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Abstract: With the acceleration of urbanization throughout the world, climate problems related
to climate change including urban heat islands and global warming have become challenges to
urban human settlements. Numerous studies have shown that greenways are beneficial to urban
climate improvement and can provide leisure places for people. Taking the coastal greenway in
Qingdao as the research object, mobile measurements of the microclimate of the greenway were
conducted in order to put forward an evaluation method for the research of outdoor thermal comfort.
The results showed that different vegetation coverage affected the PET (physiologically equivalent
temperature), UTCI (Universal Thermal Climate Index) as well as thermal comfort voting. We
found no significant correlation between activities, age, gender, and thermal comfort voting. Air
temperature sensation and solar radiation sensation were the primary factors affecting the thermal
comfort voting of all sections. Otherwise, within some sections, wind sensation and humidity
sensation were correlated with thermal sensation voting and thermal comfort voting, respectively.
Both PET and UTCI were found to have a negative correlation with the vegetation coverage on both
sides of the greenway. However, the vegetation coverage had positive correlation (R = 0.072) for
thermal sensation and significant positive correlation (R = 0.077*) for thermal comfort. The paved
area cover was found to have a positive correlation with PET and UTCI, while having a negative
correlation with thermal sensation (R = −0.049) and thermal comfort (R = −0.041). This study can
provide scientific recommendations for the planning and design of greenway landscapes to improve
thermal comfort.

Keywords: outdoor thermal comfort; microclimate; greenway; mobile measurement

1. Introduction

Climate problems caused by climate change including the urban heat island (UHI)
effect [1] and global warming have become global issues in human settlements with the
acceleration of urbanization around the world. Numerous studies [2–4] have established
that UHIs can jeopardize the thermal comfort and health of urban residents. Climate
change has reduced people’s willingness to engage in outdoor public activities, but their
desire for access to nature has not diminished. Coastal cities face the same problems of
UHIs and extreme climates as inland cities. Based on this background, scholars [5–7] have
started to conduct climate studies in coastal cities, however, urban planners still face a lack
of scientific evidence for landscape and urban planning in the built environment due to a
lack of the comprehensive evaluation of thermal comfort.
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Greenways have been regarded as a critical natural resource for enhancing the qual-
ity of the built environment and alleviating urban climate issues including UHIs [8–12].
Therefore, they were developed in response to urban climate concerns and the dearth of
public space in cities as they can connect nature and human settlements to help resolve
environmental problems [13–16].

In China, the research of greenways is in its infancy. Current research on coastal
greenways in China tend to focus on the southern coastal provinces with a subtropical
monsoon climate such as Guangdong Province. For example, J. Y. Wu et al. [17,18] evaluated
the Guangdong Zengcheng Greenway and analyzed the design strategy of its agricultural
landscapes. L. P. Hong et al. [19] studied the Guangdong Dongguan Greenway as a new
path to explore coordinated urban–rural development under the low-carbon model. Z. Liu
et al. [20] investigated the greenway planning in the Pearl River Delta region of Guangdong.
W. X. Chi [21] researched the use of community greenways in high-density residential
areas in Guangzhou. However, most of the above studies mainly focused on the design
and planning strategies or ecological and landscape evaluation of greenways in coastal
cities, and paid less attention to the microclimate of greenways, which can influence human
thermal comfort to a very large extent. In addition to the above, coastal cities in northern
China also have a suitable environment for the construction of greenways, but greenways
are less developed compared to southern cities, while relevant research and case studies
are insufficient.

Moreover, it is difficult to define effective microclimatic regulation strategies for all
applications because of the particular characteristics of various cities. Therefore, in this
study, we chose a coastal greenway in Qingdao, Shandong Province, a coastal city in
northern China with an oceanic temperate monsoon climate, as the research object. The
study aimed to present an evaluation method of microclimate and outdoor thermal comfort
through measurements of the microclimate of the pedestrian walkway and its surrounding
landscape. By applying the correlation analysis of outdoor thermal comfort and landscape
characteristics, the study can provide scientific recommendations for the planning and
design of greenways as well as guidance for the construction of urban coastal greenways in
the northern coastal cities of China, and even similar climatic zones around the world.

Currently, the most commonly used microclimate measurement method is fixed
weather stations, but it also presents limitations associated with the demand for a large
number of equipment and operators to acquire the data synchronously. The mobile mea-
surement (also known as the mobile observation method or the mobile survey) is a mea-
surement method that has used in the field of urban meteorology to study the urban heat
island effect and urban microclimate in recent years [22,23]. A. Sundburg [24] first invented
it when he conducted an empirical study of heat island intensity. A. Qaid et al. [25] also
conducted the mobile measurement in order to investigate the UHI phenomenon and
outdoor thermal comfort on a micro-scale in various areas of a planned city. S. A. Zaki
et al. [26] used a motorcycle equipped with a datalogger to conduct mobile measurements
within the target area at night in order to investigate the urban morphological impact of
Kampung Bara on the UHI. S. Tondini et al. [27] demonstrated a low-cost cloud-connected
mobile monitoring platform for urban microclimate data. S. Y. Chan et al. [28] used mobile
measurements to study the effects of microclimate and thermal comfort in urban parks.
B. J. He et al. [29] studied the precinct ventilation and its associated influences on UHI
effects and outdoor thermal comfort via the mobile measurement. Thus, these studies
confirmed the validity of mobile measurements for UHI, microclimate, and thermal comfort
studies in urban outdoor spaces including urban parks, communities, micro-scale urban
spaces, etc. Taking into account the features of the selected cases, the mobile measurement
was used for the microclimate data collection in this study.

