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Abstract: It has been challenging for designers to identify the appropriate design parameters that
would reduce building energy consumption while achieving thermal comfort for building occupants.
This study aims to determine the most important architectural building design parameters (ABDPs)
that can increase thermal comfort and reduce energy use in educational buildings. The effect of
15 ABDPs in an Australian educational lecture theatre and their variabilities on energy consumption
and students’ thermal comfort for each parameter were analysed using Monte Carlo (MC) techniques.
Two thousand simulations for every input parameter were performed based on the selected distribu-
tion using the Latin hypercube sampling (LHS) technique. Sensitivity analyses (SA) and uncertainty
analyses (UA) were used to assess the most important ABDPs in terms of thermal discomfort hours
and energy consumption. The study found that the ABDPs, such as cooling set-point temperatures
and roof construction, significantly reduce the operative temperature by up to 14.2% and 20.0%,
respectively. Consequently, these reductions could significantly shorten the thermal discomfort hours,
thereby reducing energy consumption by 43.7% and 41.0%, respectively. The findings of this study
enable building designers to identify which ABDPs have a substantial impact on thermal comfort
and energy consumption.

Keywords: thermal comfort; energy consumption; educational building; building energy simulation;
architectural building design parameters

1. Introduction

Energy use for heating, cooling and ventilation in buildings accounts for more than
one-third of global energy consumption and around 40% of total CO2 emissions [1]. The
energy consumption per square metre for buildings needs to be reduced by around 30%
by 2030 (compared to 2015) in order for the global climate ambitions set forth in the
Paris Agreement to be achieved [2]. According to previous studies [3–5], improvement
in building performance has a key role to play in reducing energy consumption. It is
important that buildings are designed to provide high performance in various scenarios,
including a wide variability of thermal occupant behaviour [6]. Building performance can
be expressed by different performance indexes, such as energy consumption, occupant
satisfaction and indoor environmental quality (IEQ) [7,8]. Providing a comfortable and
healthy indoor environment is one of the core functions of building energy systems [9,10].
Improving building performance can not only achieve high energy efficiency but can also
improve the level of occupant thermal satisfaction.

The performance of a building can be fundamentally influenced by the outdoor envi-
ronment [11]. The effects of weather conditions on design decisions have been reported
in the study by Attia, Hamdy [12]. General building performance, including energy con-
sumption and thermal comfort, is impacted by architectural and technical solutions. The
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thermo-physical properties of a building envelope, such as thermal conductivity and heat
capacity, are vital for indoor thermal comfort and energy consumption performance [13].
Architectural building design parameters (ABDPs) can be specified by designers and may
include restrictions on the indoor air quality, rate of ventilation, material properties, build-
ing shapes, building orientation, etc. [14]. In the architectural building design parameters
(ABDPs) approach, it is difficult to enhance these properties through the schematic design
stage due to fluctuations in the outdoor environment, which would result in high indoor
temperatures, sometimes exceeding the upper limit of 26 ◦C according to ASHRAE Stan-
dard 55 [15]. Identifying which parameters are most significant for energy consumption
and thermal comfort is vital for improving building performance in the design process
based on the climatic conditions [16].

Different countries’ building sectors have different policies for reducing energy con-
sumption and negative environmental impacts based on the variety of climate zones and
building types [17]. With regard to climate change, buildings must be resilient, adaptable,
flexible and sustainable in order to increase the level of thermal comfort for occupants and
reduce energy consumption [18,19]. In recent years, many studies have argued that the
high levels of thermal dissatisfaction felt by students in educational buildings and student
thermal comfort are not being precisely reflected in the requirements of the related thermal
comfort standards [20,21]. The absence of any standard or reference document relevant to
the design of suitable classrooms contributes to the current situation [22]. Some studies
have suggested that the opportunity to control an indoor environment affects the occu-
pants’ thermal perceptions, making them more receptive to the educational environment
in terms of thermal comfort [23,24]. Some studies related to thermal comfort have also
looked at age and gender [25,26], indoor air quality [27], ventilation strategy [28,29], cloth-
ing adjustment effect [30], changes to activity level [31], set-point temperatures and sun
shading system [32,33], envelope design [11,34] and academic performance [35]. Although
these studies have highlighted the factors contributing to thermal comfort in buildings,
the energy consumption aspect has not been taken into consideration. Other studies have
focused on the simulation results of the passive house concept in Mediterranean country
climates [36] and building envelope parameters managed by building automation control
systems [37] in relation to thermal comfort and energy performance. With the high impact
of global warming on buildings, there are insufficient studies on the effects of ABDPs on
thermal comfort and energy consumption in educational buildings [38,39].

