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Abstract: To investigate vibration control and optimal design of transmission lines with tuned-mass-
damper-inerter (TMDI), the motion equation of transmission lines with TMDI is established in the
paper, and the closed-form solutions of the response spectrum of transmission line displacement are
derived by the frequency domain analysis method. The design parameters of TMDI are optimized by
fixed-point theory, and the vibration control performance of TMDI is discussed. The results show
that the increase in apparent mass ratio has a positive effect on the vibration control performance
of TMDI; the vibration control performance is greatly affected by frequency ratio and limited by
damping ratio; the increase in both mass ratio and apparent mass ratio reduces the peak values of
the displacement response spectra of transmission line with TMDI; however, blindly increasing the
apparent mass and mass ratio (β > 0.2 or µ > 0.4) has a limited effect on improving the vibration
control performance of TMDI; compared with conventional TMD, the peak values of the controlled
displacement response spectrum of the transmission line with TMDI can be reduced by about 12%,
and TMDI has a better vibration suppression effect on the transmission lines.

Keywords: tuned-mass-damper-inerter (TMDI); transmission line; wind-induced vibration; vibration
control performance; frequency-domain analysis; fixed-point theory optimization

1. Introduction

A transmission line is a lightweight flexible structure whose wind-induced vibra-
tion control, especially the vortex-induced vibration (VIV) control has been extensively
investigated recently [1–4]. VIV is a common wind-induced vibration phenomenon that is
caused by the formation of regular vortex shedding of fluid flow over the surface of the
structure. For a slender cylinder, such as a transmission line, when the vortex shedding
frequency is close to a certain natural frequency of the structure, the resonance occurs,
which is similar to the vibration response under harmonic excitation, as shown in Figure 1.
In addition, this vibration will not disappear due to the small variety of wind speeds, called
the “lock-in phenomenon.” There is much excellent literature detailing the progress of
VIV research [5–11].

Early studies of VIV were generally carried out for elastic cylindrical structures;
however, as the study progresses, the stiffness nonlinearity of the structure can broaden
the lock-in range [12]. This result is not satisfactory from the point of view of vibration
control, although the VIV response calculated by the linear stiffness model can predict
the response of stiffness nonlinearity [13,14]. It is shown that the stiffness nonlinearity
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has a significant effect on the VIV response amplitude of the structure [15]. To analyze
the nonlinear structural VIV response, the utilization of a reliable reduced-order model
is necessary. However, the existing reduced-order models have only been shown to be
valid for VIV response analysis of linear stiffness systems, and it is not clear whether they
are valid for nonlinear stiffness systems. To this end, Zhang [16] proposed predicting the
VIV vibration response of stiff nonlinear structures by forced vibration data. Due to the
high frequency and long duration of VIV, it poses a great threat to the structural safety of
transmission lines. Therefore, to ensure structural safety, vibration control research has
received a lot of attention. Vibration control methods for structures can usually be divided
into four types [17–20], of which the most widely employed is the passive vibration control
technique. This method can be traced back to as early as 1909 [21]. The passive vibration
control device consists of spring, damping, and mass. The common formation is dubbed
“tuned mass damper” (TMD). Initially, TMD was used in a supertall building in America.
The application of TMD effectively reduced wind vibration in the building [22–25]. Due to
the large energy consumption space required by TMD systems in the vibration control
process, pendulum-tuned mass damper (PTMD) and bidirectional tuned mass damper
systems as alternative solutions have been proposed successively [26–28]. The TMD
system is still effective in vibration control of nonlinear structural systems [29] proposed
an optimization method for TMD parameters considering nonlinear aeroelastic effects.
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Figure 1. Schematic of Karman Vortex Street.

Given the superior vibration suppression performance of the TMD system, this vibra-
tion control idea is widely used in other structures, such as transmission lines. A Stock-
bridge damper, an application similar to the TMD system, is the most conventional VIV
control device on the transmission line nowadays [30]. The Stockbridge type damper
was first proposed by G. H. Stockbridge in 1928 for aeolian vibration of suspension struc-
tures [31]. The Stockbridge type damper is composed of a hammerhead, steel strand, and
wire clip, as shown in Figure 2.
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Figure 2. Schematic drawing of the Stockbridge damper.

