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Abstract: The scheme for accurate and reliable predictions of tunnel stability based on an artificial
aeural network (ANN) is presented in this study. Plastic solutions of the stability of unlined elliptical
tunnels in sands are first derived by using numerical upper-bound (UB) and lower-bound (LB) finite
element limit analysis (FELA). These numerical solutions are later used as the training dataset for an
ANN model. Note that there are four input dimensionless parameters, including the dimensionless
overburden factor γD/c′, the cover–depth ratio C/D, the width–depth ratio B/D, and the soil friction
angle φ. The impacts of these input dimensionless parameters on the stability factor σs/c′ of the sta-
bility of shallow elliptical tunnels in sands are comprehensively examined. Some failure mechanisms
are carried out to demonstrate the effects of all input parameters. The solutions will reliably and
accurately provide a safety assessment of shallow elliptical tunnels.

Keywords: tunnel stability; finite element; cohesive-frictional soils; underground opening; limit
analysis; artificial neural network

1. Introduction

To accurately assess tunnel stability, underground spaces, mine workings, and pipelines
during construction in urban areas, an efficient design tool to determine the stability of
these problems is very essential in order to prevent damages to existing structures and
streets on the ground, owing to an impact of ground loss that can cause ground surface
settlements [1–3]. It is well-known that tunnels and openings constructed at shallow depths
commonly have very low stability and are widely affected by surcharge loading at the
ground surface [4–11]. Therefore, to equip design engineers with accurate and convenient
design tools, this paper aims to propose an artificial neural network (ANN) approach
to handle tunnel stability problems in the form of a black-box-type prediction model for
predicting the ultimate surcharge loading applied on the ground surface above a shallow
elliptical tunnel in sands. Note that the ANN model can be conveniently used without the
interpolation of solutions from charts or tables.

To develop accurate plastic solutions to tunnel stability problems, finite element limit
analysis (FELA) has now become a widely used tool for the determination of safety factors
or collapse loads in various civil engineering problems. In FELA, the optimization and finite
element discretization techniques are utilised to numerically derive true plastic collapse
load by bracketing from upper-bound (UB) or lower-bound (LB) methods based on the
plastic-bound theorems [12,13]. Note that the UB and LB methods are formulated from
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either a kinematic or an equilibrium. More information on the details and the development
of UB and LB FELA can be found in Sloan [14]. The problems of unlined tunnels or trap-
doors under plane strain conditions have been derived using FELA by some researchers
in the past, such as Sloan and Assadi [15], Wilson et al. [16–18], Yamamoto et al. [19,20],
Keawsawasvong and Ukritchon [21,22], Keawsawasvong and Likitlersuang [23], Keaw-
sawasvong and Shiau [24], and Ukritchon and Keawsawasvong [25,26]. However, these
studies are limited to tunnels with circular, square, rectangular, or flat shapes. Note that
these previous works [15–26] present the FELA solutions of 2D tunnels in undrained and
drained soils under surcharge loading, where the pattern of their results are quite similar
to the present study. However, stability solutions for elliptical tunnels were not proposed
in these past studies, e.g., [15–26].

Despite the uncertainty of elliptical tunnel stability, it has been found that various pre-
vious papers centered on circular, square, and rectangular tunnels. There are a few previous
works related to this study for determining the stability of elliptical tunnels. By employing
UB FELA with rigid translatory moving elements, Yang et al. [27–29] carried out a stability
analysis of unlined elliptical tunnels in undrained and drained soils. Zhang et al. [30] also
studied the stability of elliptical tunnels in cohesionless soils using the same technique as
Yang et al. [27–29]. Recently, Dutta and Bhattacharya [31] proposed stability solutions for
dual elliptical tunnels in clays by utilizing LB FELA with second-order conic programming
(SOCP). Nevertheless, these previous solutions for elliptical tunnel stability were proposed
in the form of design charts and tables. Thus, it is difficult to use these solutions, since an
approximation or interpolation is needed to compute solutions that do not exactly appear
in the proposed charts or tables. In addition, there is no existing LB FELA solution for
elliptical tunnels in cohesive-frictional soils in the past. It should be noted that, to minimize
excavation volume and also satisfy the requirement of geometrical constraints for the
construction of a road and related walkways, an elliptical or nearly elliptical cross-section
is requested in many road tunnels. Several previous examples of past constructions of
elliptical tunnels can be found in [32–36]. In this paper, we aim to fill the research gap by
proposing explicit UB and LB FELA solutions for elliptical tunnel stability.