Across Australia, around 9500 schools and many tertiary institutions have been built
to meet the minimum building code requirements of the Building Code of Australia (BCA).
Educational facilities are not necessarily designed to provide comfortable, productive or
healthy work environments for students and teachers [40]. The New South Wales (NSW)
Department of Education currently has in excess of 2200 schools across the state [41].
Because of the large number of educational buildings around Australia, the educational
building sector is the second-highest energy consumer after public buildings (including
galleries, museums, libraries and law courts) [42]. In addition, around 50% of the energy
consumed by heating, ventilation and air conditioning (HVAC) systems occurs on univer-
sity campuses in Australia [42]. On average, students spend around 25% of their time at
school [43]. However, the thermal comfort of students is usually low because they have
limited options for adaption of the indoor thermal environment as their classroom activities
are usually restricted [44]. As educational buildings have specific functional characteristics
compared to other buildings [21], more attention and focus should be placed on the energy
consumption and thermal comfort in these buildings.

Based on the above-mentioned problem statement, the main research question to be
answered by this paper is: what are the most important ABDPs that can increase thermal
comfort and reduce energy use in higher education buildings in New South Wales (climate
zone 5), Australia? Identifying the effect of ABDPs on both energy consumption and
thermal comfort in the design stage is an important step to reduce the heating/cooling
energy loads and increase the level of students’ thermal comfort in educational buildings.
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In the current study, building energy simulation (BES) is used to explore the effect of
some ABDPs on energy consumption and thermal comfort. BES is the virtual simulation of a
building using a computer-based mathematical model created on the basis of fundamental
physical principles and energy balance equations [45]. BES tools such as EnergyPlus,
Designbuilder, eQuest and TRNSYS can provide designers with numerical data to compare
and evaluate different integrated design options to satisfy the design targets [46,47]. Yıldız
and Arsan [16] simulated the effect of nine building parameters—the building shape,
window-to-external-wall area, envelope colour, set-point temperature, thermo-physical
properties of building materials, thermal insulation, natural ventilation, air infiltration and
zone height—on heating and cooling energy loads for apartment buildings in hot–humid
climates in Turkey by using EnergyPlus. Mirrahimi, Mohamed [11] reviewed the results
of other studies that focus on the effect of building envelope parameters, such as climatic
conditions, form, width, length and height, external walls, roofs, glazing area and natural
ventilation, as well as external shading devices, on the thermal comfort and energy saving
for high-rise buildings in the hot–humid climate of Malaysia. Buratti, Moretti [48] present
an evaluation of window type and building orientation in terms of occupant thermal
satisfaction indexes (such as predicted mean vote (PMV) and predicted percentage of
dissatisfied (PPD)) and energy consumption in non-residential buildings in Perugia by
using the TRNSYS and EnergyPlus.

Based on the literature review, 15 ABDPs, including window to wall ratio, cooling
set-point temperature, heating set-point temperature, building rotation, external wall con-
struction, roof construction, glazing type, local shading type, occupancy density, mechanical
ventilation rate per area, thermal mass, roof window openings, building location, infiltra-
tion and crack level (airtightness), were identified and their effects on occupant thermal
comfort and energy consumption were studied using the BES tools. These parameters were
chosen because they have been studied in different applications separately with different
climate zones, building types, building occupancy types and outputs (thermal comfort
and/or energy consumption) [11,33,49–52]. The present study was, therefore, designed to
present a more comprehensive assessment of ABDPs to identify the parameters of most
concern and to show their realistic effects in NSW. For this reason, these parameters have
been analysed in one study with the assumption that they influence energy consumption
and thermal comfort [51,53].

