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Abstract: Quantifying the energy consumption of buildings is a complex and multi-scale task, with
the entire process dependent on input data and urban surroundings. However, most urban energy
models do not account for the urban environment. This paper employs a physical-based, bottom-up
method to predict urban building operating energy consumption, using imported topography to
consider shading effects on buildings. This method has proven to be feasible and aligned well with the
benchmark. Research also suggests that commercial and transport buildings have the highest energy
use intensity, significantly more than residential and office buildings. Specifically, cooling demands
far outweigh heating demands for these building types. Therefore, buildings in the commercial and
transportation sectors would receive greater consideration for energy efficiency and improvements to
the cooling system would be a priority. Additionally, the method developed for predicting building
energy demand at an urban scale can also be replicated in practice.

Keywords: urban building energy modelling; physical-based bottom-up; building energy use;
building types

1. Introduction

Cities emit 70% of CO2 emissions and consume two-thirds of the energy produced in
the world [1], while buildings consume more than one-third of the final energy consumption
globally [2]; therefore, there are more opportunities to develop sustainably by increasing
energy use efficiency in buildings. Such opportunities are particularly important for China,
as a result of its exponential rate of urbanisation. The global data platform of Statista has
shown that China has achieved a 64.72% population urbanisation rate at the end of 2021 [3].
This means that there will be a higher energy demand for buildings, resulting in higher
carbon emissions. Therefore, it is significant to have a detailed knowledge of the dynamic
energy consumption of the buildings in particular cities with compact urban environments.
Figure 1 shows the amount of floor space, both under construction and to be completed,
from 2015 and 2019, and the yearly increase is evident [4].

Quantifying urban-scale energy use in buildings is a complex, cross-sectoral, and
multi-scale task, with the entire process highly dependent on the urban environment [5].
Hong et al. (2018) mention that the emergent of building energy modelling is one of
the optimum supports available for energy efficiency, resilience, and sustainability [6],
and the model extensively improves energy performance rating, energy-efficient design,
code compliance, and optimised operations. Reinhart and Cerezo Davila (2016) explain
that the urban building energy model could accommodate many spatial scale sizes from
a block, district, and, ultimately, an entire city [7]. Ferrando et al. (2020) use a user-
oriented overview to present the physics-based urban scale energy models’ tools, balancing
complexity, usability, accuracy, and computing requirements [8]. These scholars’ generic
modelling theory findings are relevant and significant for urban-scale energy modelling
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in its processes and applications. However, most urban building energy modelling has
mainly disregarded the impacts of the urban environment around buildings. For example,
some have even wholly overlooked shading and the exchange of long-wave radiation of
the environment and buildings.
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Figure 1. Floor space of buildings constructed by construction enterprises.

This paper reviews approaches to urban building energy models and then presents
a simple method to predict building energy consumption from the diverse functions of
building stock, as an example, by an archetypal physical-based, bottom-up approach. The
urban building energy model in this study considers the impacts of the urban environment
(e.g., overshadowing between buildings) on the simulation, which can fill the research
gap in the previous study. Moreover, this study also presents all the processes that can be
replicated, with minimal difficulties, to additional research references.

2. Literature Review of Urban Building Energy Modelling

Two approaches are fundamental to modelling urban building energy consumption:
top-down or bottom-up. Prior scholars have used such approaches to modelling urban
building energy for the study [1,5,9–11]. Top-down approaches treat a group of buildings as
a single entity by estimating energy use at the sectoral building level, without considering
differences between individual buildings. By contrast, based on bottom-up approaches, the
energy consumption in individual buildings can be modelled, which can then be aggregated
to the urban area. Figure 2 presents the approaches’ outline of the urban building energy
modelling.
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Figure 2. Approaches to modelling urban building energy.

2.1. Top-Down Model

The top-down model forecast of building consumption in urban areas is based on
historical aggregate energy data; it also forecasts the long-term correlations between energy
use within an urban area with different types of variables, such as the economy [12], overall
climate conditions [13], and technical features, such as system or envelopes [14]. Such an
approach is applicable on an aggregated level, divided into various physical, technological,
and socio-econometric classifications. Therefore, top-down models do not provide details
for current and future technological options, as they concentrate on macroeconomic trends,
instead of individual physical factors that consume energy in the buildings.