The investigation of the Stockbridge damper can be generally divided into two
branches. One is the research on the dynamic characteristics of the Stockbridge damper
alone [32–36], and the other is the research on the vibration response of the structural sys-
tem considering the coupling effect of the transmission and the Stockbridge damper [37,38].
Although with the continuous progress of research, the VIV control performance of the
Stockbridge damper for the transmission line has been continuously improved, there are
still limitations, i.e., the control effectiveness is highly dependent on the mass ratio of the
auxiliary structure to the host structure. With the development of society, the distance
of power transmission is growing, the requirements for the VIV control performance of
the Stockbridge damper for transmission lines are increasing. The instrument of blindly
increasing the mass of the auxiliary structure to improve the vibration control performance
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is not appropriate. Although there are indeed lots of achievements that have been made
in the energy dissipation mechanism, self-damping characteristics, and vibration control
measures of Stockbridge dampers, more effective vibration control solutions are still being
investigated at present. The inerter, a kind of two-node electrical element, has the feature
that the generated force is proportional to the relative acceleration across its two nodes, as
shown in Figure 3. This was first proposed by Smith in 2002 [39].
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The ideal mechanical behavior can thus be expressed by the following equation:

F = b
( ..
u1 −

..
u2
)

(1)

where
..
u1,

..
u2 are accelerations at two terminals. b is the inertance with a unit of the

kilogram. Although the concept of inerter, proposed in 2002, was initially employed for
research in the field of electrical engineering, the application of improving the vibration
control performance of dynamic vibration absorbers (DVA) by inerter dates back to the
1990s [40,41], even before the concept of inerter was proposed by smith. Because in the field
of civil engineering, it is also possible to achieve mechanical components with the same
characteristics, such as ball screw assemblies, rack-and-pinion, hydraulic and viscous type
inertial containers, etc. By the derivation of literature [42,43], common DVAs are employed
to improve control performance by adjusting stiffness and damping term; however, inerter-
based DVAs can improve damping performance not only in the traditional way but also
by adjusting inertial terms. Thus, a new vibration-damping configuration that connects
the mass of TMD to the ground through an inerter was initially proposed by Marian
and Giaralis [44], which is called a “tuned-mass-damper-inerter” (TMDI). The schematic
drawing of a single-degree-of-freedom (SDOF) structure incorporating a TMDI is shown
in Figure 4.
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Ref. [44] proves that TMDI can not only improve the vibration control performance of
the host structure but also reduce the mass of the subsidiary structure. Recently, Tiwari [45]
has proposed replacing the spring and damping in TMDI with SMA springs to constitute
a new inerter-based damper, dubbed SMA-TMDI, to address the problem of excessive
control force of conventional TMDI on the host structure [46–49]. In addition, TMDI has
received a lot of attention in the field of wind vibration control research. The effect of
different construction forms of TMDI on the wind vibration control performance of a
supertall building was investigated in the literature [50]. The control performance of TMDI
for VIV of the bridge is described in the literature [51–53]. The results show that TMDI can
effectively improve the vibration control performance of bridges, and it is more suitable for
utilization in VIV control of bridges than conventional TMD.

Accurate evaluation of vibration control performance and determination of optimal
parameters have always been the core content of dynamic vibration absorber research. For
the tuned-mass-damper-inerter parameter optimization, there are two methods. One is
the mathematical method, which aims to obtain the closed-form solution of the target
parameters by derivation based on the mechanical mechanism. Zhang [54] used the hollow
installation of wind turbine blades to control the vibration of TMDI blades, deduced the
optimal parameters of TMD and TMDI control models, and then verified the performance
of TMDI control blades through numerical simulation. Zhou [55] used the extended fixed-
point theory to explore the theory of the inertial container for DTMDI vibration control.
Barredo [56] obtained the closed solution of the dynamic damper (IDVAs) and verified the
analytical solution by numerical simulation and theoretical derivation. Wang [57] investi-
gated the effects of main structure elasticity and mass terms on the control performance of
TMDI through a series of tapered cantilever beam structures, which are provided for TMDI
optimization and main structure design. The other is the meta-heuristic algorithms, such
as the colliding bodies optimization (CBO) method [58]. Kaveh [59] verified the vibration
control performance as well as the robustness of TMDI in high-rise buildings through the
CBO method.

