second, it is important
to forge a buffer zone hinged on the road network of different levels. Finally, we divide
the research area into a string of independent blocks determined from the established
buffer zone.
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However, in the whole process, few high-purity samples prevail, since the medical
and administrative categories are usually mixed with other land uses. Therefore, in order
to ensure the integrity and independence of the function blocks, we manually edit the
following samples in Figure 5d,e, seeking to connect original unconnected lines into road
sections. These steps help to form an independent unit and to guarantee a purity of each
sample that exceeds 90%.

3.2. Generating the Feature Tensor

Generation of the footprint feature tensor: As shown in Figure 6, the spatial connec-
tion method of ArcMap10.6 (Environmental Systems Research Institute, Inc., Redlands,
CA, USA) is first applied to connect buildings with intersecting parcels while obtaining
information of all buildings within a parcel. Next, the metrics are calculated according to
the statistical method. Finally, the feature vectors representing the building information
are generated.
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Generation of the POI feature tensor: As shown in Figure 7, the spatial connectivity
method is first implemented in ArcMap10.6 as it seeks to count the number of various POIs
in the neighborhood. Second, the type ratio of each unit is calculated on the basis of the
formula, and the type ratio value is used as a criterion to judge the functional nature of the
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neighborhood. Finally, feature vectors are generated to represent building information [39].
The calculation method is as follows:

Fi =
ni
Ni

(i = 1, 2, 3, · · · , 14) (1)

Ci =
Fi

∑14
i=1 Fi

(i = 1, 2, 3, · · · , 14) (2)

where i represents the type of POI, ni serves as the number of the i-th type of POI in the
block, Ni stands for the total number of the i-th type of POI, Fi acts as the frequency density
of the i-th type of POI in the total number of POIs of this type, and Ci represents the ratio
of the frequency density of the i-th type of POI to the frequency density of all types of POI
in the block.
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Figure 7. Generation of the footprint feature tensor.

Generation of the image feature tensor: When extracting the features of high-resolution
remote sensing images, instead of separately attaining the low-level semantic features,
such as texture, spectrum, and SIFT of the image, we take advantage of CNN to capture
high-level semantic features from images. Next, we will continue our research with respect
to the items of multi-modal network feature extraction and fusion in greater detail.

3.3. Feature Extraction and Feature Fusion

In this section, our team explores the details of the proposed deep multimodal fusion
network, laying a foundation for integrating remote sensing images with social-economic
attribute data. This encourages one to better recognize the urban region functions in
our study.

The illustration (Figure 8) below clearly unveils the overall architecture of the pro-
posed deep multimodal fusion network. The convolution structure has efficient feature
extraction and representation capabilities, so two identical convolutional branch structures
are employed here to obtain remote sensing image features and socioeconomic attributes,
respectively. The network φ is composed of three major parts, being the image encoder
and socioeconomic attribute encoder, the data fusion module, and the decoder of the
image and socioeconomic attributes. The network takes satellite images I and socioeco-
nomic attribute S as the inputs. The outputs are demonstrated by the predicted probability
distribution P over all the categories, i.e., p = φ(I, S). In particular, it is better to garner
the images and socioeconomic attributes data features with the assistance of encoder and
decoder structures. Moreover, the extracted features are further fused through the spatial
attention mechanism as well as the channel attention mechanism while being classified
by introducing the softmax layer after passing through the convolutional layer and being
fully connected. The key of the network is to learn a joint embedding space through two
attention mechanisms, such that the image and social-economic characteristics are able
to be well combined for prediction. Apart from the conventional cross entropy loss for
classification task, we propose an auxiliary loss.
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3.3.1. Feature Extraction

The network is an encoder–decoder backbone network with a residual network archi-
tecture and two convolution branches [40,41], i.e., the remote sensing image branch and
the socioeconomic attributes data branch. The backbone network, specifically designed
for conducting the diversity of remote sensing data and socioeconomic attribute data,
aims to integrate complementary information, alleviate the complexity of heterogeneous
information, and accomplish the purpose of classification.