PET (physiologically equivalent temperature) and UTCI (Universal Thermal Climate
Index) are objective outdoor thermal comfort indicators widely used internationally. PET is
the physiologically equivalent temperature based on the two-node model in a given envi-
ronment, and its value is equal to the temperature corresponding to the outdoor equivalent
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thermal state under typical indoor conditions [30]. UTCI is a climate index developed by
the International Society for Biometeorology based on the multi-point thermal regulation
model by Fiala, which can be used for extreme climate forecasting and urban climate
studies [31]. In recent years, many studies [32–36] have found that they can be effectively
applied in several outdoor thermal comfort studies in Asian countries and regions includ-
ing China. For these reasons, PET and UTCI were chosen as the main objective outdoor
thermal comfort indexes in this paper, and were calculated by the software Rayman Pro [37]
based on the measured microclimate data (Appendix A).

2. Methods
2.1. The Site
2.1.1. Climatic Background of the City

The research was conducted on the Laoshan District Coastal Walkway in Qingdao City,
Shandong Province, People’s Republic of China. Qingdao is a coastal city in China, located
in the southeast of the Shandong Peninsula (Figure 1). It has a maritime temperate monsoon
climate. As a coastal city, Qingdao’s climate is strongly influenced by the sea, with humid
air, abundant rainfall, moderate temperatures, and distinct seasons. Its annual average
temperature is approximately 12 degrees, and its annual average rainfall is approximately
660 mm. From July to September, the climate is relatively warm, with August being the
hottest month of the year, with an average whole-day temperature of 27.5 degree (Figure 2).
In comparison to other inland areas of China, Qingdao is cooler in the summer, with few
days exceeding 30 degrees, but due to the high humidity, residents here feel muggy. As a
result, the study focused primarily on the microclimate and thermal comfort of people on
the greenway during the summer.
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Figure 2. The meteorological analysis chart of monthly average temperature in Qingdao in 2021 (the
meteorological information is cited from the Qingdao Meteorological Bureau).
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2.1.2. The Measured Site

The Qingdao Coastal Recreation Walkway System spans the two administrative dis-
tricts of Shinan and Laoshan in Qingdao City, beginning at Tuandao Ring Road in the west
and ending at Shilaoren Beach in the east. With a total length of approximately 36.9 km,
it connects Badaguan Scenic Area, May Fourth Square, Shilaoren Beach, and other major
tourist attractions in Qingdao; the Laoshan District Coastal Walkway is an integral part
of the Qingdao Coastal Recreation Walkway System, with a total length of approximately
8 km. It begins in the west at Yinhai Amusement Park and ends in the east at Shilaoren
Beach (Figure 3). From a functional standpoint, the Laoshan District Coastal Walkway can
be defined as a coastal recreational greenway in Qingdao, as it is located on the Qingdao
coastline and utilizes the landscape and slow walking trail system to connect important
tourist and leisure attractions along the Laoshan District’s coast.
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Coastal Walkway.

In this study, we selected the Maidao Road to Haiyou Road section as the specific
measured object because it is 1.5 km long, has the highest pedestrian flow, and is the most
representative and richer landscape node type in the Laoshan District Coastal Walkway
(Figure 3). Simultaneously, the selected sample plots were subdivided into nine sample
sections denoted by the letters A to I, according to the different landscape nodes, and the
microclimate parameters were investigated using field measurements.

The measured site was divided into nine sections, numbered from A to I, based on
the location of various landscape nodes (Figure 4). Section A is adjacent to Maidao Road
and serves as the entrance, which is densely forested and offers numerous recreational
opportunities. Section B is a Miscanthus trail, with a predominance of ornamental grasses.
Section C is a seaside square with less vegetation and a heavy reliance on hard pavement.
Section D is a shrub trail with a predominance of dwarf shrubs. Section E is a trestle bridge
over the sea; the site is devoid of vegetation and primarily composed of wood pavement.
Section F is a soil slope landscape area characterized by undulating terrain and sparse
vegetation cover. Section G is a reef landscape area, with gravel and reefs dominating the
site. Section H is a sparse forest and grassland with an open visual field and abundant
vegetation. Section I is a recreational plaza that is lightly vegetated, with recreational
pavilions and other service facilities located throughout the site.

According to the field visit and the Google satellite map of the site, we calculated the
vegetation coverage ratio [38] and the paved area coverage ratio by using the measurement
function of the software AutoCAD and ArcGIS (Table 1).
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Table 1. Vegetation coverage, and paved area coverage of each section.