2. Research Methods
2.1. Simulation Process Using Monte Carlo (MC) Technique

Monte Carlo (MC) techniques are often applied when implementing uncertainty
analyses (UA) and sensitivity analyses (SA) [54–56]. The use of UA and SA in this study
aims to support the design process by showing the effect of different parameters on the
design outcome in terms of uncertainty (normal distribution and range) and sensitivity
(order of the most influential parameters). The effective combination of UA and SA in
BES is a vital part of many ongoing research activities in building design [45,57–65]. This
study applied the MC technique in BES to find all possible values of ABDP functions in
the correct statistical combinations. The use of DesignBuilder is very common nowadays
for designing any proposed or existing buildings to evaluate the energy consumption and
thermal comfort through different design options [66–68]. In this study, DesignBuilder
with a user-friendly interface was used.

The type of data collected plays a critical role in determining the best statistical
method to apply [69]. Many studies have investigated how different design strategies can
be integrated into the design process for different aspects of building performance using
parametric analysis (PA) [70–72]. PA can be very useful as part of the design process to
understand how building performance is affected by variations in building configuration
and operation [73]. Cluster analysis is a class of methods used to categorise variables into
relative groups called clusters [74]. Cluster analyses have been widely used in numerous
research activities, including pattern recognition, data analysis and image processing [75].
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To cluster different variables, a technique named k-means clustering was applied, which
is based on central point selection and the calculation of Euclidean distance [75]. This
technique is applied to deal efficiently with large datasets, is efficient at dealing with both
continuous and categorical variables and has advantages that assist in determining optimal
cluster numbers [76]. Figure 1 illustrates the process for this study.
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The research methodology, as shown in Figure 1, was divided into three sequential
steps. First, we conducted pre-processing, considering input parameters of 15 ABDPs,
which were selected from the literature review [11,16,33,49–51,56]. Then, the DesignBuilder
simulation, which contains all the necessary information for the simulation, e.g., the
construction materials properties, services systems, weather data, etc., was used. In the
following step, two thousand simulation runs were applied using the Latin hypercube
sampling (LHS) method. The sample size decides the computational cost of the analysis,
as it is equal to the required number of simulation runs [57]. Consider an iterative MC
technique with no upper limit on the number of iterations to be performed [58]. As the
iterations proceed, the damage estimates accumulate into a sample of increasing size.
As more iterations occur, the sample approaches the population. A greater number of
simulation runs reduces the discrepancy between the simulation model results and the
actual system performance [59]. Building energy consumption (cooling/heating load) and
students’ thermal discomfort hours were considered as simulation outputs. Subsequently,
the output from the 2000 simulation runs was compared to the sampled input parameters
to identify the influence of each input on the output. The output analysis of the UA and SA
was conducted with DesignBuilder.

The next stage, as shown in Figure 1, was the post-processing and statistical analysis
step, including SA, PA, bivariate Pearson correlation and cluster analysis. PA allows us
to see how output performance, like energy consumption and thermal comfort, varies as
the key elements of the building design parameters vary. In this study, PA was applied to
investigate the effect of the most significant ABDPs (input parameters), which were based
on SA, the indoor thermal environment, building energy consumption, students’ thermal
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comfort (output parameters) and if the effect is linear or non-linear. The bivariate Pearson
correlation method has been applied in this study to find if there is a relationship between
building energy consumption and students’ thermal comfort. The bivariate Pearson’s
correlation provides a sample correlation coefficient, r, which calculates the strength and
direction of linear relationships between two continuous variables [77]. For the Pearson r
correlation, both variables (building energy consumption and students’ thermal comfort)
should be normally distributed [73]. Finding a relationship between the two outputs
helps us understand their mechanism and assists designers to select appropriate ABDPs.
Some data are similar to each other; hence, we need to organise them into clusters, with
similar observations within each cluster. The cluster analysis was used to classify the
ABDPs into different groups based on their effect on both building energy consumption
and students’ thermal comfort. Clusters of ABDPs were identified among 2000 scenarios
using the k-means clustering algorithm. Bivariate Pearson correlation and cluster analysis
were completed using the statistical package IBM SPSS Statistics (Version 24.0).