Each branch encoder section utilizes a similar structure to the VGG16 [42]., with four
convolution blocks, each of which contains a convolutional layer with a kernel size of 3 × 3
with a rectified linear unit (Relu) and a batch normalization (BN). The second and fourth
blocks use a max-pooling layer of size of 2 × 2. The features extracted by the encoder are
divided into two channels; one is the decoder branch corresponding to the encoder branch
for reconstruction and the other is a fusion with the features garnered by other branch
networks. The extracted features are transferred to a module with an attention mechanism,
working to create an attention feature map for classification. Specifically, two methods need
to fuse the extracted features of two different patterns before sending them to the attention
module, i.e., concatenation and element summation. For concatenation, F =

[
FI , FS], and

F ∈ R2n. For the element-wise sum, F = FI + FS, and F ∈ Rn. The illustration of the two
fusion methods is shown in Figure 9. Furthermore, the fused feature x is then fed into the
attention module to create the attention feature map.
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Figure 9. Method of feature fusion: (a) feature cascade; (b) feature element-wise sum.

The structure of the decoder part is symmetrical with respect to the encoder part. First,
four deconvolution layers with 2 × 2 up-sampling are sequentially added at the end of the
encoder section. Second, the final layer is a single 2 × 2 deconvolution layer and the size
of the final output is equal to the input. We add these encoders’ features into the decoder
features using the skip concatenation function, enabling the decoder network to form finer
feature maps. Finally, the reconstructed data is exported.
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3.3.2. Feature Fusion

The features obtained after the convolution and pooling operations of the encoder
are of equal importance among the features. In addition, the convolutional and the fully
connected layer are expected to construct the feature space with the aim of completing the
classification of the similarity and measurability between the modal data task. This method
has been used previously [43,44]. However, for specific extraction and classification tasks,
the importance of the features of each channel is not the same, and the feature cannot be fully
concentrated on “where” is the most informative part and “what” is the most meaningful
input feature map during the interactive fusion. In order to avoid the influence of invalid
features on the network model, a channel and spatial attention module is embedded to
distribute the weight of spatial information and channel information [45]. Hence, we adopt
the channel and spatial attention module (Figure 10). Each branch could potentially learn
the “what” and “where” in the channel dimension and the spatial dimension separately,
thus effectively helping the information flow in the network.
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The intermediate feature map F ∈ RC×H×W acts as the input to infer the 1D channel
attention map Mc ∈ RC×1×1 and the 2D spatial attention map Ms ∈ R1×H×W , as illustrated
in Figure 10a. The overall attention process can be summarized as:

F′ = Mc(F)
⊗

F, (3)

F′′ = Mc
(

F′
)⊗

F′, (4)

where
⊗

represents element-wise multiplication and F′′ is the final attention output feature.
Channel attention: As shown in Figure 10b, the average pooling and maximum

pooling operations are first used to aggregate the spatial information of the feature map,
bringing about two different spatial context feature descriptions. Fc

avg, Fc
max respectively

serve as the average pool feature and the maximum pool feature. Next, these two features
go through a shared neural network. The number of neurons in the first layer is C/r, the
activation function is Relu, and the number of neurons in the second layer is C, as the neural
network parameters of the two layers are shared. After adding the two features gathered
through a Sigmoid activation function, the weight coefficient Mc ∈ RC×1×1 is grabbed.
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Finally, the weight coefficient and the original feature F are multiplied to obtain the scaled
new features. The channel attention is calculated as follows:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) = σ
(

W1

(
W0

(
Fc

avg

))
+ W1(W0(Fc

max))
)

(5)

where σ is the sigmoid activation function, W0 ∈ RC/r×C, W1 ∈ R C
r ×C is the weight of the

fully connected layer, and r is the compression ratio, using the Relu activation function to
process W0.

Spatial attention: As shown in Figure 10c, the average pooling and maximum pooling
operations are first used to aggregate the channel information of the feature map as it looks
to work out two 2D feature maps Fs

avg ∈ R1×H×W and Fs
max ∈ R1×H×W . Next, the two

feature descriptions to be spliced together are used according to the channel after a 7 × 7
convolutional layer, where the activation function is Sigmoid, and the weight coefficient Ms
is obtained. Finally, multiply the weight coefficient and the feature F′ to get the attention
feature. The spatial attention is calculated as follows:

Mc(F) = σ
(

f 7×7([AvgPool(F); MaxPool(F)]
)
) = σ

(
f 7×7

[
Fs

avg; Fs
max

])
(6)

where σ is the sigmoid activation function and f 7×7 is a convolution operation with a size
of 7 × 7.

Eventually, the fused features pass through both the convolutional layer and the fully
connected layer for the output classification.