To address the problem of overweight Stockbridge dampers will pose a threat to the
safety of transmission lines. TMDI is employed to suppress the VIV of the transmission
line in this paper. This vibration control method is used for the first time in the VIV
control study of transmission lines. In Section 2, based on the mechanical mechanism,
the mathematical expression of the displacement response spectrum is obtained by the
frequency domain analysis method. The closed-formed solution of the optimal damping
ratio and the optimal frequency for TMDI are derived by the fixed-point theory [60]. Next,
in Section 3, the vibration control performance of TMDI and TMD is compared by the
numerical examples. Finally, the conclusions are summarized in terms of the investigation
of this paper (Section 4). The result shows that compared with conventional TMD and
Stockbridge dampers, TMDI has obvious advantages in transmission line vibration control.

2. Dynamics Model

In this section, the closed-form solution of the displacement response spectrum for
the transmission line-TMDI system is derived by the frequency domain analysis method
(Sections 2.1 and 2.2). Then, by observing this solution, it is found that the displacement
response spectrum is significantly influenced by the frequency ratio and damping ratio
of the TMDI, so next, the parameter optimization study of the TMDI is carried out by the
fixed point theory [55], and the closed-form solution of the optimal frequency ratio and
damping ratio is obtained (Section 2.3).

2.1. Equation of Motion

The transmission line can be simplified as a beam structure with small stiffness under
the action of tension. The stress analysis of its micro-segment is shown in Figure 5.
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In terms of the balance of forces in the horizontal direction, the equation is as follows:

TBcosαB − TAcosαA = 0 (2)

where TA and TB are the tensile forces of the two sections, respectively. αA and αB are the
angle between the normal and horizontal axis of the two sections.

In terms of the balance of forces in the vertical direction, the equation is as follows:

TBsinαB − TAsinαA −m1
∂2y(x,t)

∂t2 dx− c1
∂y(x,t)

∂t dx− ∂Q
∂x dx

= [−Fn(x, t)− F2(x, t)]dx
(3)

According to the bending moment balance condition, the equation is as follows:(
M + ∂M

∂x dx
)
−M−

(
Q + ∂Q

∂x dx
)

dx−m1
∂2y(x,t)

∂t2 dx dx
2 +

TBsinαBdx− TBcosαB
∂y(x,t)

∂x dx = 0
(4)

From the geometric differential relation of the micro-segment, the following equation
can be obtained:

tanαA =
∂y(x, t)

∂x
(5)

tanαB =
∂y(x, t)

∂x
+

∂2y(x, t)
∂2x

dx (6)

TA =
T

cosαA
(7)

TB =
T

cosαB
(8)

In combination with Euler–Bernoulli beam theory, the bending moment and shear
force of cross-section can be expressed as follows:

M = EI
∂2y(x, t)

∂x2 (9)

Q =
∂M
∂x

= EI
∂3y(x, t)

∂x3 (10)

Simultaneous Equations (2)–(4), by using the expressions of Equations (5)–(10) for
simplification, the equation of motion for the transmission line-TMDI system subjected to
concentrate load can be obtained as follows:

m1
∂2y(x,t)

∂t2 + c1
∂y(x,t)

∂t + EI ∂4y(x,t)
∂x4 − T ∂2y(x,t)

∂x2 = Fn(x, t) + F2(x, t) (11)
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where m1, c1 is the unit mass and damping of the transmission line along the span direction;
EI is the bending stiffness of the transmission line; y(x, t) is the differential vibrational
displacement of the line as a function of time and spatial coordinates; F2(x, t) is the force
of TMDI acting on the conductor at t time; Fn(x, t) is excitation forces; T is the average
tension of the transmission conductor; Q, M is the shear and bending moments of the
transmission line.