2.2. Prototype Description of the Application of BES Model to Building Design Example and Climate

A single-storey education building at the University of Newcastle, Australia, was
selected as a reference building and the base case model for the simulation process. The
building was considered a generic example of a structure in climate zone 5 under the
Australian Building Codes Board (ABCB) classification and exists in a warm climate, with
architectural features representative of educational buildings and typical building materials
and construction types for walls, floors and windows. The building has a square shape
(10.5 m long × 10.5 m wide × 3.5 m height), with a total volume of about 386 m3, see
Figure 2.

Figure 2. Classroom (a) ground floor plan of selected educational building (1:35 scale) (b) interior settings.

The basic geographic and climatic conditions of Newcastle, Australia, are as follows:

• −32.80 latitude and 151.83 longitude.
• Altitude of 33 m above sea level.
• Mean annual minimum and maximum temperatures of 14.3 ◦C and 21.8 ◦C.
• Annual mean global radiation of 4.8 kWh/m2.

DesignBuilder (version 6.0.1.019) was used to simulate different ABDPs. An Energy-
Plus Weather (EPW) file, including the climatic conditions of Newcastle and Sydney, was
used for the weather data in the indoor thermal calculations. In this study, EnergyPlus
software was used as the simulation engine. A reference model was created to represent
the educational spaces for mechanical ventilation (MV) mode and realistic engineering
practices at the University of Newcastle. It has also helped to simplify the assumptions
that will be made during the simulation process, as shown below in Figure 3. Hence, a
comprehensive energy simulation was applied to analyse the performance of the different
ABDPs of educational spaces in a hot summer and cold winter environment to achieve an
optimal level of thermal comfort as well as energy consumption.
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2.3. Determination of Input and Output Variables

One of the main aspects controlling the indoor thermal environment in buildings is
heat gain or loss through ABDPs, such as walls, windows and floors [78]. In turn, this
indoor thermal environment determines the amount of energy needed for heating and
cooling to maintain optimal thermal comfort levels. As aforesaid, 15 ABDPs identified from
the literature review were selected as inputs, as shown in Tables 1 and 2.

Previous studies refer to thermal discomfort hours to represent the evaluation of
thermal comfort [79–81]. The thermal discomfort hours output was based on whether the
humidity ratio and the operative temperature were within the region of the ASHRAE 55
Standard [82]. In this study, the energy consumption (cooling/heating load) and students’
thermal discomfort hours were assigned as output variables because they are significant
and common indicators of the energy performance and level of student thermal satisfaction
in educational buildings [83,84].

2.4. Sampling and Assignment of Probability Density Functions

Two thousand samples for every input parameter were applied based on the selected
distribution by using the Latin hypercube sampling (LHS) technique to give an appropriate
accuracy in the SA and UA [85]. In this method, a sample size of 10 times the number of
parameters will give a reliable estimate of the population mean. LHS was used because it is
a highly efficient sampling method and is commonly used [16]. Tables 1 and 2 summarise
the overall statistical analysis and distribution profiles of the actual input values used for
normal and discrete distribution characteristics, respectively, in the simulation runs.

Table 1. Statistical output and distribution profiles for normal distribution characteristics of in-
put parameters.