3.4. Loss Function

Aiming to achieve an effective classification and make the network more robust to
missing patterns, two losses, the main loss and the auxiliary loss, are introduced to constrain
the network training. The major loss is the cross entropy Lce for the classification task. The
auxiliary losses, Lau, are used to complement the major loss in an attempt to increase the
model robustness with missing modalities. The overall loss is formulated as follows:

L = Lce + Lau (7)

Widely used in classification tasks, the cross-entropy loss is used to regularize the
network to learn from category labels. It can be formulated as follows:

Lce = −∑
i

C

∑
k=1

yi,k log(pi,k) (8)

where yi,k and pi,k are the ground truth label and predicted probability value of class k for
the i-th sample, respectively, and C is the total number of classes.

The auxiliary loss is the mean square error (MSE) loss, which is mainly employed to
rein in the extracted features to be more representative through the loss triggered by the
reconstruction. It can be formulated as follows:

Lau = LI
re + LS

re (9)

LI
re =

1
N

N

∑
I=1

(
Ii − RI

i

)2
(10)

LS
re =

1
N

N

∑
I=1

(
Si − RS

i

)2
(11)
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where LI
re and LS

re denote the remote sensing image and socioeconomic attribute data
structure losses, respectively, with RI and RS being the reconstructed remote sensing image
and socioeconomic attribute data, respectively.

4. Experiments
4.1. Experimental Setup

The experiments were performed on a Windows Operating System, using CPU (AMD
Ryzen 9 5950X 16-Core 3.4 GHz), RAM (64 GB), and GPU (NVIDIA GeForce RTX 3080Ti
12 GB). Additionally, the deep-learning framework favored TensorFlow1.14. The hyper-
parameters of momentum and epsilon in the batch normalization function were set as
0.95 and 1 × 10−5, respectively. The adaptive moment estimation (Adam) algorithm was
engaged in optimizing all models. The batch size was set as 64. Meanwhile, the maximum
training iteration is set to 100 epochs. The cross-entropy function and mean squared error
was sorted out as the loss function. All models were trained at once until the training
loss converged.

The models can theoretically take images with an arbitrary size as input. However,
the available memory is limited, and all input within a batch must have the same shape.
Our method is based on CNN patches, so we processed the block into patch data that
could be fed into the network for computation. Nevertheless, different functional areas
possess different object compositions and spatial scales. Only one sort of objects develops
in the window when the patch is too small, which fails to demonstrate the complexity of
the functional area. Conversely, when the patch is too large, objects belonging to other
functional areas will presumably be embodied in the patch. To accomplish the task of
functional area identification, our team takes the smallest one as the reference basis for
patch processing, where 725 functional blocks of study area 1 have been processed, with 205
in study area 2 (as shown in Table 1). Therefore, 71,000 patch images of size 32 × 32 were
cropped from study area 1 and 20,500 were cropped from study area 2, where cropping was
done by sliding the patch window with no overlap and cropping randomly to maintain the
diversity of training samples. Ultimately, the data are divided at random into a training set
and a test set at a ratio of 4:1.

Table 1. Number of functional blocks (A: Residential area, B: Administrative office land, C: Land
for education and scientific research, D: Sports and leisure land, E: Land for Commercial Plaza,
F: Commercial office land, G: Medical and health land, H: Industrial land, I: Land for transportation,
J: Park green space, K: waters, L: Area to be constructed, M: Commercial residential land).

Name A B C D E F G H I J K L M SUM

Area_1 291 27 56 6 74 93 25 23 14 44 16 61 5 725
Area_2 47 3 17 24 18 5 3 46 6 9 3 13 11 205

It can be observed that when using the model for urban functional area identification,
the original test image is first partitioned into small patches, and then, the predicted patches
are concatenated into a final complete classification result. Obviously, the classification of
patch images only acts as an intermediate stage in the classification process of urban func-
tional area identification. Consequently, to evaluate the accuracy, the object of evaluation is
actually not the small pieces directly output by the recognition model, but the complete
classification result that eventually corresponds to the whole original test image.