2.2. Bottom-Up Model

Compared to the top-down model, bottom-up models focus on two types of disaggre-
gated levels: physical-based and statistical models [15]. This necessitates a vast amount
of empirical data to validate each component’s description [16]. The statistical models
utilise machine learning to determine energy demands from buildings; on the other hand,
physics-based models use detailed modelling and simulation approaches that originated
from building energy models [17].

Bottom-up models forecast energy demands within individual buildings, before scal-
ing up to neighbourhoods or entire cities. Such models are robust in determining the
optimum cost-effective measures to reduce carbon dioxide emissions, through the use of
available technologies. Energy consumption from each building can be calculated using the
models, up to an hourly basis, before scalability to the whole city is applied [18]. However,
these models necessitate a vast amount of quantitative data, with limited accessibility, due
to privacy and security. Table 1 summarises the advantages and disadvantages of top-down
and bottom-up approaches.

The above table indicates that top-down models cannot distinguish energy consump-
tion, due to individual end-uses. Commonly used variables include macroeconomic
indicators, such as economy, price indices, and climatic conditions. Similarly, the reliance
on historical data is a drawback, since top-down models cannot be used to model discontin-
uous technological advancements. In addition, the lack of detail of the energy consumption
of individual end-uses makes it impossible to identify critical areas for improving energy
efficiency. On the other hand, top-down models have the advantage of using only aggregate
data, which is widely available, simplicity, and reliance on historical national energy values
that provide “inertia” to the model.

Bottom-up models can determine how much energy is consumed by each end-use
and identify areas where improvements can be made. This approach can determine total
energy consumption, without using historical data to calculate energy consumption. The
primary drawback of this approach is that the input data required is greater than that of
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top-down models, and the bottom-up models are more complex, in terms of calculation or
simulation techniques.

Table 1. Comparison of urban building energy modelling approaches [9,10,19].

Urban Building Energy
Modelling Approaches

Top-Down
Bottom-Up

Physical-Based Statistical-Based

Advantages

Can make a continuous
long-term prediction.

Modelling with physically
measurable data.

Modelling can take into
account macroeconomic and

socioeconomic impacts.

Connections can be obtained
between macroeconomics,

social economics, and
building energy consumption.

Energy consumption
calculation, based on the heat

balance equation of the
building.

Include occupants’ behaviour.

Can predict building energy
consumption under different
energy policies and scenarios.

Total energy demand can be
predicted as well as the

different end-users can be
given (e.g., heating, cooling,

and lighting).

Simple to model and use.

The input data is simple and
does not require building

construction details.

Can assess and quantify the
impact of different technology

combinations on energy
consumption.

Can predict the proportion of
energy consumption for

typical different end uses.

Disadvantages

Highly depending on the data
of historical energy

consumption.

Occupant behaviour and
many uncertainty factors

relating to energy
consumption should be

assumed.

Data are limited to diversity
and flexibility.

Predict energy consumption,
based on the past economic

conditions.

A large amount of data should
be investigated relating to

buildings, and high
computational volume.

Limited capacity to assess the
impact of energy efficiency

measures.

Can not provide energy
consumption of individual

buildings, as well as the
energy consumption of each

component.

Ignore the impact of economic
factors on energy

consumption.

An extensive survey sample is
required to represent the

overall diversity.

2.3. Data Input and Output

These data are derived from various sources, including the geometry of the building,
thermophysical characteristics of its components (e.g., walls, roofs, and glazing), use of
equipment, weather data, and occupancy frequency. A simplified building prototype can be
used to observe the overall effects from an individual building to a group of buildings [20].

Outputs from a simulation usually includes energy demands, efficiency, and the use
of renewable energy in some cases [17]. These outputs could be presented both spatially
or statistically. Data on individual buildings could be used to scale up, according to the
requirements for statistical presentation.