#
Input Parameter

(Probability Distribution: Normal)
Input
Units

Summary Statistics

Min Max Mean Median Q1 * (25%) Q3 * (75%) SD *

1 Window to wall ratio [11,16,51,56] % 5 75 40 40 33 47 10

2 Cooling set-point temperature [16,51] ◦C 19 28 25 25 24 26 2

3 Heating set-point temperature [16,51] ◦C 17 23 20 20 19 21 1

4 Building orientation [11,56] Angle (◦θ ) 0 (N) * 315 157 135 45 225 103

5 Occupancy density [86] people/m2 0.1 0.5 0.3 0.3 0.3 0.3 0.05

6 Mech. Vent. rate per area [87] l/s/m2 2 8 5 5 4 6 1

7 Thermal mass [16,51] - −1 1 −0.001 0 −1 1 0.8

8 Roof window opens ratio [88,89] % 3 17 10 10 9 11 2

9 Infiltration [16,86] Ac/h 0.4 2 1 1 0.9 1 0.2

* Key: Q1, first quartile; Q3, third quartile; SD, standard deviation.
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A quartile is a form of quantile in statistics that splits the number of data points into
four quarters of roughly equal size in order to measure the variability of the data around the
median [90]. The first quartile (Q1) is defined as the number in the midway of the dataset’s
minimum and median values, with 25% of the data falling below this point [91]. The third
quartile (Q3) is the midpoint between the dataset’s median and maximum value, with 75%
of the data falling below this point [91,92]. Meanwhile, the standard deviation (SD) is a
statistic that calculates the square root of the variance and represents the dispersion of a
dataset relative to its mean [93]. Q1, Q2 and SD values are shown in Table 1.

Table 2. Statistical output and distribution profiles for discrete distribution characteristics of input
parameters.

# Input Parameter
(Probability Distribution: Discrete) Input Details

10

External wall construction [11,16,56,88,91] Description Frequency

I. Brickwork single leaf construction light plaster
U-value = 1.949 * 371

R-value = 0.513 *

II. Brick air l/w concrete block & l/w plaster
U-value = 0.950 370

R-value = 1.053

III. Brick mineral insulation thermolite block &
l/w plaster

U-value = 0.403 367

R-value = 2.482

IV. Brick/block wall (insulated to 1985 regs)
U-value = 0.351 372

R-value = 2.846

V. Uninsulated lightweight wall (metal clad)
U-value = 2.767 366

R-value = 0.361

11

Roof construction [11,56,88,91]

I. Flat roof—25 mm stone chippings on 19 mm
asphalt on 40 mm screed

U-value = 3.439 311

R-value = 0.291

II. Flat roof—19 mm asphalt on 13 mm fibreboard
U-value = 2.605 301

R-value = 0.384

III. Flat roof—19 mm asphalt on 13 mm screed on
50 mm wood wool slab

U-value = 1.431 308

R-value = 0.699

IV. Flat roof—6 mm lightweight metallic cladding
U-value = 6.223 308

R-value = 0.161

V. Flat roof U-value = 0.25 W/m2K
U-value = 0.252 310

R-value = 3.972

VI. Green roof construction
U-value = 0.239 308

R-value = 4.192

12

Glazing type [11,16,56,88]

I. Sgl Bronze 3 mm
U-value = 6.257 362

SHGC = 0.713

II. Sgl Ref-C-H Clr 6 mm
U-value = 5.302 378

SHGC = 0.320

III. Dbl LoE (e3 = 0.1) Clr 3 mm/13 mm Air
U-value = 2.708 365

SHGC = 0.697
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Table 2. Cont.

# Input Parameter
(Probability Distribution: Discrete) Input Details

IV. Dbl Bronze 3 mm/6 mm Air
U-value = 3.226 373

SHGC = 0.619

V. Dbl Clr 6 mm/13 mm Air
U-value = 1.798 368

SHGC = 0.643

13 Local shading type [11,86]

0.5 m projection Louvre 230

1.0 m projection Louvre 235

1.5 m projection Louvre 234

No shading 222

0.5 m Overhang 235

1.0 m Overhang 231

1.5 m Overhang 231

2.0 m Overhang 228

14 Location template [94,95]
Newcastle 923

Sydney 923

15 Crack template (airtightness) [96–98]

Excellent 364

Good 373

Medium 373

Poor 366

Very poor 372

* Units, U-value = W/m2K; R-value = m2K/W.