4.2. Evaluation Metrics

To evaluate the classification results, our team resolves to embrace overall accuracy,
the Kappa coefficient, and the F1 score as evaluation metrics. All of them can be computed
by calculating the confusion matrix, which forms an informative table, allowing a direct vi-
sualization of the performance on each class, as well as analyzing the errors and confusions
between different classes easily. OA is defined as the number of correctly classified data
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divided by total test data, which is the most intuitive measure to reveal the classification
performance on the test data as a whole. Kappa is thought to be a more robust measure
than a simple percent agreement calculation because it takes into account the possibility
of the agreement occurring by chance. The F1 score, an effective metric for the categorical
accuracy, is the weighted average of precision and recall. The aforementioned precision is
the ratio of correctly predicted data to the total predicted data along with the recall, the
ratio of correctly predicted data to all data in the actual label. The formulas are as follows:

Overall accuracy: p0 =
n

∑
i=1

xii
N

(12)

Kappa coefficient: K =
p0 − pe

1− pe
(13)

F1 score: F1i =
2piri

pi + ri
(14)

AverageF1 score: F1 =
1
n

n

∑
i=1

F1i (15)

where xii denotes the element of the i-th row and the j-th column in the confusion matrix,
i.e., pe = ∑n

i=1

(
∑n

j=1 xi,j ∑n
j=1 xj,i

)
/N2 , the number of samples of class i that is predicted

to be in class j, n stands for the number of classes, and N serves as the total number of
all the samples. pi and ri represent the precision and recall score of class i, respectively,
pi = xii/ ∑n

j=1 xij, ri = xii/ ∑n
j=1 xji. F1i measures the classification result of a certain class i.

The average F1 score (F1) constitutes the average of all the F1 scores of different categories.

4.3. Experimental Results and Analysis
4.3.1. Results of the Network Model

We propose a multimodal deep learning fusion framework in preparation for the
identification of urban functional areas using remotely sensed images and socioeconomic
attribute data. The remote sensing images can extract the semantic features of low-level
regional spatial distribution. Further, high-level semantic features of human economic
activities show up through the analysis of social perception data. In general, they all
reflect the use of functional areas from a certain perspective. By changing the input,
different results can be obtained, depending on our framework. The overall classification
outcomes of Area_1 and Area_2, as well as the results for each category, are presented in
Tables 2 and 3, respectively.

Table 2. Overall classification results and per category results for Area_1. (I: image, F: building
footprint, P: points of interest).

Name A B C D E F G H I J K L M OA AA Kappa Avg.F1

I 56.98 36.30 31.83 65.17 44.94 40.42 7.42 29.81 42.70 60.65 96.23 68.10 43.06 61.83 51.69 73.50 29.69
I + F 60.33 49.17 10.26 65.01 31.50 34.71 6.59 37.82 66.76 21.98 97.76 60.89 48.30 58.84 49.36 71.45 30.54
I + P 96.24 88.36 95.97 99.89 98.84 96.88 53.56 96.12 79.82 82.49 94.41 67.80 99.98 91.26 89.31 90.57 86.46
I + P
+ F 96.86 91.00 96.54 99.94 97.91 86.75 72.14 97.46 97.42 71.38 94.07 75.88 99.98 93.55 91.24 91.26 88.46

Table 3. Overall classification results and per category results for Area_2. (I: image, F: building
footprint, P: points of interest).

Name A B C D E F G H I J K L M OA AA Kappa Avg.F1

I 58.33 35.26 63.09 76.59 59.45 43.95 42.45 66.27 56.01 58.20 91.20 59.61 46.86 71.64 61.23 79.39 45.85
I + F 66.86 53.15 70.03 77.52 63.13 58.35 55.19 73.10 63.53 48.34 91.89 69.81 54.73 76.39 67.54 82.40 56.92
I + P 95.88 66.30 98.13 84.24 86.56 77.97 92.61 87.85 78.65 67.15 89.28 76.40 87.40 91.95 84.89 93.02 83.23
I + P
+ F 96.97 70.73 98.12 85.62 87.29 77.59 93.13 88.44 83.02 75.97 92.29 78.52 85.67 92.76 86.67 93.52 84.77
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As can be seen from Tables 2 and 3, the recognition accuracy is above 50% when
using remote sensing images alone for functional area identification. The accuracy of
study area 2 is higher than that of study area 1, mainly because of the simple structural
composition of the functional areas. It is evident that our network enjoys some stability
in the old urban areas with dense functional areas and the new urban areas with sparse
functional areas.

When adding building footprint data, the overall accuracy of study Area 1 is decreased
to 2%, with the accuracy of study Area 2 increasing to 4.75%. Since several differences vary
in the building composition of functional areas, after the building footprint data have been
attached, the identification accuracy of residential, education and research, administrative
office, and commercial and industrial areas has been going through some improvement,
and the increase of Research Area 2 reaches more than 6%. In terms of park green areas,
building footprints are originally physical information shown by artificial features, and
the structural composition of park green areas is simple, so it is convenient to procure this
physical attribute information from remote sensing images. The step of adding building
data is helpful for areas with large differences in building composition, such as residential
areas, but data redundancy emerges with regard to park green space recognition, thus
continuously impinging upon the recognition effect. In our experiments, the recognition
accuracy of park green areas in study area 1 and study area 2 was significantly mitigated
with the aid of building footprint data, with the reduction exceedingly more than 9%.