However, the spatial distribution of energy demand in urban areas could not be
represented within the statistical presentation, thus having less relevance in policies about
urban planning. Conversely, geospatial techniques are used to determine large-scale energy
demands in spatial presentation; thus, its main advantage is that it could precisely locate
areas with high energy demand. Such information could assist in energy planning and
conservation and guide policy-makers who may not be specialists in complex energy
systems. Furthermore, the spatial presentation can include spatial variation, according to
climate conditions.
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2.4. Model Calibration

Recently, there has been much progress in calibrating energy models. Such progress in-
cludes pattern-based [21], Bayesian calibration [22], and optimisation-based methods [23,24].
There are mainly three approaches that have been widely used for calibration of energy
models: manual calibration accompanied by a computer program or graphic representation,
special testing and analytical approaches, and mathematical approaches [25].

Studies have demonstrated limitations for the calibration of urban building energy
modelling, due to the vast number of simulations involving vast amounts of data, high
levels of uncertainty, and interaction between buildings nearby. There is no consensus on
conducting such a calibration, and previous studies have demonstrated these limitations.
For example, Fonseca and Schlueter (2015) have conducted modelling around 1400 build-
ings, based on different archetypes, and the model error rate is at 1% to 19% by the energy
service category at the neighbourhood scale [26]. Sokol et al. (2017) validated the method
on a set of 2263 residential buildings, using monthly and annual measured energy data to
calibrate [27]. However, the methods are only tested for residential buildings; they do not
apply to other climate zones or building types.

3. Method

Figure 3 illustrates the process flow of the study, which can be broken down into
three main steps. In step 1, data were collected, refined, and input. Buildings are also
grouped based on their similar functions in this step. The second step involved urban
building energy modelling by VirVil SketchUp plug-in and HTB2 calculation. The monthly
calculation was used to calculate energy demand, and the results were output and compared
with the benchmark level in step 3.
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3.1. Model Assumption and Principles

Data input and simulation were based on several assumptions. For example, each
type of urban building energy model was viewed as a single function, regardless of its
multifunctional. Although some of the buildings we investigated were mixed-use, they
were still classified as single-use for simulation. A second problem was the lack of fabric
construction data for residential buildings; therefore, we used local design standards (The
design standard for energy efficiency of residential buildings in hot summer and cold winter zone
(2010); the design standard for energy efficiency of public buildings (2015)) for some parametric
settings. Building energy modelling was based on two principles:

(1) Topography, imported to consider its shading influence on the buildings, thus mod-
elling urban building clusters in the actual urban geometry from Google Earth, which
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can simulate how the urban environments influence urban building energy consump-
tion.

(2) Group buildings as archetypes, based on their functions for the simulation.

Categorising buildings into archetypes highly depends on the functions of buildings.
VirVil plug-in developed by the welsh school of architecture, Cardiff University, is used to
quantify energy consumption from building stock in this study [28]. It is based upon the
calculation engineering of HTB2 (heat transfer in buildings) by modelling energy building
stock [29]. This study only focuses on predicting operational energy consumption.

3.2. Data Description and Collection

This study used data collected, between 2015 and 2016, from the on-site survey,
literature, local and national regulations, and websites. Table 2 illustrates the ways to collect
these data. Data collected via on-site surveys are building information (their functions
and floor areas), thermal properties (U values) (shown in Table 3), fabric constructions
(materials, construction, and glazing type), internal gains, and diary files.

Table 2. Approaches to data collection.

Building
Classification

Physical
Buildings Land Use Diary File Energy Supply

On-site survey Website;
local regulations

Local authority;
website;

on-site survey

Investigation;
national

standards
On-site survey

Residential,
commercial,
office and

education, hotel,
and transport

Location and
climate zone;

Characteristics
and properties of

buildings
(construction,
materials, etc.)

Proportions and
built areas for
each building

type

Occupancy and
operating
schedule

Energy supply
(electricity, gas,

coal,
renewables)

Table 3. Thermal insulation levels for residential and public buildings in this research.

Elements

U Values U Values (w/m2/◦C)

Residential
Buildings Public Buildings

Wall 1.42 0.85

Ceiling 3.46 3.35

Ground 1.42 1.40

Roof 1.04 1.02

Window 5.4 5.32

3.3. Building Energy Modelling
3.3.1. The Software Used in This Research

The software adopted in this research includes HTB2 and VirVil SketchUp plug-in.
Both of them are developed at the Welsh School of Architecture, Cardiff University.

HTB2 is a computer program designed for simulating the energy and environmental
performance of buildings. It is also able to carry out dynamic thermal simulation and apply
it to the field of low carbon design and energy efficiency of buildings. It has been developed
for thirty years and extensively tested and validated [30].