Section No. A B C D E F G H I

Vegetation
Coverage 0.578 0.896 0.192 0.530 0.130 0.400 0.450 0.400 0.300

Paved Area
Coverage 0.422 0.104 0.808 0.470 0.870 0.536 0.402 0.600 0.700

2.2. Microclimate Measurements
2.2.1. Date, Time, and Specific Methods of Measurement

Summer in Qingdao typically lasts from July through September. Based on our pre-
survey and visits to the selected site, we found that the number of visitors to the site
is higher in early September, since the colleges nearby start their new academic year in
September, which means that more interviewees can be recruited. Therefore, according to
the city’s climate, the pre-survey of the selected site and the situation of visitors, we chose
to conduct the experiment on 11 September (Saturday) and 12 September 2021 (Sunday).
Meanwhile, by observing the frequency of people using the greenway throughout the day
in the pre-survey, 9:00 and 9:30, 12:00 to 12:30, and 16:00 to 16:30 were chosen as the specific
experimental times.

On the day of measurement, a researcher was set up with dataloggers and a GPS
device to collect microclimatic parameters along a pre-planned route of 1.5 km (Figure 5)
including air temperature, relative humidity, wind speed, and solar radiation. Throughout
the mobile survey, the researcher moved at a uniform speed during the selected time period
(9:00 to 9:30, 12:00 to 12:30, and 16:00 to 16:30), in order to investigate the changes in the
microclimatic parameters under different sections of the site at the three time periods. In
this study, the researcher conducted the measurements in each section (A to I) consecutively,
and cluster analysis [39] was performed on the original data in order to reduce errors.

2.2.2. Measurement Equipment

Microclimate weather data were collected using the Kerel 5500 handheld weather
station and the TES-1333R solar power meter (Figure 6), and the researcher dynamically
monitored changes in air temperature, humidity, wind speed, and solar radiation at a height
of 1.5 m above the ground. The TES-1333R solar power meter features automatic data
access and is compatible with RS232 data transmission. Additionally, the researcher wore a
GPS positioning device or carried and activated the GPS positioning service function on a
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smart phone during the actual measurement, and recorded the actual measured movement
path and GPS positioning data in real-time. All instruments were set to switch on and
off automatically at the same time, and to store data automatically every 2 s in advance.
Table 2 shows the equipment’s specifications as well as its main parameters.

Buildings 2022, 12, x FOR PEER REVIEW 6 of 23 
 

 

Figure 5. A researcher monitoring microclimate meteorological data in the Laoshan District Coastal 

Walkway. 

2.2.2. Measurement Equipment 

Microclimate weather data were collected using the Kerel 5500 handheld weather 

station and the TES-1333R solar power meter (Figure 6), and the researcher dynamically 

monitored changes in air temperature, humidity, wind speed, and solar radiation at a 

height of 1.5 m above the ground. The TES-1333R solar power meter features automatic 

data access and is compatible with RS232 data transmission. Additionally, the researcher 

wore a GPS positioning device or carried and activated the GPS positioning service func-

tion on a smart phone during the actual measurement, and recorded the actual measured 

movement path and GPS positioning data in real-time. All instruments were set to switch 

on and off automatically at the same time, and to store data automatically every 2 s in 

advance. Table 2 shows the equipment’s specifications as well as its main parameters. 

 

Figure 6. The photo of the Kerel 5500 handheld weather station (a) and the TES-1333R solar power 

meter (b). 

Table 2. Specification of the equipment. 

Name 
Storage 

Method 
Parameter Accuracy 

Test 

Range 
Unit Data Output 

Kerel NK-5500 handheld 

weather station 

Manual or 

Automatic 

Air temperature ±1.0 −29~70 °C 
The screen displays stable data 

and records automatically. 
Relative humidity ±3 0~100.0 % 

Wind speed ±3 0.1~60.0 m/s 

TES-1333R solar power 

meter 

Manual or 

Automatic 
Solar radiation ±10 0~2000 W/m2 

The screen displays stable data 

and records automatically. 

2.3. Questionnaire Survey 

The questionnaire used in this survey (Appendix C) consisted of three parts. The first 

part included the date, time, and place of investigation, which was marked at the top of 

the questionnaire and filled in by the interviewer. The second part included the inter-

viewee’s gender, age, dress, and the main purpose of coming to the place. The information 

Figure 5. A researcher monitoring microclimate meteorological data in the Laoshan District
Coastal Walkway.

Buildings 2022, 12, x FOR PEER REVIEW 6 of 23 
 

 

Figure 5. A researcher monitoring microclimate meteorological data in the Laoshan District Coastal 

Walkway. 