Unlike building footprint data, POI data showcases high-level semantic information
tightly related to human economic activities. When POI data is added, the overall accuracy
of study area 1 is boosted an impressive 29%, with the F1 score rising up considerably to
56%. At the same time, the overall accuracy of study area 2 increases to 20%, with the F1
experiencing an increase of 37%. Compared with the former, the latter is not improved
as significantly as study area 1, which further upholds that the complete POI data better
encourages urban functional area identification.

The noteworthy point is that employing building footprint data provokes some data
redundancy in recognition concerning functional areas with simple compositions such
as parks and green areas, but can enhance the corresponding physical features, as well
as improve the recognition effect in terms of the regions with significant differences in
building composition, such as residential and commercial areas. For this reason, we
took remote sensing images, building footprint data, and POI data as input and further
explored the social perception data contribution in urban functional areas. The overall
accuracy is improved by 2% relative to remote sensing images and POI data input, as
seen in Tables 2 and 3. In comparison to a single satellite image, many refinements have
been seen in the recognition effect with the assistance of socioeconomic attribute data,
which further underline the importance of social perception data in regional function
recognition applications.

By conducting experiments in two study areas, we set forth two main objectives: (1) to
investigate the influence of social perception data on the identification of urban functional
areas by adding corresponding multimodal data; and (2) to investigate the impact of the
completeness of social perception data on functional area identification by setting up two
study areas, new and old.

4.3.2. Results of the Proposed Method and Compared Methods

In order to compare the classification performance, SVM, ResNet-18, FCN, MLP, and
3D-Densenet are selected to perform the classification in this study. It is acknowledged that
the traditional methods designed to meet the needs of feature extraction and classification
of high-resolution images, especially for complex urban cities, only consider shallow
information. When fitting in the data with high-level semantic information, such as
socioeconomic data, the traditional method fails to make the features interact with each
other as it works to complete the classification work. Therefore, if one kind of data was
missing, the classification effect would be profoundly disturbed. With respect to deep
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learning, this method effectively helps the features to interactively be fused with each
other, thus making up for the effects generated by the missing data, and accomplishing the
classification task. However, the features incautiously neglect some key features when they
are cross-fused, but classify all the features after cross-fusion, which presumably gives rise
to the redundancy of information features, as well as imposes an impact on the recognition
effect. Due to this, we specify five comparison methods from three aspects to explore the
reliability of our method: (1) classification based on direct feature extraction by traditional
methods; (2) feature fusion classification based on deep learning; and (3) feature fusion
classification based on deep learning by an attention mechanism.

A comparison of the overall accuracy, kappa, and F1 score of the five methods can
be found in Table 4. From the table, it is obvious that the traditional method, SVM, does
not take the feature interaction problem into account, potentially leading to the absence
of the recognition effect, with the overall accuracy turning up at 69.51% and the kappa
scoring 60.05%. Multi-layer perceptron layers are fully connected to each other. To avoid
overfitting, we use three hidden layers in our experiments. Compared with the SVM,
the overall accuracy of the study area 1 is improved by 2.64%, with a kappa of 3.65%
and F1 score of 3.69%. Meanwhile, the overall accuracy of study area 2 is improved by
4.39%, with the kappa getting to 5.21% and the F1 score reaching 9.31%. The FCN uses
convolutional layers for feature extraction, which enjoys a better feature extraction ability
compared to the multilayer perceptron. The table below clearly reveals that study area 1
has an overall accuracy of 79.66%, a kappa of 74.05%, and an F1 score of 62.62%, while
study area 2 bears an overall accuracy of 86.60%, a kappa of 70.58%, and an F1 score of
74.92%. Convolutional networks or fully connected networks will suffer from information
loss and attrition when passing information, constantly causing gradient disappearance or
gradient explosion, which is about to result in very deep networks that cannot be trained.
However, Resnet solves this problem, to some extent, by introducing a skip-connected
structure that efficiently protects the integrity of the information through directly driving
the input information around to the output. As a result, study area 1 shows an overall
accuracy of 86.80%, a kappa of 83.07%, and an F1 score of 73.69%. Study area 2 expresses
an overall accuracy of 84.16%, a kappa of 50.47%, and an F1 score of 66.31%. Resnet
mainly uses the repetition of the original data features only, and the completeness of the
data does exert a certain influence on the recognition results, which corresponds to our
previous experimental outcomes. This is also the reason why the recognition accuracy of
Resnet is lower than that of FCN. In addition, compared to the ResNet, 3D-DenseNet is
expected to exploit a more aggressive dense connectivity mechanism: interconnecting all
layers. Specifically, each layer accepts all its preceding layers as its additional input. The
essence of fusion is supposed to remove redundancy and increase the amount of predictive
deterministic information by putting two or more feature maps through some sorts of
computation. However, the large heterogeneity of multimodal data seemingly contributes
to a reduction in recognition performance that is also begotten by the inability to focus
more on the main features during interactive fusion. Based on the above approach, our
method adopts the encode–decode idea, uses a similar skip structure as Resnet, uses an
attention mechanism to focus on the main features during feature fusion, and uses two
losses to impose control on the discrepancy. After enduring the extensive experiments, our
method achieves a better performance. Study area 1 has an overall accuracy of 93.65%, a
kappa of 91.36%, and an F1 score of 89.54%. Study area 2 has an overall accuracy of 93.27%,
a kappa of 93.84%, and an F1 score of 86.00%.
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Table 4. Overall classification results of the compared methods.