The VirVil SketchUp plug-in is an extension development of HTB2 for urban scale
modelling. By linking SketchUp with HTB2, it can effectively simulate the energy demand
for multiple buildings on a community or urban scale, considering the shading effects from
adjacent buildings.
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3.3.2. Climatic Characteristics in Wuhan

Wuhan is in the hot summer and cold winter zones and experiences a severe climate in
summer and winter periods. It is extremely hot in July and August and freezing during the
cold winter period in January. Temperatures in the city average around 18 ◦C throughout
the year. January is the coldest month, with an average temperature of minus 10 ◦C.
Without the effect of direct solar radiation, the temperature can reach almost 40 ◦C in July
and August, as shown in Figure 4.
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Figure 4. The statistics of daily dry bulb temperature in Wuhan [31].

In July, solar radiation peaks, with 650 MJ/m2, as shown in Figure 5, for total monthly
solar radiation.
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The meteorological parameters are derived from Wuhan city’s typical meteorological
year (TMY) and used for energy simulations with HTB2. Meteorological data is avail-
able from the weather data of the EnergyPlus website (https://energyplus.net/weather-
location/asia_wmo_region_2/CHN/CHN_Hubei.Wuhan.574940_CSWD (accessed on 16
March 2022)), which was extracted and converted from a “. epw” format into a “. met”
format by using the HTB2 Weather File Software.

3.4. Simulation and Comparison

Simulation of the urban environment is complex, but the methodology simplifies it
by using simple energy prediction tools and grouping similar buildings. Buildings are
typically grouped according to their functions, such as residential, commercial, or office,
which is reasonable for simple problems. The best way to group buildings in this study is
based on their size and construction date. In order to achieve this, several building types
are surveyed, and the results of these surveys are pooled together to produce groups of
buildings with similar energy predictions. The time step for the calculation is set for 60 s,
and the total run length is 365 days, as is the annual energy demand. After the simulation,

https://energyplus.net/weather-location/asia_wmo_region_2/CHN/CHN_Hubei.Wuhan.574940_CSWD
https://energyplus.net/weather-location/asia_wmo_region_2/CHN/CHN_Hubei.Wuhan.574940_CSWD
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outcomes are compared with the benchmark levels of the literature to validate the accuracy
of the simulation.

4. Case Study
4.1. General Introduction to the Study Area

The city of Wuhan is regarded as a city representative of hot summer and cold winter
climatic zone in China. The urban building energy modelling consists of ten typical block
zones near Wuchang railway station, at a radius of 1km, with an estimated area of 1.92 km2,
as displayed in Figure 6.

The majority of selected building blocks within the Wuchang district were built from
the 1960 to the 2000s, with a wide range of building types, such as commercial, residential,
hotels, and offices. Table 4 shows in-depth information for every block zone. As shown
in Figure 7, 64%, 13%, and 12% of the buildings are residential, educational, offices, and
commercial. Apart from the west square of the railway station, residential dwelling is the
main building category in the eastern part of the station.
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Table 4. Built-up area of individual block zone.

Land Zone Areas (ha) Building Type Built-Up Area (m2)

A 25.1

Office 22,645
Commercial 27,307
Residential 301,183
Education 12,176

Hotel 37,830
Transport 3386

B1 5.6

Office 15,562
Commercial 5696

Hotels 58,966
Residential 12,991

B2 1.7 Office 24,009

C 16.9
Transport 242,281

Commercial 6872

D1 6.2
Office 71,747

Commercial 44,964
Residential 37,335

D2 0.8
Commercial 491

Office 6667

E1 13.3
Office 22,225

Commercial 14,866
Residential 246,434

E2 12.8

Office 7640
Commercial 15,957
Education 4932
Residential 246,705

F1 7.2
Office 16,971

Commercial 9155
Residential 108,627

F2 4.6

Office and medical 25,810
Hotel 2158

Education 7653
Residential 67,210

4.2. Modelling Building Stock Energy Consumption

The most effective method of predicting the energy consumption of building blocks
is modelling simulation. All the building archetypes will be modelled by SketchUp and
calculated using the VirVil plug-in, which simulates the dynamic thermal performance
of building stock. The plug-in was developed by Cardiff University and established a
platform-linked calculation tool, HTB2, and a modelling tool, SketchUp.