When the transmission line resonates, the external load is expressed as follows:

Fn(x, t) = δ(x− h) f̂ (x)sin(ω̄nt) (12)

where f̂ (x) is the amplitude of the vibration; ω̄n is the external force frequency.
δ is the Dirac function, as detailed in the following equation:

δx− h = &∞ x 6= h&0 x 6= h (13)

According to structural dynamics, F2(x, t) is the force of TMDI acting on the transmis-
sion conductor, which can be expressed as follows:

F2(x, t) = δ(x− a)
[
c2
( .
y2 −

.
y
)
+ k(y2 − y)

]
(14)

The TMDI motion equation can be expressed as follows:

(b + m2)
..
y2 + c2

( .
y2 −

.
y
)
+ k2(y2 − y) = 0 (15)

where m2, k2, c2, b denote the mass of the TMDI, the stiffness of the spring, the damping,
and the mass parameter of the inerter, respectively; a is the distance between the TMDI and
the leftmost end of the wire;

..
y2,

.
y2, y2 is the vertical displacement, absolute velocity, and

absolute acceleration of the mass block of the TMDI system.
Based on the modal decomposition method, the vertical displacement of the line y(x, t)

can be expressed as a linear combination of the vibration modes as follows:

y(x, t) =
∞

∑
n=1

un(t)φn(x) (16)

In which φn is the nth independent vibrational component of the transmission con-
ductor, whose vibrational function (φn(x) = sin(nπx/L)) is obtained by satisfying the
transmission conductor boundary conditions; un(t) is the transmission line of the nth order
vibration corresponding to the generalized coordinates.

Simultaneous Equations (11)–(15) are in Equation (16). The generalized single-degree-
of-freedom system motion equation of transmission lines with TMDI arbitrary nth modal
is presented as follows:

M
..
Y + C

.
Y + KY = F (17)

M =


M1 · · · 0 φ1(a)(m2 + b)

...
...

...
...

...
... Mn φn(a)(m2 + b)

0 · · · 0 m2 + b

 (18)

C =


C1 · · · 0 0
...

...
...

...
...

... Cn 0
−φ1(a)c2 · · · −φn(a)c2 c2

 (19)
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K =


K1 · · · 0 0
...

...
...

...
...

... Kn 0
−φ1(a)k2 · · · −φn(a)k2 k2

 (20)

Y =
[

u1 u2 · · · un y2
]T (21)

F =
[

φ1(h)F1(x, t) φ2(h)F2(x, t) · · · φn(h)Fn(x, t) 0
]T (22)

Mn =
∫ L

0

∞

∑
i=0

φi(x)m1φn(x)dx = m1

∫ L

0
[φn(x)]2dx (23)

Cn =
∫ L

0

∞

∑
i=0

φi(x)c1φn(x)dx = c1

∫ L

0
[φn(x)]2dx (24)

Kn =

[
EI
(nπ

L

)4
+ T

(nπ

L

)2
] ∫ L

0
[φn(x)]2dx (25)

where Mn, Cn, Kn denote the generalized mass matrix, generalized damping matrix, and
generalized stiffness matrix for the nth order of the transmission line.

2.2. Closed-Form Solution of Displacement Response Spectrum

To study the vibration control performance of TMDI, the displacement response
of the transmission line-TMDI systems needs to be obtained. Since the response of the
transmission line is the limit when aeolian vibration occurs, it is appropriate to consider
the system as a linear elastic structure [30]. In this section, the closed-form solution of the
displacement response spectrum of the transmission line-TMDI system is derived by the
frequency domain analysis method [61,62].

When the nth modal resonance occurs in the conductor, the time-domain equation of
motion is obtained from Equation (17) as follows:

[
Mn φn(a)(m2 + b)
0 m2 + b

][ ..
un..
y2

]
+

[
Cn 0

−φn(a)c2 c2

][ .
un.
y2

]
+

[
Kn 0

−φn(a)k2 k2

][
un
y2

]
=

[
φn(h)Fn(x, t)

0

]
(26)

A Fourier transform is performed on both sides of Equation (26) to obtain the displace-
ment response spectrum of the conductor system, as follows:

Y(ω) = H(ω)× F∗(ω) (27)

where H(ω) is the transfer function:

H(ω) =
(
−ω2M + iωC + K

)−1
(28)

The corresponding concentrated load spectrum is the following:

F∗(ω) =
[

φ1(h)F∗1 (ω) φ2(h)F∗2 (ω) · · · φn(h)F∗n (ω) 0
]T (29)

where the nth order concentrated load spectrum corresponding to a vibration duration of
t1 is [61]:

F∗n (ω) =
∫ +∞
−∞ f̂ (x)sin(ω̄nt)·e−iωtdt

= f̂ (x) ω̄n
ω2−ω̄2

n

[
(ω+ω̄n)

2ω̄n
e−i(ω−ω̄n)t1 − (ω−ω̄n)

2ω̄n
e−i(ω+ω̄n)t1 − 1

] (30)

The displacement response spectrum can be expressed as follows:

Y(ω) =

{
Un(ω)
Y2(ω)

}
= H−1F∗(ω) (31)
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H =

[
−ω2Mn + iωCn + Kn −ω2φn(a)(m2 + b)
−iωφn(a)c2 − φn(a)k2 −ω2(m2 + b) + iωc2 + k2

]
H−1 = 1

(−ω2 Mn + iωCn + Kn)( − ω2(m2 + b) + iωc2 + k2) − φ2
n(a)(iωc2 + k2)(ω2(m2 + b))

×
[
−ω2(m2 + b) + iωc2 + k2 ω2φn(a)(m2 + b)

iωφn(a)c2 + φn(a)k2 −ω2Mn + iωCn + Kn

] (32)

According to Equations (30)–(32), Un(ω) can be expressed as follows:

Un(ω) =
(−ω2(m2 + b) + iωc2 + k2)F∗n (ω)

(−ω2 Mn + iωCn + Kn)(−ω2(m2 + b) + iωc2 + k2) − φ2
n(a)(iωc2 + k2)(ω2(m2 + b))

(33)

where ω, ωn are external force-frequency, transmission line nth frequency; ζ1, ζ are trans-
mission line structure damping ratio, TMDI damping ratio; µ is the ratio of TMDI mass
m2 to nth mode mass of transmission line; β is the ratio of apparent mass b to TMDI mass
m2; γ is the ratio of TMDI to the nth frequency of transmission wire. The displacement
response spectrum of transmission wire with TMDI can be expressed as follows:

yn(ω) = φn(x)Un(ω) (34)

To express the transmission line-TMDI system model more clearly, the schematic
diagram of the structural system and the derivation parameters are listed shown in the
Figure 6.
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2.3. Closed-Form Solution of Optimization for TMDI

In Equation (34), the displacement response of the transmission line is significantly
affected by the TMDI damping ratio and frequency ratio. To control the maximum amplitude
of the displacement response, the TMDI parameters are optimized by fixed-point theory [55].

According to Equation (26), the equation of motion for the nth resonance of the
transmission line can be expressed as follows:{

Mn
..
un + φn(a)(m2 + b)

..
y2 + Cn

.
un + Knun = φn(h)Fn(x, t)

(m2 + b)
..
y2 − φn(a)c2

.
un + c2

.
y2 − φn(a)k2un + k2y2 = 0

(35)

Applying harmonic excitation force is as follows:

Fn(x, t) = f̂ (x)eiωt (36)
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In Equation (35), the displacement of transmission line -TMDI can be expressed
as follows:

un(t) = ûneiωt (37)

y2(t) = ŷ2eiωt (38)

where ûn, ŷ2 is the complex amplitude; therefore:

.
un(t) = iωûneiωt (39)

.
y2(t) = iωŷ2eiωt (40)

..
un(t) = −ω2ûneiωt (41)
..
y2(t) = −ω2ŷ2eiωt (42)

By substituting Equations (36)–(42) into Equation (35), the transmission line response
amplitude can be obtained as follows:

ûn = − φn(h) f̂ (x)(k2 − bω2 − m2ω2 + c2ωi)
−φn(a)(m2 + b)ω2(−φn(a)k2 − φn(a)c2ωi) − (Kn + Cnωi − Mnω2)(k2 + c2ωi − bω2 − m2ω2)

(43)

The amplitude of the main structure vibration system is expressed as Xst = φn(h) f̂ (x)/Kn,
and the dynamic amplification factor (DAF) of the main structure is expressed as follows:

∣∣∣∣ X1

Xst

∣∣∣∣ = Kn

√
(k2 − bω2 −m2ω2)

2 + (c2ω)2

√
a2 + d2

(44)

a = Knk2 − Cnc2ω2 − bKnω2 − φ2
n(a)bk2ω2

−k2Mnω2 − Knm2ω2 − φ2
n(a)k2m2ω2 + bMnω4 + Mnm2ω4 (45)

d = c2Knω + C1nk2ω− bCnω3 − φ2
n(a)bc2ω3−

c2Mnω3 − Cnm2ω3 − φ2
n(a)c2m2ω3 (46)