Method
Area_1 Area_2

OA Kappa Avg.F1 OA Kappa Avg.F1

SVM 69.51 60.05 54.77 72.06 66.24 47.08
MLP 72.15 63.70 58.46 76.45 71.45 56.39
FCN 79.66 74.05 62.62 86.60 70.58 74.92
3D-

Densenet 76.88 69.44 59.46 73.61 43.00 34.85

Resnet 86.80 83.07 73.69 84.16 50.47 66.31
ours 93.65 91.36 89.54 93.27 93.84 86.00

The classification accuracy of each category is shown in Tables 5 and 6; our method
possibly does not reap the best realization in all categories, but our method is the best
in general. The visualization results of all compared methods are shown in Figure 11.
Combined with the qualitative results in Figure 11, the traditional method, SVM, without
involving the modal interaction fusion problem achieves an accuracy of 97.74% and 93.57%
for regions lacking socioeconomic attribute data such as water. The multi-layer perceptron
takes heed of the modal interaction problem, practically promoting the performance in
areas with social attribute data such as residential and commercial areas compared to SVM.
The superiority of convolutional layers not only lies in feature extraction but also in feature
fusion. The above illustrates why FCN performs better than MLP. Although Densenet, in
reusing features, places a great impact on the overall classification performance due to the
large heterogeneity of multimodal data, a better classification performance of 93.73% and
98.67% was achieved for health care and industrial sites in study area 1. Resnet, unlike
Densenet, employs a residual structure on the upper layer of features, allowing a better
interactive fusion of multimodal data. In short, the results from study areas 1 and 2 show a
greater improvement compared to 3D-Densenet. As claimed by the visualization results,
our method has witnessed a more advanced performance in the identification of urban
functional areas.

Table 5. Per category results for Area_1. The best results are highlighted in bold.

Name A B C D E F G H I J K L M Avg.F1

SVM 69.30 32.50 63.22 97.54 56.30 45.19 54.30 45.86 87.51 66.28 97.74 39.86 96.50 54.77
MLP 72.34 84.95 74.52 97.27 60.05 41.32 73.80 62.35 72.30 52.77 88.26 43.72 99.58 58.46
FCN 88.87 29.03 52.97 99.36 79.33 72.68 55.76 90.72 77.91 52.85 50.56 55.81 84.08 62.62

3D-Densenet 73.33 58.27 81.56 95.67 90.13 93.73 98.67 77.13 88.94 79.75 44.48 55.53 89.36 59.46
Resnet 94.43 32.35 67.47 90.80 93.50 93.32 69.66 78.98 81.19 68.06 68.51 75.81 51.00 73.69
ours 94.23 83.26 90.60 99.93 99.51 83.48 90.55 97.31 98.07 81.56 96.36 81.78 99.99 89.54

Table 6. Per category results for Area_2. The best results are highlighted in bold.