2.2.2. Measurement Equipment 

Microclimate weather data were collected using the Kerel 5500 handheld weather 

station and the TES-1333R solar power meter (Figure 6), and the researcher dynamically 

monitored changes in air temperature, humidity, wind speed, and solar radiation at a 

height of 1.5 m above the ground. The TES-1333R solar power meter features automatic 

data access and is compatible with RS232 data transmission. Additionally, the researcher 

wore a GPS positioning device or carried and activated the GPS positioning service func-

tion on a smart phone during the actual measurement, and recorded the actual measured 

movement path and GPS positioning data in real-time. All instruments were set to switch 

on and off automatically at the same time, and to store data automatically every 2 s in 

advance. Table 2 shows the equipment’s specifications as well as its main parameters. 

 

Figure 6. The photo of the Kerel 5500 handheld weather station (a) and the TES-1333R solar power 

meter (b). 

Table 2. Specification of the equipment. 

Name 
Storage 

Method 
Parameter Accuracy 

Test 

Range 
Unit Data Output 

Kerel NK-5500 handheld 

weather station 

Manual or 

Automatic 

Air temperature ±1.0 −29~70 °C 
The screen displays stable data 

and records automatically. 
Relative humidity ±3 0~100.0 % 

Wind speed ±3 0.1~60.0 m/s 

TES-1333R solar power 

meter 

Manual or 

Automatic 
Solar radiation ±10 0~2000 W/m2 

The screen displays stable data 

and records automatically. 

2.3. Questionnaire Survey 

The questionnaire used in this survey (Appendix C) consisted of three parts. The first 

part included the date, time, and place of investigation, which was marked at the top of 

the questionnaire and filled in by the interviewer. The second part included the inter-

viewee’s gender, age, dress, and the main purpose of coming to the place. The information 
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Table 2. Specification of the equipment.

Name Storage
Method Parameter Accuracy Test Range Unit Data Output

Kerel NK-5500
handheld

weather station

Manual or
Automatic

Air temperature ±1.0 −29~70 ◦C The screen displays stable data
and records automatically.Relative humidity ±3 0~100.0 %

Wind speed ±3 0.1~60.0 m/s
TES-1333R solar

power meter
Manual or
Automatic Solar radiation ±10 0~2000 W/m2 The screen displays stable data

and records automatically.

2.3. Questionnaire Survey

The questionnaire used in this survey (Appendix C) consisted of three parts. The first
part included the date, time, and place of investigation, which was marked at the top of the
questionnaire and filled in by the interviewer. The second part included the interviewee’s
gender, age, dress, and the main purpose of coming to the place. The information about the
interviewee’s dress included a top, bottom, and shoes. All the information was obtained by
the interviewer through observation and oral inquiry. The last part was the content related
to human thermal sensation and human thermal comfort, which included six questions.
Question No. 1 was the thermal sensation vote, which was divided into seven options
according to the ASHRAE seven-point scale including cold, cool, slightly cool, neutral,
slightly warm, warm, and hot. Question No. 2 was the thermal comfort vote with five
options, namely, unbearable, uncomfortable, slightly uncomfortable, and comfortable.
Interviewees were asked to mark the corresponding options based on their instant thermal
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sensation and thermal comfort. Questions Nos. 3 to 6 were the sensation vote for the air
temperature, relative humidity, wind speed, and solar radiation.

While a researcher was conducting physical measurements, one volunteer was ar-
ranged in each section from section A to section I (nine volunteers in total) to record the
basic information and real-time subjective thermal comfort such as thermal sensation,
thermal comfort, temperature sensation, wind sensation, humidity sensation, and solar
radiation sensation of the visitors in each section by the questionnaire survey. In the study,
the interview data was sorted by MS Excel and analyzed in SPSS software.

3. Results
3.1. Microclimate Analysis
3.1.1. Temperature Analysis

Figure 7 shows that, in general, the air temperature of the place rose first and then
fell with time changes. The lowest temperature was recorded during 16:00 and 16:30, and
the highest was recorded during 12:00 and 12:30. In term of spatial change, from 12:00 to
12:30, the air temperature decreased sharply in Section B and Section F. Additionally, the
air temperature decreased in Section H during 12:00 and 12:30 on 11 September, but did
not decrease on 12 September.
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3.1.2. Relative Humidity Analysis

Figure 8 shows that, in terms of time change, the relative humidity of the location
generally showed a trend of first decreasing and then increasing on both days. In terms of
spatial change, for 11 September, the average humidity fluctuated by less than 6%, and the
lowest average humidity was 75% in Section E, and the highest was 80% in Section H. For
12 September, the average relative humidity fluctuated by around 6%, with Section I having
the lowest average relative humidity at 70%. However, the highest average humidity was
found in Section G, where it was 76%.
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3.1.3. Wind Speed Analysis

Figure 9 shows that the overall wind speed threshold on 11 September was 0–2.0 m/s,
while the wind speed on 12 September was faster in general, with a threshold of 0–3.9 m/s.
The maximum wind speed on both 11 September and 12 September occurred between 16:00
and 16:30. In terms of spatial change, the maximum average wind speed on 11 September
occurred between the junction of Sections G and H at 1.36 m/s, while the maximum average
wind speed on 12 September occurred between the junction of Sections B and C at 2.66 m/s.
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3.1.4. Solar Radiation Analysis