To the best of our knowledge, there is no previous study proposing an ANN model for
elliptical tunnel stability. Hence, this paper presents new soft computing for providing an
accurate and efficient computation for the stability of elliptical tunnels in cohesive-frictional
soils in order to present a convenient tool based on the ANN and FELA approaches.
This paper introduces limit state solutions for the drained stability of elliptical tunnels
in cohesive-frictional soils (or sands) by using plane strain LB and UB FELA to solve
numerical solutions. Some selected cases of FELA solutions are used to portray the effects
of all considered variables, including soil strength parameters, soil unit weight ratio, width–
depth ratio, and cover–depth ratio. Failure mechanisms obtained from the FELA are
carried out to indicate the influences of the width–depth ratio and cover–depth ratio of
elliptical tunnels. The scheme presented in this paper will provide an effective assessment
of such problems in practice for the design and construction of shallow tunnels in urban
areas. To develop a black-box-type prediction model, an artificial neural network (ANN)
approach, which is one of the soft computing approaches, is carried out. This artificial
intelligence approach is able to learn from a sufficiently dense data set. After learning, this
model will then build up a prediction model in the form of matrices. This paper combines
the ANN and FELA approaches in order to develop an advanced model for rapidly and
accurately predicting the stability of elliptical tunnels in cohesive-frictional soils. It should
be noted that previous works combining the ANN and FELA approaches are quite limited.
Notably, only a few studies proposed employing the ANN approach for soil slope stability
predictions, where the FELA solutions were used as a data set in the ANN models [37–39].
Recently, the same technique was used by Keawsawasvong et al. [40] to develop the ANN
model for rock tunnel stability, where the FELA solutions with an HB model were used as
a training data set.
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2. Problem Definition

Figure 1 shows the problem geometry of an elliptical tunnel subjected to uniform
surcharge loading at the ground surface. The geometry of the elliptical tunnel includes
depth (D), a cover (C), and width (B). It should be noted that the standard equation of an
ellipse with center (0,0) and a major axis parallel to the x-axis can be expressed as:

x2

a2 +
y2

b2 = 1 (1)

where B = 2a and D = 2b. In this study, the width–depth ratios of B/D = 0.5, 0.75, 1, 1.333, and
2 are considered. The drained soil is set to be a perfectly plastic Mohr–Coulomb material,
and it has an effective cohesion (c’), effective friction angle (φ), and unit weight (γ). A
vertical uniform pressure (σs) is applied overall to the area of the ground surface. Note
that the soil unit weight and the surface surcharge generally act as a vertical driving force,
resulting in a tunnel collapse.

Buildings 2022, 12, x FOR PEER REVIEW 3 of 21 
 

2. Problem Definition 

Figure 1 shows the problem geometry of an elliptical tunnel subjected to uniform 

surcharge loading at the ground surface. The geometry of the elliptical tunnel includes 

depth (D), a cover (C), and width (B). It should be noted that the standard equation of an 

ellipse with center (0,0) and a major axis parallel to the x-axis can be expressed as: 

2 2

2 2
1

x y

a b
+ =  (1) 

where B = 2a and D = 2b. In this study, the width–depth ratios of B/D = 0.5, 0.75, 1, 1.333, 

and 2 are considered. The drained soil is set to be a perfectly plastic Mohr–Coulomb ma-

terial, and it has an effective cohesion (c’), effective friction angle (ϕ), and unit weight (γ). 

A vertical uniform pressure (σs) is applied overall to the area of the ground surface. Note 

that the soil unit weight and the surface surcharge generally act as a vertical driving force, 

resulting in a tunnel collapse. 

 

Figure 1. Problem definition of an unsupported elliptical tunnel in cohesive-frictional soil. 

Six input dimensional parameters (i.e., C, D, B, γ, c′, and ϕ) are considered to have 

significant impacts on the collapse surcharge at the ground surface σs , which is the output 

dimensional parameter. To reduce the considered parameters in the simulations, the di-

mensionless technique by Butterfield [41] is employed to convert these six input dimen-

sional parameters to become four dimensionless input parameters by normalising them. 

As a result, the new relationship between the output dimensionless parameter and the 

four dimensionless input parameters for the problem of an elliptical tunnel in sands can 

be written as: 

, , '( , )
''

s C B

D D

D
f

cc
 =  (2) 

Figure 1. Problem definition of an unsupported elliptical tunnel in cohesive-frictional soil.