The difference between VirVil with other simulation tools is that it could identify
the interaction upon the buildings and their surroundings [32]. In addition, VirVil is a
plug-in, which means it can be used conveniently with the SketchUp tool for modelling at
the urban scale.

The buildings are designated into five categories for modelling purposes, as shown
in Figure 8. They are education and office, commercial, residential, transport, and hotel.
A few detailed building characteristics (e.g., building shape) were simplified as they pose
little significance to energy consumption. The accuracy of this method was validated by
comparing the simulation results with a benchmark level from the literature.
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4.3. Simulation Conditions

Data need to be input into the model to predict the energy demand of building stocks.
Such data include fabric construction (ceiling, roof, walls, and floor), U value (thermal
properties), climate conditions, the efficiency of space heating systems, and occupants.
Simulations for heating and cooling demand are set under both local and national design
standards with spatial data, such as building geometry, obtained through Google Earth. The
details of the simulation setting, relating to building constructions, can be referenced from
previous research [31]; data input and output are shown in Figure 9, and the operational
schedule is set in Table 5.
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Table 5. The parametric setting for urban building energy simulation (the design standard for energy
efficiency of residential buildings in hot summer and cold winter zone (2010); the design standard for
energy efficiency of public buildings (2015)).

Parametric Setting

Building Types
Residential

Building Hotel Building Commercial
Building

Office and
Education
Building

Transportation
Building

Heating/cooling schedule

8 November–4
March;

6 May–8
September

8 November–4
March;

6 May–8
September

8 November–4
March;

6 May–8
September

8 November–4
March;

6 May–8
September

8 November–4
March;

6 May–8
September

Mon–Fri
00:00–08:00 and

18:00–24:00
Sat–Sun

00:00–24:00

Mon–Sun
1:00–24:00

Mon–Sun
09:00–21:00

Mon–Fri
08:00–18:00

Mon–Sun
00:00–24:00

Setpoint (◦C) 18/26 22/25 18/25 20/26 18/25

Internal heat gains (occupancy,
lighting, and small power) 15 W/m2 25 W/m2 40 W/m2 20 W/m2 60 W/m2

Air change per hour 1.0 2.0 2.5 2.0 2.5

5. Results Analysis and Validation
5.1. Results Analysis

Results of the simulation are operational energy demands from cooling and heating
and other components, such as lighting, hot water, and small power, as depicted in Figure 10.
Building types influence energy consumption, and electricity and natural gas are major
contributors to carbon dioxide emissions.
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Table 6 shows the annual energy demand for heating and cooling among five building
types. There is a noticeable difference between the energy demand for cooling and heating
in the study area. In terms of cooling energy demand, residential buildings consume
45 GWh per year, followed by transport and commercial buildings. This may be because
these types of buildings have the largest floor areas, therefore requiring the most cooling
energy. While the areas occupied by transport buildings are not as large as other buildings,
they consume more energy, as they are open 24 h a day, especially during extreme weather
conditions.



Buildings 2022, 12, 385 12 of 16

Table 6. Output of annual heating and cooling demands, based on five building functions.

Building Type Count Building Floor
Area (m2)

Heating
Demand

(kWh/year)

Cooling
Demand

(kWh/year)

Heating
Demand

(kWh/m2/year)

Cooling
Demand

(kWh/m2/year)

Office and
education 40 187,121 2,813,697 −5,471,758 15 −29

Residential 141 918,681 7,878,151 −44,640,650 9 −49

Hotel 15 88,825 7484 −10,816,210 0 −122

Commercial 20 174,181 39,160 −16,007,554 2 −92

Transport 3 71,188 270,576 −17,117,151 4 −240

Figure 11 depicts the energy demand of five types of buildings. These are cooling, hot
water, SPW (small power), lighting, ventilation, and heating, with negligible proportions.
Despite having the smallest floor area, transport buildings consume the most energy,
followed by hotels and commercial buildings. Based on their functions and operational
schedule, these features demonstrate high potential for energy savings in commercial and
transportation buildings. Figure 11 also shows that the energy intensity (kWh/m2/a) from
transport and commercial buildings is higher than that from residential and office buildings,
clearly visible. It may be attributed to two factors: the longer time spent in daily operation
in these two types of buildings and large number of people inside, which results in greater
cooling demand in summer.
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5.2. Results Validation

Table 7 compares the benchmark of energy use intensity, with the modelling prediction
results for transport, commercial, hotels, office, and educational buildings; it clearly shows
that the prediction results are in line with the benchmark, apart from residential buildings,
which are more than the benchmark. There are several possible reasons for this. Firstly, the
investigation does not provide data on the façade of residential buildings, so the simulation
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is based on local building design standards. As such, this differs from actual situations,
which would result in a discrepancy in energy demand for residential buildings.