Assignment of a probability density function to each ABDP is found to be important
for building energy performance. Estimates of the limits in the variation of ABDPs aim to
determine the most appropriate value of the parameter within limits and to choose the most
suitable probability density function. The range values of ABDPs are determined based
on the possibilities in architectural practice identified through the literature review [16].
Distribution characteristics for each ABDP are based on the previous studies and/or
practical application. The goal of the interval width used is to represent a wide range of
intervals for the usage distribution and to increase the accuracy of the model during the
analysis process [99]. The probability density function of some ABDPs is given as a normal
distribution defined by its mean value and standard deviation (SD) [100], while for other
ABDPs, a uniform distribution is defined by discrete values.

3. Results and Discussion

This study was based on two objective functions, energy consumption and thermal
comfort, calculated using the ASHRAE Heat Balance equations for energy load calculations
(kWh) and the ASHRAE Standard 55 Heat Balance model for thermal discomfort (hours).
The SA, AU and PA for this study were performed using DesignBuilder.

3.1. Uncertainty Analysis (UA)

Figure 4 presents the uncertainty analysis (UA) results of thermal discomfort hours
and energy consumption for all the outputs. These figures show the range of possible
annual heating and cooling energy loads and thermal discomfort hours, together with the
frequency of each interval. Figure 4a shows that the range of energy consumption of around
220 scenarios among 2000 simulation runs for 15 ABDPs was between 51,367 kWh and
55,294 kWh. In Figure 4b, the range of thermal discomfort hours of around 100 scenarios
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among 2000 simulation runs of 15 ABDPs was between 1626 h and 1726 h. Uncertainties in
thermal discomfort hours and energy consumption can be described as design variations
in ABDPs that occur during the early design stage. This wide variation in the energy
consumption and thermal discomfort hours range can be caused by a lack of knowledge on
the part of the designer [101]. The consideration of design uncertainties could therefore
develop and enable design decision support, particularly if supported by SA and PA to
identify the effect of each architectural building design parameter and the amount of
improvement on a UA graph.
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3.2. Sensitivity Analysis (SA)

A regression method was used for this sensitivity analysis [102]. Regression analysis
is a statistical method that approximates the relationships among input variables [103]. It
helps to explain how the output value changes when any one of the input parameters is var-
ied. Table 3 presents the sensitivity of each parameter based on the standardised regression
coefficient (SRC). This value shows the relative sensitivity of the input parameters to the
output value. Its absolute value ranks the input variables in order of sensitivity and shows
whether the relationship to the output is direct or inverse. The SRC outputs the sensitivity
of each input variable, thereby determining the most and least important parameters [104].
A positive SRC means that as the value of the building parameter increases, the value of
the corresponding output simultaneously increases. A negative SRC indicates that changes
in the inputs and outputs tend to go in opposite directions, while other regression outputs,
like ‘p-value’, help to determine the level of confidence and reliability of the results.
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Table 3. The relative importance of the different variables based on regression analysis.

The Extent
of the Impact ABDPs

Output 1
Thermal Discomfort

Hours ABDPs

Output 2 Energy
Consumption

SRC p-Value SRC p-Value
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High 
Importance 

Low 
Importance 

Cooling set-point temperature (◦C) 0.5705 0.0000 * Cooling set-point temperature (◦C) −0.6926 0.0000 *

Flat roof construction −0.4317 0.0000 * Flat roof construction −0.4086 0.0000 *

Heating set-point temperature (◦C) −0.3389 0.0000 * Heating set-point temperature (◦C) 0.1852 0.0000 *

Occupancy density (people/m2) −0.0501 0.0006 *
External wall construction 0.0553 0.0001 *

Glazing type −0.0409 0.0049 *

Mech. vent rate per area (l/s/m2) 0.0345 0.0178 * Infiltration (ac/h) 0.0525 0.0001 *