Six input dimensional parameters (i.e., C, D, B, γ, c′, and φ) are considered to have
significant impacts on the collapse surcharge at the ground surface σs, which is the output
dimensional parameter. To reduce the considered parameters in the simulations, the dimen-
sionless technique by Butterfield [41] is employed to convert these six input dimensional
parameters to become four dimensionless input parameters by normalising them. As a
result, the new relationship between the output dimensionless parameter and the four
dimensionless input parameters for the problem of an elliptical tunnel in sands can be
written as:

σs

c′
= f (

γD
c′

,
C
D

,
B
D

, φ′) (2)
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where σs/c′ denotes the stability factor; γD/c′ denotes the overburden factor; C/D denotes
the cover–depth ratio; B/D denotes the width–depth ratio; and φ denotes the soil friction
angle. Note that the selected normalised form of the stability factor σs/c′ is similar to that
used in the previous works of the similar problems, e.g., [19,20] (i.e., tunnel stability in
cohesive-frictional soils) which will be later used in the verification part of this study.

The selected values of all dimensionless input parameters in this study are shown in
Table 1. These input and output dimensionless parameters are the main variables in this
study that create a nonlinear input–output mapping of the problem of stability of elliptical
tunnels, by utilising an ANN model trained by an extreme learning algorithm.

Table 1. Input parameters.

Input Parameters Values Average

C/D 1, 2, 3, 4 2.5

B/D 0.5, 0.75, 1, 1.33, 2 1.116

γD/c′ 0, 1, 2 1.5

φ 0, 5, 10, 15, 20, 25 12.5

3. Numerical Analysis

In this study, FELA was employed to perform numerical results of the stability of
elliptical tunnels. The results from FELA will be used as a training data in the ANN model
in the next section. FELA is a widely used numerical method for successfully computing
safety factors or limit loads of several problems in the geotechnical engineering field [42–51].
Commercial FELA software, namely OptumG2 [52], was carried out to derive the stability
solutions for tunnel problems in this study. Figure 2a–c presents three typical models
generated by OptumG2 for a depth ratio C/D = 4 and different values of B/D = 0.5, 1, and 2,
respectively. Only one-half of the domain of the elliptical tunnels was considered in the
simulation due to the symmetry of the problem, where the symmetry plane is located at
the left of the domain of all three models with B/D = 0.5, 1, and 2 as shown in Figure 2.

Next, the boundaries of this plane strain tunnel problem were fully described. At the
left (the symmetry plane) and right boundaries of the domain, the roller supports were set
by allowing vertical movements. Additionally, the fixed supports were set along the plane
of the bottom boundary, where all vertical and horizontal movements were not permitted to
take place. Inside the elliptical tunnel and at the top ground surface, free movements were
allowed, indicating the free surfaces at those areas. Note that a uniform surcharge (σs) is
also applied vertically over the top ground surface. This uniform surcharge at the collapse
of the tunnels was optimised by using the loading multiplier technique in OptumG2 based
on UB and LB FELA.

The details of the FELA are described next. The soils were discretised into a number
of triangular elements distributed over the domain of the tunnel problems in both LB and
UB FELA. The collapse surcharge was maximized in the LB analysis by using the loading
multiplier technique, satisfying all equilibrium conditions based on the LB FELA scheme
that are constructed within the entire domain of the problem. The collapse surcharge was
minimised in the UB analysis by also using the loading multiplier technique, where the
rate of total work was completed by the external pressure with the total internal power
dissipation. In all simulations of the LB and UB FELA models, the domain sizes of all
models were carefully selected to be large enough, since the plastic shear zone should be
contained within the domain in order to avoid insufficient size effect errors. Thus, the
sizes of the right and bottom boundaries were set to be 7D and 2D, respectively, which are
sufficient to avoid the effect from insufficient boundaries (see Figure 2).
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Figure 2. Model geometry for three unlined elliptical tunnels in cohesive-frictional soil. (a) B/D = 0.5,
(b) B/D = 1, (c) B/D = 2.

The powerful feature of mesh adaptivity in OptumG2 was activated in all simulations
in order to produce more accurate bound solutions. The number of elements was set to
be increased from 5000 (at the first step) to 10,000 elements (at the final step) through five
iterations of adaptive meshing. More information regarding this mesh adaptivity feature
can be found in the work by Ciria et al. [53]. Examples of typical adaptive meshes of
unlined elliptical tunnels in cohesive-frictional soil are demonstrated in Figure 3a–c for the
different values of B/D = 0.5, 1, and 2, respectively.
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4. FELA Results and Discussion

All numerical results are the average (Ave) results obtained from the average values of
the UB and LB FELA solutions, where, in all solutions, the differences between the UB and
LB solutions are within 1%. To verify the current solutions, the comparison of the stability
factors σs/c′ between the present study and a previous work by Yamamoto et al. [19] is
shown in Figure 4. Note that the solutions by Yamamoto et al. [19] are limited to the cases
of circular tunnels with B/D = 1. In Figure 4, the value of soil unit weight was to be zero
so that the dimensionless overburden factor γD/c′ = 0. Thus, the current results are in
very good agreement with the Avg solutions by Yamamoto et al. [19], confirming that the
computed Ave solutions are very accurate.
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Figure 4. Comparison of the stability factors σs /c′ (γD/c′ = 0 and B/D = 1) between the present study
and Yamamoto et al. [19].