According to the fixed-point theory, the frequency response curves of the system, ig-
noring the damping of the main structure, all pass through the two fixed points. When the
fixed-point height is equal and reaches its maximum value, the vibration reduction effi-
ciency is the highest, and the DAF is generally expressed as follows:

∣∣∣ X1
Xst

∣∣∣ = Kn

√
(k2 − bω2 − m2ω2)2 + (c2ω)2√

[Knk2 − (bKn + φ2
n(a)bk2 + k2 Mn + Knm2 + φ2

n(a)k2m2)ω2 + (bMn + Mnm2)ω4]
2 + [(c2Kn)ω − (φ2

n(a)bc2 + c2 Mn + φ2
n(a)c2m2)ω3]2

(47)

To simplify Equation (47) into a general expression of dynamic amplification factor,
the following parameters should be introduced:

ωn =
√

Kn
Mn

, ω2 =
√

k2
m2 + b

ζn = Cn
2Mnωn

, ζ2 = c2
2(m2 + b)ω2

µ = m2/Mn, β = b/m2
λ = ω/ωn, γ = ω2/ωn

(48)

The DAF of the transmission line-ground TMDI can be obtained as follows:

∣∣∣ X1
Xst

∣∣∣ =

√√√√√√
(

1 − λ2
γ2

)2
+
(

2
γ

)2
(ζ2λ)2

(
1

γ2 λ4 −
(

1 + 1
γ2 + φ2

n(a)µβ + φ2
n(a)µ

)
λ2 + 1

)2
+

(
2 − 2(1 + φ2

n(a)µβ + φ2
n(a)µ)λ2

γ

)2

(ζ2λ)2
(49)
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According to the fixed-point theory, the expression for optimal frequency ratio is
as follows:

γopt =
1

1 + φ2
n(a)µ(1 + β)

(50)

the expression for the optimal damping ratio is as follows:

ζ2opt =

√
3φ2

n(a)µ(1 + β)

8(1 + φ2
n(a)µ(1 + β))

(51)

and the maximum dynamic amplification factor can be simplified as follows:

∣∣∣∣ X1

Xst

∣∣∣∣ =
√

2 + φ2
n(a)µ(1 + β)

φ2
n(a)µ(1 + β)

(52)

3. Numerical Examples

In this section, a numerical example is carried out to illustrate the feasibility and
effectiveness of the TMDI in the VIV control performance of the transmission line.

The transmission line is made of LGJ300/25 stranded steel wires, and the detailed
parameters are shown in Table 1. The initial tension of the wire is 20% RST, approximately
equal to 16.68 kN.

Table 1. Transmission wire parameter table.

Parameters Numerical
Value Parameters Numerical

Value

Structure
Number of shares/diameter

(mm)

Aluminum 48/2.85 Outer diameter (mm) 23.76

Steel 7/2.22 Calculation of
pull-off force (N) 83,410

Calculated area

Aluminum 306.21 Modulus of elasticity
(N/mm2) 65,000

Steel 27.1 Mass per unit length
(kg/km) 1058

Total 333.31 Length of test
section (m) 30.84

The harmonic force with amplitude A = 230 kN and frequency f = 38.421 Hz was
applied 2.6 m away from the end of the line, and the transmission line produced the third
resonance. TMDI is equipped with L/2 of the transmission line. Under concentrated load,
the displacement response spectrum at L/2 of the transmission line will be analyzed in
this section.

3.1. Parameter Optimization Analysis

As shown in Figure 7, the optimal frequency ratio γopt linearly decreases and the
optimal damping ratio ζ2opt linearly increases as the apparent mass ratio β increases, which
is similar to the effect of µ on these two parameters.