Figure 10 shows that the average solar radiation of 9:00 to 9:30 and 12:00 to 12:30
on 11 September and 12 September were both higher than the average solar radiation of
16:00 to 16:30, and the solar radiation on both days showed a trend of rising and then
falling in terms of time variation. The solar radiation from 12:00 to 12:30 on 11 September
fluctuated from Section C to Section F due to cloud cover, so the average solar radiation
from 12:00 to 12:30 on 11 September was slightly lower than its value from 9:00 to 9:30.
However, the field was not affected by clouds on 12 September from 12:00 to 12:30, thus the
average solar radiation in this time period was the highest. In terms of spatial variation, the
solar radiation in the Section H from 12:00 to 12:30 was the highest value on 11 September,
and the solar radiation in the Section G from 12:00 to 12:30 was the highest value on
12 September.

3.1.5. Interaction between the Measured Microclimate Parameters

We performed Spearman correlation analysis among the measured microclimate
parameters. According to Table 3, we found that all four parameters were correlated with
each other significantly in this study.
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Table 3. The Spearman correlation analysis of measured parameters.

Spearman Air Temperature Relative Humidity Wind Speed Solar Radiation

Air Temperature R. / −0.855 ** −0.243 ** 0.687 **
S. / 0.000 0.000 0.000

Relative Humidity R. −0.855 ** / 0.41 * −0.719 *
S. 0.000 / 0.013 0.000

Wind Speed R. −0.243 ** −0.41 * / −0.101 **
S. 0.030 0.013 / 0.000

Solar Radiation
R. −0.687 ** −0.719 ** −1.01 ** /
S. 0.000 0.000 0.000 /

Notes: R. refers to the correlation coefficient while S. refers to the significance index, which reflect the correlation
and the significance of the correlation. * At the 0.05 level (two-tailed), the correlation is significant. ** At the
0.01 level (two-tailed), the correlation is significant.

3.2. Objective Thermal Comfort Surveys
3.2.1. Correlation Analysis of the Vegetation Coverage, the Paved Area Coverage with
PET, UTCI

In this study, we correlated the vegetation coverage with the PET and UTCI of each
section (Figure 11). The conclusion (Table 4) reflects that the vegetation coverage area on
both sides of the greenway showed a certain negative correlation with its PET and UTCI,
in which the vegetation coverage rate was significantly correlated with PET from 12:00 to
12:30 and with UTCI from 16:00 to 16:30.
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Figure 11. The PET and UTCI for different sections during the three time periods.

Table 4. The Spearman correlation coefficients of the vegetation coverage and PET&UTCI.

09:00–09:30 12:00–12:30 16:00–16:30

Spearman PET UTCI Spearman PET UTCI Spearman PET UTCI

Vegetation
Coverage

R. −0.494 −0.510 Vegetation
Coverage

R. −0.326 * −0.552 Vegetation
Coverage

R. −0.647 −0.706 *
S. 0.177 0.160 S. 0.391 0.123 S. 0.06 0.034

* At the 0.05 level (two-tailed), the correlation was significant.

Additionally, correlation analysis was performed between the paved areas and PET
and UTCI. In contrast to the situation between vegetation coverage and PET and UTCI, the
paved area ratio was positively correlated with PET and UTCI in all time periods, in which
the paved area ratio was significantly correlated with UTCI during 12:00 and 12:30 (Table 5).
According to Figure 11, Sections C (the hard paved plaza) and E (the hard paved trestle)
with lower vegetation cover and higher pavement cover showed higher PET and UTCI
values, while Sections A (the entrance) and B (the Miscanthus trail) with higher vegetation
cover and lower pavement cover showed the opposite trend.

Table 5. The Spearman correlation coefficients of the paved areas ratio and PET and UTCI.

09:00–09:30 12:00–12:30 16:00–16:30

Spearman PET UTCI Spearman PET UTCI Spearman PET UTCI

Paved
Areas

R. 0.367 0.367 Paved
Areas

R. 0.500 0.683 * Paved
Areas

R. 0.561 0.644
S. 0.332 0.332 S. 0.170 0.042 S. 0.116 0.061

* At the 0.05 level (two-tailed), the correlation was significant.

3.2.2. Correlation Analysis of Measured Microclimatic Parameters with PET and UTCI

In this study, we correlated the measured microclimatic parameters with its PET
and UTCI for each section in three different time periods. Additionally, the correlation
analyses were based on the data of both days. The results (Tables 6–8) showed that the
microclimatic parameters affecting PET and UTCI most at the sample site were different
during different time periods. Between 09:00 to 09:30, the air temperature and the wind
speed were the most significant parameters influencing PET, while the solar radiation was
the most significant parameter influencing UTCI. From 12:00 to 12:30, the air temperature
was the most significant parameters affecting both PET and UTCI. From 16:00 to 16:30, the
wind speed was the most significant parameter affecting both PET and UTCI.

Table 6. The Spearman correlation coefficients of the measured microclimatic parameters and PET
and UTCI of 09:00 to 09:30.