All numerical Ave solutions of the elliptical tunnel stability are expressed in Table 2.
The results in Table 2 will be used as training data in the ANN approach later in the next
section. In this section, some of the results are carried out to investigate the effects of
all dimensionless parameters on the stability factor hereafter. First, the effect of the soil
friction angle φ on σs/c′ is shown in Figure 5a,b for the tunnels γD/c′ = 0 and C/D = 2 and 3,
respectively. A highly non-linear relationship between φ on σs/c′ can be observed, where
an increase in the friction of soil results in an increasing strength of tunnels. Figure 6a,b
presents the relationship between the dimensionless overburden factor γD/c′ and σs/c′,
where the others are φ = 25◦ and C/D = 1 and 3, respectively. The value of σs/c′ gradually
decreases as the value of γD/c′ increases. The impact of C/D on σs/c′ is shown in Figure 7a,b
for (φ = 15◦ and 25◦ and γD/c′ = 1). It was found from Figure 7 that the relation between
C/D and σs/c′ is non-linear, where concave curves can be seen in Figure 7a for the case of a
small frictional angle. In contrast, convex curves were found in Figure 7b when the values
of φ were high. Finally, a nonlinear variation of σs/c′ and B/D can be noticed in Figure 8a,b
for the cases of φ = 25◦ and γD/c′ = 0 and 1, respectively. The plots are for four different
values of C/D = 1, 2, 3, and 4. It was found that a nonlinear decrease in the stability factor
with the increasing B/D appears in Figure 8. This is in line with the common engineering
judgment that a larger B/D ratio causes a lower value of σs/c′.

Table 2. Stability factors σs /c′ for elliptical tunnels.

γD/c′ B/D φ C/D = 1 C/D = 2 C/D = 3 C/D = 4

0 0.5 0 3.194 4.042 4.6415 5.112
5 3.941 5.2585 6.2735 7.11
10 5.0205 7.197 9.0535 10.671
15 6.7035 10.6005 14.3025 17.758
20 9.537 17.311 25.606 34.1285
25 14.846 32.5035 54.5715 80.1625



Buildings 2022, 12, 444 8 of 21

Table 2. Cont.

γD/c′ B/D φ C/D = 1 C/D = 2 C/D = 3 C/D = 4

0.75 0 2.8235 3.766 4.3965 4.877
5 3.449 4.8515 5.8745 6.698
10 4.3435 6.5475 8.3315 9.8635
15 5.6975 9.4395 12.83 15.989
20 7.9025 14.885 22.1915 29.491
25 11.9115 26.743 45.0285 65.952

1 0 2.4365 3.4595 4.131 4.6315
5 2.9435 4.406 5.4625 6.29
10 3.65 5.875 7.622 9.1015
15 4.6915 8.2945 11.4835 14.387
20 6.3665 12.72 19.1735 25.7245
25 9.2615 21.9155 37.1275 54.594

1.33 0 1.9845 3.0405 3.7625 4.297
5 2.346 3.827 4.9115 5.7565
10 2.844 5.006 6.7365 8.174
15 3.559 6.8775 9.8775 12.558
20 4.6385 10.23 15.913 21.5575
25 6.4805 16.798 29.2085 43.145

2 0 1.369 2.3015 3.0505 3.637
5 1.5485 2.8055 3.878 4.7595
10 1.7905 3.533 5.148 6.533
15 2.5705 4.6475 7.226 9.6325
20 2.1125 6.473 10.9655 15.5125
25 3.293 9.714 18.507 28.4055

1 0.5 0 1.846 1.6285 1.206 0.6655
5 2.501 2.6405 2.508 2.202
10 3.451 4.2855 4.785 5.032
15 4.9415 7.2425 9.2465 10.9705
20 7.482 13.205 19.229 25.3425
25 12.383 27.1315 45.591 67.3385

0.75 0 1.5695 1.4205 1.011 0.471
5 2.1085 2.3035 2.163 1.8355
10 2.877 3.7025 4.126 4.287
15 4.0515 6.1475 7.8615 9.28
20 6.004 10.8555 15.9195 20.9795
25 9.5875 21.4915 36.3595 53.6445