As shown in Figure 8, with the increase in apparent mass ratio, the dynamic amplifica-
tion factor of the transmission line gradually decreases, which means the vibration control
performance of the TMDI keeps improving. When β = 0.6, the dynamic amplification factor
of wire decreases by about 30% compared with conventional TMD. In addition, the increase
in β also has a positive effect on the frequency bandwidth of the vibration control of the
transmission line, as shown in Figure 8. Therefore, TMDI is superior to TMD in vibration
control of transmission lines.
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3.2. Parameters Sensitivity Analysis

To analyze the sensitivity of the parameters, the influence of the TMDI frequency ratio
and damping ratio on the displacement response spectrum is discussed in this section.

As shown in Figure 9a, when µ = 0.02 and β = 0 (TMD), the peak displacement
response spectrum of the transmission conductor-TMDI system is significantly affected
by the tuning of the frequency ratio and the damping ratio. That is, for the conventional
TMD with a mass ratio of 0.02, the tuning of damping ratio and frequency ratio have a
large impact on its control performance, and the robustness of control performance is not
ideal. As β increases, the effect of tuning the damping ratio and frequency ratio of DVA on
the peak of the displacement response spectrum gradually decreases. It can be seen that
the existence of the inerter plays a positive role in the robustness of the vibration control
performance of DVA.

Next, the effect of mass ratio on the robustness of TMDI is discussed. As the mass ratio
increases from 0.02 to 0.04, the peak displacement response spectrum of the transmission
line-TMDI system is further reduced by the frequency ratio and damping ratio tuning
of TMDI. That is, the mass ratio also has a positive effect on the robustness of TMDI
vibration control.

In addition, it can be seen from Figures 9 and 10 that the value of TMDI design
frequency has a significant impact on the peak value of line response. But the damping
ratio has limited influence on the vibration suppression effect.
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3.3. Vibration Control Performance of TMDI

To evaluate the vibration control performance of TMDI, the influence of the peak value
of the transmission line displacement response spectrum on mass ratios and apparent mass
ratios is discussed in this section.

As shown in Figure 11, with the decrease in mass ratio and apparent mass ratio, the
peak value of the transmission line displacement response spectrum increases nonlinearly.
Especially when the apparent mass ratio is between 0–0.2 and the mass ratio is between
0–0.4, the peak variation trend of this displacement spectrum is obvious. When β > 0.2 or
µ > 0.4, the peak value of the displacement response spectrum tends to be stable gradually.
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This means that in the process of TMDI optimization design, blindly increasing the
mass ratio or apparent mass ratio has a limited effect on improving the vibration control
performance of the TMDI.

To intuitively compare the vibration control performance of TMD and TMDI, the
displacement response spectrums of transmission lines controlled by TMD or TMDI, re-
spectively, are shown in Figure 12.
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Figure 12. The displacement response spectrums of transmission line with TMD and TMDI (µ = 0.02).

It can be seen from Figure 12 that the peaks of the transmission displacement response
spectrum with TMDI and TMD are 1.34 and 1.58, respectively. Compared with conventional
TMD, the peak value of the displacement spectrum of the transmission line with TMDI
decreases by about 15%, and the vibration control performance is more significant.
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4. Conclusions

In this paper, the differential motion equation of a transmission line with TMDI un-
der harmonic excitation is established. Based on the Fourier transform, the displacement
response of transmission lines with and without control is analyzed in the frequency do-
main. Based on fixed-point theory, the parameter optimization analysis of TMDI is carried
out. According to the optimization results, by comparing with the conventional TMD, the
vibration control performance of TMDI is evaluated. The conclusions are as follows:

(1) With the increase in apparent mass ratio, β, the vibration control performance of TMDI
increases. When β = 0.6, the dynamic amplification factor of the transmission line can
be reduced by 30% compared with conventional TMD. In addition, the increase in β
has a positive impact on the frequency band width of TMDIs vibration suppression;

(2) The vibration control performance of TMDI is greatly affected by the frequency ratio,
but the effect of the damping ratio is limited;

(3) Both mass ratio and apparent mass ratio, especially β < 0.2 or µ < 0.4, have positive
effects on the vibration control performance of TMDI. However, with the increase in
mass ratio and apparent mass ratio, of which, the influence on the vibration control
performance of TMDI gradually decreases;

(4) When the mass ratio µ = 0.02, the peak value of the transmission displacement re-
sponse spectrum is about 1.34. Compared with TMD, the peak value of the response
spectrum decreases by about 12%, and TMDI has better vibration reduction perfor-
mance than TMD.
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