Name A B C D E F G H I J K L M Avg.F1

SVM 58.23 58.70 63.88 69.40 58.67 52.04 60.36 68.35 58.06 52.00 93.57 65.16 55.07 72.06
MLP 67.29 61.39 70.77 76.41 70.08 64.35 40.68 72.18 53.59 50.47 89.64 65.03 53.68 76.45
FCN 79.63 56.43 97.03 81.96 83.44 66.89 95.27 81.52 73.37 70.59 92.03 74.52 64.17 86.60

3D-Densenet 75.59 6.21 80.90 80.24 38.45 75.47 33.83 57.17 60.57 —— —— 38.16 47.57 73.61
Resnet 87.80 0.10 81.73 63.86 95.91 92.67 93.34 84.72 70.26 50.65 85.57 76.52 58.91 84.16
ours 96.83 77.06 98.47 86.30 88.07 83.69 92.71 88.89 87.13 73.86 93.16 80.28 89.01 86.00
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5. Discussion

In this part, we discuss two main points: (1) the existence of social perception data
and the impact of social perception data of different urban structures on the identification
of urban functional areas; and (2) the stability of the method from different fusion methods
and fusion stages.

5.1. Discussion of Social Perceptual Data Presence and Urban Structure Implications

The results of our experiments have been clearly shown in Tables 2 and 3. Including
social perception data in the research has a strong comparative advantage over only using
remote sensing images in identifying urban functional areas, with the overall accuracy
obtaining an improvement greater than 20%. The composition of urban functional areas is
not only characterized by natural physical attributes, but also by human socioeconomic
activities. Therefore, it is relatively difficult to accomplish accurate results by only relying
on natural features without taking into account the fact that social perception data matters
in the recognition task. Given that study area 1 and study area 2 are at different levels
of development phases, and have thus formed different structural compositions of urban
functional areas, apparent differences exist in social perception data. A better performance
in the recognition effect has been witnessed in study area 1 compared with study area 2,
according to the aforementioned outcomes in Tables 2 and 3. It is further verified that the
urban spatial structure of areas with high levels of urban development can provide more
useful information in the identification task.

5.2. Discussion of Method Stability
5.2.1. Ablation Study of Loss Functions and Attention Mechanisms

For the multimodal data in study region 1, the proposed network in this paper gives
the best overall results with the attention module and the auxiliary loss. The purpose of
the auxiliary loss is to maximize the features of both data sources, making them more
representative, while the attention mechanism is to focus on the main features with the
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suppression of unnecessary features, thus allowing a better integration of the extracted
features. As shown in Table 7, the overall performance increases the accuracy rate by 2.41%
compared to the loss-only case.

Table 7. Ablation study of loss functions and attention mechanisms. The best results are highlighted
in bold (Area_1).

Auxiliary Loss Attentional
Mechanisms Accuracy Kappa Avg.F1

l # 91.24 91.26 88.46
# l 91.96 90.74 89.72
l l 93.65 91.36 89.54

l means use this module, # means do not use this module.

5.2.2. Comparison of Different Stages of Feature Fusion

The proposed feature-level (early) fusion method and the baseline decision-level (late)
fusion method are shown in Figure 12a,b, respectively. From Table 8, it is obvious that the
classification results of late fusion are significantly higher than those of early fusion, with
the accuracy rate being raised more than 18% in both study area 1 and study area 2. Early
fusion is performed at the feature level, where the features extracted from two different
data sources are fused as the final classifier is trained, while in the latter one, a fusion
classification evidently showcases the classification outcomes. Compared to early fusion
methods, late methods are easily interpreted because the prediction scores of unimodal
classifiers are much easier to extract before the decision fusion as it seeks to give weight
to direct measurement of the contributions of different input data, thus predicting the
classification results of the target in a more accurate way.

Buildings 2022, 12, x FOR PEER REVIEW 19 of 22 
 

urban spatial structure of areas with high levels of urban development can provide more 
useful information in the identification task. 

5.2. Discussion of Method Stability 
5.2.1. Ablation Study of Loss Functions and Attention Mechanisms 

For the multimodal data in study region 1, the proposed network in this paper gives 
the best overall results with the attention module and the auxiliary loss. The purpose of 
the auxiliary loss is to maximize the features of both data sources, making them more 
representative, while the attention mechanism is to focus on the main features with the 
suppression of unnecessary features, thus allowing a better integration of the extracted 
features. As shown in Table 7, the overall performance increases the accuracy rate by 
2.41% compared to the loss-only case. 

Table 7. Ablation study of loss functions and attention mechanisms. The best results are highlighted 
in bold (Area_1). 