1 0 1.2515 1.1815 0.8005 0.2685
5 1.6745 1.9235 1.8025 1.4675
10 2.266 3.098 3.4675 3.562
15 3.15 5.0775 6.55 7.7195
20 4.574 8.803 12.9935 17.166
25 7.0895 16.763 28.6415 42.36

1.33 0 0.85 0.832 0.5025 −0.003
5 1.1365 1.413 1.3145 0.9875
10 1.5315 2.2985 2.6275 2.6665
15 2.1005 3.7575 4.979 5.903
20 2.9985 6.3965 9.72 12.9735
25 4.4975 11.7655 20.696 30.9425

2 0 0.2685 0.1605 −0.1195 −0.5595
5 0.397 0.4785 0.37 0.065
10 0.562 0.9475 1.134 1.0765
15 0.793 1.682 2.431 2.947
20 1.117 2.9245 4.892 6.805
25 1.6395 5.223 10.1485 15.953

2 0.5 0 0.43 −0.834 −2.277 −3.8305
5 1.016 −0.0105 −1.304 −2.778

10 1.8475 1.3195 0.4135 −0.811
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Table 2. Cont.

γD/c′ B/D φ C/D = 1 C/D = 2 C/D = 3 C/D = 4

15 3.1475 3.777 3.9625 3.726
20 5.3945 8.93 12.4105 15.7345
25 9.826 21.3065 35.934 53.1345

0.75 0 0.244 −0.99 −2.4375 −3.9995
5 0.727 −0.28 −1.589 −3.0845

10 1.388 0.8205 −0.171 −1.476
15 2.39 2.7845 2.6755 2.145
20 4.066 6.749 9.256 11.528
25 7.2225 15.9395 26.8835 39.7155

1 0 0.0105 −1.1685 −2.605 −4.1705
5 0.3795 −0.5795 −1.89 −3.4055

10 0.866 0.2925 −0.7695 −2.1495
15 1.583 1.792 1.413 0.607
20 2.7585 4.7355 6.351 7.706
25 4.8905 11.302 19.2535 28.498

1.33 0 −0.3225 −1.4325 −2.8375 −4.395
5 −0.0875 −1.02 −2.308 −3.8255
10 0.2075 −0.431 −1.5525 −3.017
15 0.645 0.5505 −0.1295 −1.268
20 1.327 2.413 3.06 3.3055
25 2.5005 6.4225 11.193 16.616

2 0 −0.845 −2.001 −3.329 −4.831
5 −0.766 −1.855 −3.1525 −4.6615
10 −0.668 −1.657 −2.9515 −4.5875
15 −0.5315 −1.344 −2.6155 −3.644
20 −0.3435 −0.7905 −1.8125 −2.648
25 −0.0305 0.3445 0.49 0.2425
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Figure 5. Influence of  on the stability factors σs/c′ (γD/c′ = 0). (a) C/D = 2, (b) C/D = 3. Figure 5. Influence of φ on the stability factors σs/c′ (γD/c′ = 0). (a) C/D = 2, (b) C/D = 3.
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Figure 6. Influence of γD/c′ on the stability factors σs/c′ (φ = 25◦). (a) C/D = 1, (b) C/D = 3.
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Figure 7. Influence of C/D on the stability factors σs/c′ (γD/c′ = 1). (a) φ = 15, (b) φ = 25.

The effects of C/D and B/D on the predicted collapse mechanisms are demonstrated in
Figures 9–11 for the cases of B/D = 0.5, 1, and 2, respectively. The presented collapse mecha-
nisms correspond to absolute velocity contours of unlined elliptical tunnels in cohesive-
frictional soil. In Figures 9–11, the sub-figure shows the different cases of C/D = 1, 2, and 4,
where other parameters remain the same as γD/c′ = 0 and φ = 25◦. It can clearly be seen that
the failure extent increased with an increased cover-depth ratio (C/D) for all width-depth
ratios (B/D). The failure patterns in all figures are like a chimney-type opening of failure.
It was also found that the failure extent initially increases when the shape transformed
from elliptical to circular (B/D = 0.5 to 1.0). However, failure extent was reduced when a
transformation is from circular to elliptical (B/D = 1 to 2).
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Figure 9. Absolute velocity contours of unlined elliptical tunnels in cohesive-frictional soil with 
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Figure 9. Absolute velocity contours of unlined elliptical tunnels in cohesive-frictional soil with
B/D = 0.5, γD/c′ = 0, and φ = 25◦. (a) C/D = 1, (b) C/D = 2, (c) C/D = 4.