09:00–09:30

Spearman Air Temperature Relative Humidity Wind Speed Solar Radiation

PET
R. 0.717 * −0.483 −0.733 * 0.650
S. 0.030 −0.035 0.025 0.058

UTCI
R. 0.583 0.350 −0.633 0.783 *
S. 0.099 0.356 0.067 0.013

* At the 0.05 level (two-tailed), the correlation was significant.
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Table 7. The Spearman correlation coefficients of the measured microclimatic parameters and PET
and UTCI of 12:00 to 12:30.

12:00–12:30

Spearman Air Temperature Relative Humidity Wind Speed Solar Radiation

PET
R. 0.633 * −0.133 −0.483 0.550
S. 0.067 −0.732 0.187 0.125

UTCI
R. 0.717 * −0.117 −0.267 0.417
S. 0.030 0.765 0.488 0.265

* At the 0.05 level (two-tailed), the correlation was significant.

Table 8. The Spearman correlation coefficients of the measured microclimatic parameters and PET
and UTCI of 16:00 to 16:30.

16:00–16:30

Spearman Air Temperature Relative Humidity Wind Speed Solar Radiation

PET
R. 0.319 −0.226 −0.924 ** 0.109
S. 0.402 −0.035 0.000 0.058

UTCI
R. 0.395 −0.268 −0.966 ** −0.050
S. 0.293 0.486 0.000 0.013

** At the 0.01 level (two-tailed), the correlation was significant.

3.3. Subjective Thermal Comfort Surveys
3.3.1. Analysis of Interviewees’ Basic Information

A total of 900 questionnaires were distributed and 800 were collected, with 791 valid in
this study. In this survey, young adults aged 26 to 34 accounted for half of all interviewees,
followed by young college students aged 19 to 25 (Figure 12).
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Figure 12. Tables displaying the age (a) and gender distribution (b) of interviewees.

People over the age of 55 made up 17.1% of the population. Observations revealed
that 77.0% of interviewees wore short sleeves (or long skirts), 12.7% wore long sleeves, 7.6%
wore thin coats, and 2.7% wore vests. At the same time, the research team discovered that
84.2% of the interviewees wore sneakers or leather shoes for activities, while the remaining
15.8% wore slippers or sandals.

3.3.2. Crowd Behavior and Activities Analysis

According to the questionnaire, the most popular times for interviewees to visit the
place were 15:00–17:00 and 9:00–11:00, followed by 12:00–14:00, then 18:00, and 6:00–8:00.
Notably, the interviewees’ preferred time to visit the park also coincided with the time when
the PET and UTCI were relatively low (the time period of 09:00–09:30 and 16:00–16:30),
which is consistent with the previous results on PET and UTCI (Figure 13).
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Figure 13. Frequency distribution of interviewees of different ages and their preferred time.

The research team analyzed the frequency distribution of the types of activities per-
formed by the interviewees at various times using the questionnaire. Interviewees chose
physical exercise such as walking and jogging as their main activities in the survey con-
ducted during 9:00 to 9:30 on 11 September and 12 September. From 12:00 to 12:30, 48.1%
of the interviewees chose to go on a leisurely tour, while 30.8% chose to go for a walk,
and the remaining 21.1% chose other types of activities. During 16:00 and 16:30, 48.8% of
interviewees went for a walk while 26.6% went on a leisure tour, and the remaining 24.6%
chose other types of activities.

By analyzing interviewees of different ages and their preferred time, we found that
interviewees under 25 years old preferred to come to the greenway around 15:00 to 17:00,
while those over 25 years old, especially those aged 35 to 54 years old, preferred to choose
9:00 to 11:00. Additionally, we found that interviewees under 25 years old preferred to
come to the greenway in order to tour for leisure, while those over 25 years old preferred
to have a walk here (see Figure 14).
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3.3.3. Results of Sensation Votes and Thermal Comfort Votes

Detailed sensation votes and thermal comfort votes are shown in Appendix B. Due
to force majeure factors, Section D was routinely maintained on the second experimental
day, with few visitors for us to interview. Thus, unfortunately there was no data of thermal
comfort and thermal sensation votes for 12 September, and the data on Section D presented
here is for 11 September. In addition, we also found some anomalies that were not in line
with common sense, so these anomalies were considered as an outlier and excluded from
the sample after considering whether they were due to clothing, age, or personal reasons.



Buildings 2022, 12, 541 14 of 22

Correlation Analysis of Votes with Types of Activities, Age and Gender

According to the results of the thermal sensation votes and thermal comfort votes,
we performed one-way ANOVA on the results of thermal sensation votes and thermal
comfort votes with different types of activities and age, respectively, but since their variance
homogeneity test failed, thermal sensation votes and thermal comfort votes of different
activity types and different ages in the study were not statistically significant.

Additionally, after case weighting of the number of men and women, we performed
the chi-square test on the results of the thermal sensation votes and thermal comfort votes
with gender. Because the asymptotic significance was much higher than 0.05, there was no
significant difference, which means that different gender had no significant effect on the
thermal sensation votes and thermal comfort votes in this study.