Table 7. Benchmarks of energy demand (kWh/(m2·a) in Wuhan [33].

Building Type Building
Description Mean Value Standard

Deviation Prediction

Residential

Below 90 square
metres 60.1 32.2

163.8

Above 90 square
metres area
(excluding

luxury
residential)

43.9 32.2

Luxury
residential 91.3 21.8

Office

Standard office
buildings (using

a centralised
air-conditioning

system)

67.7 19.0

109.4

Standard office
buildings (using

split air-
conditioning)

58.1 36.2

Government
office buildings

with central
air-conditioning

system

90.4 27.4

Educational
Kindergarten 29.7 14.0

Primary school 18.2 9.4

Hotel

Three stars and
above 233.1 114.6

273.3
Below three stars 216.5 -

Commercial

Large
supermarket 263.8 92.1

277.8

Large shopping
malls 207.9 106.6

Medium and
small

supermarket
371.6 -

Middle and
small shopping

malls
207.6 -

Shops 43.2 -

Transport
Bus terminal 55.0 -

458.8
Railway station 469.6 -

Moreover, since most residential buildings date back to the 1990s, while public build-
ings were constructed around 2005, the heating systems in most of them are inefficient
and outdated. Additionally, central cooling systems were not used in Wuhan at that time,
contributing to the high energy use intensity of the residential buildings. These factors
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would significantly affect the difference between the predicted energy use intensity and
benchmark level of residential buildings.

6. Discussion and Conclusions

This study employs physical-based, bottom-up models to predict urban building
operational energy demand, and the modelling process involves data inputs, modelling,
and validation. However, physical-based, bottom-up models are based on calculating every
building’s energy consumption, and they can deal with the interconnections between the
buildings and the surrounding environment, e.g., shading effects. These models need a
vast amount of data to characterise every building and require significant computational
effort. Therefore, they are typically used for highly technical purposes, such as providing
high-quality data for energy planning, large-scale community retrofitting, and optimisation.

For urban building energy model simulations, the largest uncertainty is associated
with the definition and detailed description of archetypes that represent a building stock
reliably. In most cases, it is impossible to estimate simulation uncertainty or calibrate
an urban building energy model to reduce errors, because there is a tight restriction on
access to measured building energy use and general lack of knowledge about the thermal
properties of buildings.

The validation studies of urban building energy models for larger groups of buildings
showed good agreement with measurements, but simulation errors were significantly
higher for individual buildings [7,34].

This research made the building operational energy demand forecast based on hot
summer and cold winter climatic zones, as an example, not considering other climate zones.
However, energy demand from buildings is highly correlated with climate conditions
particularly used for heating and cooling. Additionally, there were assumptions during the
modelling of the building stock. For example, commercial buildings may have a mixed-
function purpose. VirVil treats each type of building as a single function and the whole
individual building as a thermal zone for calculation.

Furthermore, buildings consume energy from the whole life cycle. This research only
focuses on operational energy consumption, while disregarding other processes, such as
materials production and transport (embody energy).

This research successfully uses an archetype physical-based, bottom-up method to
forecast the energy demand from building stock at the urban level. It concludes:

• An archetypal physics-based, bottom-up approach is feasible to predict urban en-
ergy consumption from building stock. Compared with the predicted outcome, the
benchmark level proves that this is a feasible and reproducible approach.

• Findings indicate that transport and commercial buildings used the most energy,
significantly more than office and residential buildings. Consequently, these two types
of buildings would receive more attention for energy efficiency.

• The cooling demand far outweighs the heating demand across all building types in
Wuhan. Hence, improving system cooling efficiency is a priority for energy savings.
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