Buildings 2022, 12, 444 12 of 21
Buildings 2022, 12, x FOR PEER REVIEW 12 of 21 
 

  
(a) (b) 

 
(c) 

Figure 10. Absolute velocity contours of unlined elliptical tunnels in cohesive-frictional soil with 

B/D = 1, γD/c′ = 0, and ϕ = 25°. (a) C/D = 1, (b) C/D = 2, (c) C/D = 4. 

  
(a) (b) 

Figure 10. Absolute velocity contours of unlined elliptical tunnels in cohesive-frictional soil with
B/D = 1, γD/c′ = 0, and φ = 25◦. (a) C/D = 1, (b) C/D = 2, (c) C/D = 4.
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Figure 11. Absolute velocity contours of unlined elliptical tunnels in cohesive-frictional soil with
B/D = 2, γD/c′ = 0, and φ = 25◦. (a) C/D = 1, (b) C/D = 2, (c) C/D = 4.

5. Proposed Models
5.1. Multiple Linear Regression (MLP)

Linear regression is a method of modelling the linear relationship between scalar
responses (output known as dependent variables) and explanatory variables (input known
as independent variables). Simple linear regression is called such when there is only one
independent variable in the relationship. In this study, four independent variables are
considered; therefore, the process is called “multiple linear regression”, which is one of
the most well-known and straightforward methods in regression problems. Notably, this
method can be used as a baseline performance of the machine learning model.

As indicated in Equation (3), the output is a dependent variable that may be deter-
mined from the combination of the input or independent variables.

yi = β0 + β1xi1 + β2xi2 + . . . + βpxip + ε (3)

where yi = dependent variable (output); xi1, xi1, . . . xip = independent variables (input);
β0 = y-intercept (constant term); β1, β1, . . . , βp = slope coefficients for each explanatory
variable; and ε = the model’s error term (also known as the residuals).

A regression model posits that the dependent variable y has a linear relationship
with the p-vector of regressors x. An error variable or residual term is an unobserved
random variable that represents the noise in the relationship. This paper uses a function of
LinearRegression in WEKA to perform the standard least-squares multiple linear regression
and optionally attribute selection.

5.2. Artificial Neural Network (ANN)

In this study, an artificial neural network (ANN) was also used. This technique is a
data prediction framework based on existing attributes derived from the structure of the
human mind. It models the neurological system of the human brain’s processing method
for complicated information. A neural network is a computer model made up of a large
number of nodes (or neurons) that are linked together. As illustrated in Figure 12, an ANN
model is made up of three layers: the input layer, the hidden layer, and the output layer.
The first layer is the input layer, through which the feature vector is transferred. In this
paper, the input layer is made up of four nodes that indicate C/D, B/D, γD/c′, and φ. The
hidden layer, which contains a number of neurons, is the second layer. In general, the
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number of hidden layers and hidden neurons is determined by trial and error (by increasing
the number of hidden neurons) until the optimal number is found. This layer’s goal is to
convert the data into content that the output layer may use to forecast the data. The last
layer is the output layer, which displays a predicted value. In this study, the output layer is
made up of a node that presents a predicted stability factor of shallow elliptical tunnels
in cohesive-frictional soils. In this case, the network will train through for the specified
number of epochs, which is set to be 500.
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5.3. Cross-Validation

The partitioning approach into training and testing datasets is unreliable when there
are a restricted number of datasets. A more general strategy for offsetting any bias intro-
duced by the specific sample used for holdout is to repeat the entire operation, training and
testing, numerous times, using randomly generated samples. The typical method for the
model validation of a machine learning methodology is stratified 10-fold cross-validation.
This method randomly divides the datasets into ten sections, with the class represented in
about the same proportions as in the entire dataset. Before assessing the error rate on the
holdout set, each section is performed in turn, and the remaining nine-tenths are later tested.
As a result, the learning operation is repeated ten times on different training sets. Finally,
the average of the ten errors is computed to produce an overall error estimation. A single
tenfold cross-validation, on the other hand, may not be sufficient to get a credible error
estimate. Because of the influence of random datasets, separate tenfold cross-validation
tests with the same learning system and datasets frequently give different results. Therefore,
it is highly advised that the cross-validation process be repeated 10 times, that is, tenfold
cross-validation, and the results be averaged. This entails running 100 times on training
sets that are each one-tenth the size of the original.

5.4. Performance Measures

Three analysis measures were used in this work to examine the performance of the
trained models: correlation coefficient (R), root mean squared error (RMSE), and mean
absolute error (MAE).