Auxiliary Loss Attentional 
Mechanisms 

Accuracy Kappa Avg.F1 

● ○ 91.24 91.26 88.46 
○ ● 91.96 90.74 89.72 
● ● 93.65 91.36 89.54 

● means use this module, ○ means do not use this module. 

5.2.2. Comparison of Different Stages of Feature Fusion 
The proposed feature-level (early) fusion method and the baseline decision-level 

(late) fusion method are shown in Figure 12a,b, respectively. From Table 8, it is obvious 
that the classification results of late fusion are significantly higher than those of early fu-
sion, with the accuracy rate being raised more than 18% in both study area 1 and study 
area 2. Early fusion is performed at the feature level, where the features extracted from 
two different data sources are fused as the final classifier is trained, while in the latter one, 
a fusion classification evidently showcases the classification outcomes. Compared to early 
fusion methods, late methods are easily interpreted because the prediction scores of uni-
modal classifiers are much easier to extract before the decision fusion as it seeks to give 
weight to direct measurement of the contributions of different input data, thus predicting 
the classification results of the target in a more accurate way. 

  

(a) (b) 

Figure 12. Different stages of integration: (a) early fusion; and (b) late fusion. 

Table 8. Comparison of testing results with different fusion methods. 

Region Fusion Method 
Metric 

Accuracy Kappa Avg.F1 

Area_1 
Early fusion 65.78 72.52 47.85 
Late fusion 91.24 91.26 88.46 

Area_2 
Early fusion 68.60 79.34 47.54 
Late fusion 86.67 93.52 84.77 

Figure 12. Different stages of integration: (a) early fusion; and (b) late fusion.

Table 8. Comparison of testing results with different fusion methods.

Region Fusion Method
Metric

Accuracy Kappa Avg.F1

Area_1
Early fusion 65.78 72.52 47.85
Late fusion 91.24 91.26 88.46

Area_2
Early fusion 68.60 79.34 47.54
Late fusion 86.67 93.52 84.77

5.2.3. Comparison of Different Fusion Methods

In our experiments, illustrated in Table 9, a comparison between two study areas was
made for the results of using different fusion methods (Figure 9), i.e., series and element-by-
element summation. It can be observed that there is no significant difference between the
test results between the two fusion methods, since almost all the variations of the obtained
metric are close to 1%. This indicates that the choice of fusion methods employed in the
proposed deep multimodal fusion network is of no great importance in assembling the
experimental dataset.
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Table 9. Comparison of testing results with different fusion methods. The best results are highlighted
in bold.

Region Fusion Method
Metric

Accuracy Kappa Avg.F1

Area_1
concat 91.24 91.26 88.46
sum 90.14 91.37 87.62

Area_2
concat 86.67 93.52 84.77
sum 87.91 93.70 85.69

6. Conclusions

The feature forms and semantic features possessed by remote sensing data and social
perception data differ. How to make full use of the low-level semantic information related
to remote sensing and high-level semantic information of social perception data is the key
to improve the recognition accuracy of urban functional areas. In this paper, based on
the advantage of feature extraction and expression of deep convolutional networks, we
propose a framework to complete urban identification by fusing satellite images, POI, and
building footprint data. This framework, compared with other modeling methods, achieves
the feature fusion process by leveraging a multi-branch network structure with an attention
mechanism that can focus attention on the most informative part of the most meaningful
feature map, such that the semantic attributes of the input features can be fully expressed.

In terms of the method, this paper makes the convolutional structure extract as many
features as possible by constructing a loss function, but not all features have the same im-
portance, which may increase the computational burden of the network to some extent. The
attention mechanism introduced in this paper strengthens the recognition ability by giving
a large weight to the main features during feature fusion, but the attention mechanism
may not be fully utilized compared to the network as a whole. The experimental results
show that the model recognition ability is greatly improved by adding socially perceptive
data. However, some problems that need to be further solved still exist. For example, the
recognition effect is not significantly improved after adding building outline data, to some
degree, influencing the accurate recognition of some functional areas. Presumably, the main
reason for this is that the building footprint data that inherently exhibit is physical attribute
features, invoking a data redundancy problem and impacts the recognition performance.

In future work, we will first fully explore the application of social perception data in
urban function recognition, such as street view. Second, for the construction of the method,
we will take the suitable feature extraction method from the data’s own characteristics as
much as possible, as well as make the network simpler and easier to reproduce to the fur-
thest extent. Finally, our method has been proved to be effective for the analysis of Ningbo,
but its adaptability to other regions in China and the world needs further validation.
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