Correlation Analysis of Vegetation Coverage, Paved Area Coverage with Thermal
Sensation Votes, Thermal Comfort Votes

We conducted Spearman correlation analysis among the vegetation cover of each
section and the thermal sensation votes. According to the results (Table 9), their Spearman
correlation coefficients, although greater than zero, were much less than 0.30 (i.e., there
was a weak positive correlation between vegetation cover and thermal sensation votes in
this study).

Table 9. Spearman correlation of vegetation cover with thermal sensation and thermal comfort.

Spearman Thermal
Sensation

Thermal
Comfort

Vegetation
Coverage

R. 0.072 0.077 *

S. 0.055 0.038
* At the 0.05 level (two-tailed), the correlation was significant.

We also performed Spearman correlation analysis among the vegetation cover of
each section and thermal comfort votes, and we found a significant positive correlation
between vegetation cover and thermal comfort votes at the 0.05 level (two-tailed) (Table 9),
which means that the higher the vegetation cover, the more the interviewees tended to be
comfortable in that section.

Similarly, we performed correlation analysis between the paved area ratio and thermal
sensation and thermal comfort. According to the findings (Table 10), a weak negative link
existed between pavement cover and thermal sensation and thermal comfort votes in this
study, in contrast to the situation with vegetation cover and thermal sensation and thermal
comfort votes.

Table 10. Spearman correlation of the paved area ratio with thermal sensation and thermal comfort.

Spearman Thermal
Sensation

Thermal
Comfort

Paved
Area

R. −0.049 −0.041

S. 0.190 0.268

4. Discussion
4.1. Summary of the Microclimate Measurement and Thermal Comfort Vote

According to the results, the microclimatic parameters changed the interviewees’ votes
on 11 September and 12 September. In terms of the change in time, the measured air tem-
perature showed a trend of increasing and then decreasing, accordingly, the interviewees’
perception of air temperature gradually tended to be “slightly high” from “neutral”, and
finally dropped back to “neutral”. The measured wind speed was the strongest during
16:00 and 16:30, and the wind speed sensation vote tended to be “slightly strong” and
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“strong” in this time period. Moreover, the measured relative humidity was lowest from
12:00 to 12:30, and so accordingly, the measured relative humidity was weakest during
12:00 and 12:30, and the humidity sensation votes appeared “slightly dry” and “neutral”
more often at this time period.

Additionally, the different vegetation cover and paved area cover in each section
affected the PET, UTCI, and interviewees’ thermal comfort votes in this study. Both
PET and UTCI were found to have a certain negative correlation with the vegetation
coverage on both sides of the greenway. Moreover, there was a weak positive correlation
(R = 0.072) between the vegetation coverage and thermal sensation and a significant positive
correlation (R = 0.077*) between the vegetation coverage and thermal comfort. In contrast,
the paved area cover was found to have a positive correlation with PET and UTCI and a
negative correlation with thermal sensation (R = −0.049) and thermal comfort (R = −0.041).
In two adjacent sections, the one with the lower vegetation coverage and higher paved
area cover had more extremes of air temperature and solar radiation than the one with the
higher vegetation coverage. For instance, Section A, with the vegetation cover of 0.57 and
paved area cover of 0.42, experienced higher average air temperature than Section B with
the vegetation cover of 0.89 and paved area cover of 0.10. However, Section E with the
vegetation coverage of 0.13 and paved area cover of 0.87 experienced higher average solar
radiation than Section D, with the vegetation coverage of 0.53 and paved area cover of 0.47,
and Section F, with the vegetation coverage of 0.40 and paved area cover of 0.53. Besides,
other landscape factors such as the surface roughness, had a weakly negative effect on
thermal sensation and thermal comfort in this study.

In addition, it was concluded that there was no significant effect of differences in the
types of activities, age, and gender on thermal sensation and thermal comfort in this study.

4.2. Comparison with Previous Studies

Despite the experimental site for this study being a coastal greenway, which differed
from prior studies of other urban outdoor space, some similar conclusions can be reached.
Previous microclimate studies of other urban outdoor space revealed that spaces with
larger canopy or higher crown plants had a regulating effect on the temperature of the
outdoor green space [40,41]. In addition, a previous study also found that space with high
vegetation coverage in urban parks could improve thermal comfort [42]. Section B is a
Miscanthus trail, with a predominance of miscanthus plants and coniferous plants with
higher crowns in the periphery, and the vegetation coverage was the highest. Therefore,
the reason for the temperature decreasing here, and mentioned in the results, could be
contributed to the changing climate conditions by the sea, plants with higher crowns, and
higher vegetation coverage. For Section F, the reason for the decrease in temperature could
be a soil slope landscape here, and the height of the surrounding landscape, which is bigger.
Furthermore, previous research discovered that the height and slope of the surrounding
landscape influenced the air and surface temperature nearby [43,44]. As a matter of fact,
the average air temperature from 12:00 to 12:30 was the highest among three time periods.
We inferred that the reason for a more obvious and sharper temperature drop in these two
sections could be stronger plant transpiration at noon than 9:00 to 9:30 and 16:00 to 16:30.