The correlation coefficient measures the statistical correlation between the expected
and actual values. The correlation coefficient varies from 0 for irrelevant results to 1 for
fully correlated results. A value smaller than zero, on the other hand, denotes a negative
association. Correlation differs from the other metrics in that it is scale-independent, which
means that if a certain set of predictions is used, the error remains unchanged if all of
the forecasts are multiplied by a fixed factor, while the actual values remain the same.
The correlation coefficient can be calculated using Equation (4). Note that a high accuracy



Buildings 2022, 12, 444 15 of 21

model leads to a high correlation coefficient value, whereas the other approaches (e.g., MAE,
RMSE, etc.) calculate error instead of accuracy, so that good performance is indicated by
lower values.

R =
SPA√
SPSA

(4)

where SPA = ∑i(pi−p)(ai−a)
n−1 ; SP = ∑i(pi−p)2

n−1 ; SA = ∑i(ai−a)2

n−1 ; p and a are the average values
of p and a variables, respectively; and n is the number of datasets.

The determination coefficient (R-squared, R2) is the square of the correlation coefficient.
It is vital to note that, in the case of multiple variables, R2 can better quantify the strength of
the developed model, since R cannot explain the strength when the number of variables is
more than 1 or multiple linear regression is considered. Therefore, R2 is used in this study
as one of the indicators to measure the performance of the developed model.

Additionally, the mean absolute error (MAE) is a measure of an average of the mag-
nitude of individual errors without taking into consideration their sign. Note that MAE
does not exaggerate the influence of outliers—instances in which the prediction error is
greater than the others. This is the benefit of using MAE over MSE. Equation (5) depicts the
equation for MAE.

MAE =
|p1 − a1|+ . . . + |pn − an|

n
(5)

Furthermore, mean-squared error (MSE) is the principal and one of the most commonly
used measures. Nevertheless, it should be noted that the square root (root mean squared
error, RMSE) is occasionally employed and chosen over MSE. This is because it provides
similar dimensions as the predicted value. The mean-squared error is used in many
mathematical approaches, because it is the easiest measure to alter mathematically: it
is “well-behaved”, as mathematicians say. As mentioned, MSE has similar units as the
dependent variable; RMSE is more often used than MSE to compare the performance of
the regression model to other random models. It should be noted that a lower MSE and
RMSE values suggests a more accurate model.

RMSE =

√
(p1 − a1)

2 + . . . + (pn − an)
2

n
(6)

5.5. Multiple Linear Regression (MLR) Equation

First, the regression coefficients of each explanatory variable were optimised by min-
imising the error in WEKA software. Equation (7) depicts the predictive equation of the
stability factor based on multiple linear regression.

y = −6.0785x1 − 0.8065x2 − 4.3909x3 − 2.801x4 + 1.4307 (7)

where y represents the stability factor σs/c′, whereas x1, x2, x3, and x4 are the dimensionless
input parameters, namely B/D, φ, γD/σci, and C/D, respectively.

It was found that the performance of the developed multiple linear regression equation
can be accessed via the statistical tests R2, MAE, and RMSE, which are 0.7536, 5.1777, and
7.7086, respectively (see Table 3).

Table 3. Performance measures of each methodology.

Methodology R2 Mean Absolute Error
(MAE)

Root Mean Squared Error
(RMSE)

Multiple Linear
Regression (MLR) 0.7536 5.1777 7.7086

Artificial Neural
Network (ANN) 0.9967 0.6774 0.9666



Buildings 2022, 12, 444 16 of 21

5.6. Details of Proposed Artificial Neural Network (ANN) Model

To improve the performance in terms of the prediction accuracy of ANN models, the
number of hidden layers and neurons should be optimised. In the case of stability factor
prediction, it was found that only one hidden layer is used sufficiently, with the number of
hidden neurons varying. Figure 13 depicts the performance of the models in relation to
the number of hidden neurons. It was discovered that increasing the number of neurons
until a specific level significantly improves the performance of the ANN model. It can be
shown that after a specific level is reached, the performance of the ANN models is likely
to stabilise. In this study, the ANN with the architecture of 4-9-1 was chosen as the best
ANN model, since it had the lowest MAE and RMSE values and the greatest R2 among
the models. Figure 14 compares the results generated by the FELA and ANN, which are
shown to be quite close. Table 3 also compares the MLR and ANN models’ performance.
It is evident that the ANN model outperformed the ANN model. This ideal ANN model
with the architecture of 4-9-1 is expected to be employed in future research.
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After determining the best ANN architecture design, the approximation general
functions may be used to generate outputs by taking into account the weighted inputs and
the transfer function. In multiple-layer networks, the layer number defines the superscript
on the weight matrix, as shown in Figure 15. In the two-layer tansig/purelin network, the
proper notation was utilised. This network may be used to approximate generic functions.
It can arbitrarily approximate any function with a finite number of discontinuities given a
sufficient number of neurons in the hidden layer. The final weights of each parameter were
determined in this section to investigate the influence of each parameter on the stability
factor. Figure 15 depicts the dimensions of input, weight, bias, and the output matrices of
the optimal ANN model for predicting the stability factor of shallow elliptical tunnels in
cohesive-frictional soils. Hence, the predictive Equation (8) can be developed based on the
matrices derived from the ANN model in WEKA software.