Infiltration (ac/h) 0.0319 0.0282 *
Window to wall ratio (%) 0.0519 0.0001 *

Occupancy density (people/m2) 0.0472 0.0006 *

Crack template (airtightness) −0.0272 0.0612 Crack template (airtightness) −0.0214 0.1165

External wall construction 0.0259 0.0749 Roof window opens ratio (%) −0.0214 0.1166

Building orientation (◦) 0.0176 0.2270 Thermal mass −0.0157 0.2478

Window to wall
ratio (%)

−0.0162 0.2646 Building rotation (◦) 0.0129 0.3436

Local shading type −0.0087 0.5496 Mech. vent rate per area (l/s-m2) 0.0099 0.4695

Thermal mass −0.0061 0.6743 Location template −0.0097 0.4744

Location template −0.0028 0.8472 Local shading type −0.0085 0.5306

Roof window opens (%) −0.0027 0.8531 Glazing type 0.0029 0.8302

Note: * p-value less than 0.05 has highly statistically significant effect.

The p-value reveals if the input variable has a statistically significant effect on the
output. Some input variables have a p-value of more than 0.05, suggesting that there is a
low level of confidence in their regression result values [105], such as location template
and thermal mass. Table 3 ranks the ABDPs on their performance assessment based on
p-values from high to low importance for their impact on student thermal discomfort and
building energy consumption. In Table 3, numbers in bold italics show a highly statistically
significant effect for p-values much less than 0.05.

3.2.1. Influential Factors on Energy Consumption for Each Output

Based on the output of SA in Table 3, energy consumption was most strongly influ-
enced by the cooling set-point temperature; however, there was an inverse relationship, as
shown in Figure 5a. Increasing the cooling set-point temperature led to a decrease in total
site energy consumption. Total site energy consumption was also strongly influenced by
flat roof construction and heating set-point temperature. Energy consumption was also
moderately influenced by external wall construction, infiltration (ac/h), window to wall
ratio and occupancy density. Crack template (building airtightness), roof window opens,
thermal mass, building rotation, mechanical ventilation rate per area (l/s/m2), location
template, local shading type and glazing type did not have a notable influence on total site
energy consumption, and therefore, these inputs were ignored in further analysis of total
site energy consumption for this model.
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discomfort hours.

3.2.2. Influential Factors on Thermal Comfort for each Output

Based on the output of SA in Table 3, thermal discomfort was most strongly influenced
by cooling set-point temperature. The input and output were directly related. According
to Figure 5b, it can be seen that increasing the cooling set-point temperature led to an
increase in thermal discomfort level. Thermal discomfort was also strongly influenced
by flat roof construction and heating set-point temperature. Thermal discomfort was also
moderately influenced by occupancy density, glazing type, mechanical ventilation rate per
area (l/s/m2) and infiltration (ac/h). Crack template (building airtightness), external wall
construction, building rotation, window to wall ratio, local shading type, thermal mass,
location template and roof window did not have a notable influence on thermal comfort
level and therefore, these inputs were ignored in further analysis of thermal comfort for
this model.

3.3. The Effect of ABDPs on Indoor Thermal Environment

A parametric analysis (PA) has been used to examine the effect of a specific range
for each ABDP, as shown in Tables 1 and 2. The rate of change (ROC) is the percentage
of variable change through a specific period [106]. ROC expresses the rate of difference
between the minimum and maximum value and can be defined as a ratio between a change
in one parameter compared to a corresponding change in another. This study presents the
PA of the most important ABDPs—those that have a significant impact, based on SA, on
both building energy consumption and student thermal comfort. It shows the annual ROC
of those ABDPs on the indoor thermal environment, energy consumption and students’
thermal discomfort hours.