4.3. New Insights on the Implications for Landscape and Urban Planning

The findings demonstrated the different effects of different vegetation coverage on
thermal comfort in the Laoshan District Coastal Walkway. The results showed that rich vege-
tation design can beautify the environment and regulate the outdoor thermal environment
effectively at the same time; on the other hand, although distinctive structures such as trestle
bridges can enrich the landscape of outdoor public spaces such as greenways, they also have
a negative impact on the regulation of the outdoor thermal environment. Therefore, these
findings provide landscape architects and urban planners to consider the impact of landscape
design on outdoor thermal comfort. In future, designers should explore new design strategies
to enhance outdoor thermal comfort to make better use of coastal walkways.
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4.4. Shortcomings and Outlooks

First, there were still subtle errors despite having fixed the data because mobile
measurements require researchers to pay more effort in correcting the GPS data, which
have a certain geographic offset. Second, the quick changes in the seaside microclimate
interfered with the process of the experiment because the coastal greenway is adjacent to the
sea. Finally, long-time and long-distance mobile measurements cannot be performed due to
manpower and equipment limitations, so this study selected 1.5 km of the Laoshan District
Costal Greenway as a representative sample to carry out the measurements. Moreover,
we may add a mini motion camera to the datalogger to record 180-degree panoramic
images and videos of the environment during the mobile measurements, and pay more
attention to the plant conditions during the survey, in order to find more insights for future
experiments. Furthermore, we will explore suitable methods for the measurement of sky
visibility factors in narrow linear outdoor spaces such as greenways to explore the influence
of spatial morphology on the microclimate of greenways. Nonetheless, the findings of this
study can provide a theoretical foundation for future research on the thermal comfort of
coastal greenways.
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Appendix A

Table A1. The average air temperature (◦C), the average relative humidity (%), the average
wind speed (m/s), and the average solar radiation (W/m2) of each section on 11 September and
12 September from 9:00 to 9:30.

Section No. A B C D E F G H I

Average Air Temperature 28.06 27.73 27.93 28.52 28.81 28.76 29.08 28.93 29.05

Average
Relative

Humidity
78.12 77.97 77.93 76.74 73.58 73.52 73.79 73.42 72.62

Average Wind Speed 0.68 1.18 1.02 0.62 0.35 1.10 0.45 0.60 0.77

Average
Solar

Radiation
433.93 446.59 577.56 565.49 640.23 578.57 541.14 467.46 518.24



Buildings 2022, 12, 541 17 of 22

Table A2. The average air temperature (◦C), the average relative humidity (%), the average
wind speed (m/s), and the average solar radiation (W/m2) of each section on 11 September and
12 September from 12:00 to 12:30.

Section No. A B C D E F G H I

Average Air Temperature 30.77 30.67 30.35 30.49 29.73 29.82 29.18 29.96 29.71

Average
Relative

Humidity
69.46 69.75 71.70 69.61 70.67 70.74 74.01 70.78 71.32

Average Wind Speed 0.71 1.14 0.63 0.78 0.75 1.11 1.05 0.80 0.96

Average
Solar

Radiation
563.23 644.98 617.54 575.71 593.77 559.49 593.53 634.49 625.40

Table A3. The average air temperature (◦C), the average relative humidity (%), the average
wind speed (m/s), and the average solar radiation (W/m2) of each section on 11 September and
12 September from 16:00 to 16:30.

Section No. A B C D E F G H I

Average Air Temperature 27.81 27.44 27.47 27.31 27.14 27.15 27.10 27.26 27.38

Average
Relative

Humidity
78.32 79.26 79.60 79.61 80.47 80.67 81.12 80.48 80.23

Average Wind Speed 0.68 1.18 1.02 0.62 0.35 1.10 0.45 0.60 0.77

Average
Solar

Radiation
98.91 114.08 130.25 109.93 118.78 140.44 131.77 96.58 111.60

Table A4. Data required for Rayman.

Name of Options in Rayman Data Content Detailed Parameters

Data and time The time and date of the
measurement

9:00–9:30,
12:00–12:30,
16:00–16:30;

9.11–9.12, 2021

Geographic data
Latitude,

longitude,
time zone of the site

121◦26′

31◦12′

UTC + 8 Asia/China

Current data Air temperature, relative humidity,
wind speed, solar radiation Tables A1–A3

Personal data Height, weight, age, gender 1.75 m, 75 kg, 35, male

Clothing
and activity

Clothing thermal resistance,
metabolic rate of activities

0.5
80

Notes: Personal data refers to the default value for an adult Chinese male aged 35 years old. Clothing thermal
resistance [37] refers to the default value commonly used in summer. Metabolic rate of activities refers to
GB/T 18049-2000 “Regulations for PMV and PPD Indices and Thermal Comfort Conditions in Medium Thermal
Environments in China”.
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Appendix C

Figure A13. The questionnaire used in the study.
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