Predicted value =

[
N

∑
i=1

IW2itansig(∑J
j=1 IW1ijxj + b1i) + b2

]
(8)

where X is the input variables; IW1 and IW2 are the weight matrix in the hidden and output
layers, respectively; J is the number of input variables; N is the number of hidden neurons;
and b1i and b2 are the biases in the hidden and output layers, respectively.
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The hidden weight (IW1) was calculated based on the number of input variables (J)
and hidden neurons (N) in the hidden layer. As seen in Figure 15, in the output weight
matrix (IW2), the number of rows corresponds to the number of hidden layer neurons (N),
and the number of columns corresponds to the number of output layer neurons (k). Each
neuron in the output layer has its own column. In this scenario, there is just one column
in the output layer. Table 4 shows the neural network constants of the best ANN model,
including the weight matrix and bias. These constants can be used to evaluate the stability
factor calculation of shallow elliptical tunnels in cohesive-frictional soils. These ideal ANN
network values may be utilised to create prediction equation functions and test them on
fresh datasets with varied parameter changes within specified ranges.
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Table 4. Neural network constants of the optimal model for stability prediction of shallow elliptical
tunnels in cohesive-frictional soils.

Hidden Layer Neurons (i) Hidden Layer Bias (b1)
Hidden Weight IW1

B/D (j = 1) φ (j = 2) γD/σci (j = 3) C/D (j = 4)

1 −1.8972 0.4966 0.3791 −0.4916 0.2817

2 −1.4926 0.5715 −0.2262 0.1143 0.7693

3 −5.1539 1.0019 −1.0584 0.2803 2.9550

4 −0.5608 −0.0674 0.1779 0.0326 0.3379

5 −0.8563 1.1308 −0.3793 −0.0940 0.8034

6 −0.6919 0.0469 −0.0108 −0.0048 0.3094

7 −3.2286 0.5069 −0.1487 −0.4482 1.5636

8 −1.4544 −0.7200 1.1056 0.4755 0.8460

9 −1.9549 1.6058 −0.0265 0.9068 −0.1308

Output
layer node

(k)

Output
layer bias

(b2)

Output weight IW2

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i =8 i = 9

1 2.6100 −0.8506 −0.7820 −3.5971 −0.0863−0.8197 −0.0514 −1.6245 0.6988 1.8593

6. Conclusions

The study established a machine learning-aided prediction of the stability of shallow
elliptical tunnels in cohesive-frictional soils. Four input dimensionless parameters included
the dimensionless overburden factor γD/c′, the cover–depth ratio C/D, the width–depth
ratio B/D, and the soil friction angle φ. The influences of all input dimensionless parameters
on the solutions of the stability factor σs/c′ were investigated. The solutions were computed
using finite element limit analysis (FELA). An artificial neural network (ANN) model was
then developed based on the training data of the FELA solutions. Since the computational
time to develop the algorithm of FELA is high and the use of the FELA software for
practicing engineers to obtain the stability solutions of elliptical tunnels in sands varies
case by case, the proposed schemes of the ANN model were developed in this study. In
addition, a commercial software is not always user friendly, necessitating the employment
of extra resources capable of giving information beneficial for decision making. Therefore,
the proposed solutions are not only for practicing engineers, but also for designers who can
potentially use the developed predictive equations to conveniently calculate the stability of
the tunnel. This will help them to understand the capacity and stability of the tunnel and
whether it can withstand the actual surcharge load on the ground surface without loss of
stability or not. The following conclusions can be drawn in this study.

• The combination of FELA solutions and the ANN is presented as a guide for geotech-
nical engineers. Note that the proposed predictive model for the stability factor of this
problem can be evaluated based on the complex solutions that are derived from the
matrices obtained in this study.

• It is notable that just one hidden layer with seven neurons can sufficiently build a
reliable high-performance neural network model.

• The proposed model can be used to accurately predict the stability factor of shallow
elliptical tunnels in cohesive-frictional soils based on a new dataset using the weight
and bias matrices derived in this study.

• The limitation of the proposed model is that the new dataset should be within the
ranges provided in this study.
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