Buildings 2022, 12, 329 12 of 29

3.3.1. Effect of Cooling and Heating Set-Point Temperatures

The results of this study show the impact of cooling and heating set-point tempera-
tures on building performance and students’ thermal satisfaction (p = 0.0000). Based on
PA results, increases in cooling set-point temperature had a positive influence on students’
thermal discomfort (SRC = 0.5705) and a negative influence on building energy consump-
tion (SRC = −0.6926), as shown in Figure 5. In contrast, increases in heating set-point
temperature had a positive influence on building energy consumption (SRC = 0.1852) and a
negative influence on students’ thermal discomfort (SRC = −0.3389), as shown in Figure 6.
The results show the matching of the effects of those parameters on energy savings and
thermal comfort compared with previous studies [107–109].
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Figure 6. The effect of heating set-point temperature on (a) energy consumption. (b) Students thermal
discomfort hours.

Based on PA, the cooling set-point temperature reduced the operative temperature
by 14.2% when increasing the cooling set-point temperature from 22 ◦C to 28 ◦C. This
decrease in the operative temperature could significantly reduce the thermal discomfort
hours by 6.0 times, thereby reducing energy consumption by 43.7%. This further validates
the findings of [107,108], which indicate that set-point temperatures have a direct effect
on the indoor thermal environment and the energy consumption of a building (27% total
HVAC energy savings were achieved [108]). The reason for the difference in the percentage
of energy savings was because the thermostat set-point range in this study was wider than
in previous studies.
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3.3.2. Effect of Roof and Wall Construction and Thermal Mass

The results showed the impact of roof construction on building performance and
students’ thermal satisfaction (p = 0.0000). The roof construction in this study was con-
sidered an important parameter based on SA, mainly due to two reasons. Firstly, roofs
determine the indoor thermal conditions of buildings, thus influencing the conditions for
occupants and energy consumption because the roof directly faces solar radiation [11].
In countries with a high incidence of solar radiation, roof construction is even more im-
portant. Secondly, in buildings with large roof areas, roofs account for large amounts
of heat gain/loss [109]. The U-value of the external wall construction parameter had a
positive influence on both students’ thermal discomfort (SRC = 0.0259) and building energy
consumption (SRC = 0.0553), as shown in Figure 7. Furthermore, Figure 8 shows the effect
of the U-value of roof construction on students’ thermal discomfort and building energy
consumption. Based on PA, roof construction reduced the operative temperature 20.0% by
decreasing the U-value of 6.223 W/m2K to 0.239 W/m2K. This decrease in the operative
temperature could significantly reduce the thermal discomfort hours 3.25 times, thereby
reducing energy consumption by 41.0%. The results of [110] show that roof construction
types are the key parameter in decreasing or increasing the risk of thermal discomfort
hours in tropical climates. Compared to different construction methods and materials, they
provided up to 15 times better indoor thermal conditions by decreasing the number of
thermal discomfort hours based on the indoor operative temperature.
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Figure 8. The effect of U-value of roof construction on (a) energy consumption and (b) students’
thermal discomfort hours.

In contrast, thermal mass had a negative influence on both students’ thermal discom-
fort (SRC = −0.0061) and building energy consumption (SRC = −0.0157). The effect of
the U-value of external wall construction on building energy consumption (p = 0.0001)
was more than on students’ thermal discomfort (p = 0.0749), while the effect of thermal
mass on building energy consumption (p = 0.2478) was more than on students’ thermal
discomfort (p = 0.6743) based on the SA in this study. The U-value = 0.403 W/m2K of
the wall construction obtained the minimum value of energy consumption, while the
U-value = 0.544 W/m2K of the wall construction obtained the minimum value of ther-
mal discomfort hours based on simulation output (the range of U-value was between
2.767 W/m2K and 0.403 W/m2K). The U-value = 0.239 W/m2K of the roof construction ob-
tained the minimum value of both energy consumption and thermal discomfort hours based
on simulation output (the range of U-value was between 6.223 W/m2K and 0.239 W/m2K).

The effect of thermal mass in this study agreed with previous studies [111,112], which
indicate that high thermal mass construction materials are more effective in hot climates,
while in cold climates, the disadvantages of high thermal mass are greater than the advan-
tages, and high thermal mass can cause an increase in energy consumption. The thermal
mass parameter includes thermal mass in building elements such as walls and floors, which
can store thermal energy. In addition, the effect of the U-value for walls and roofs in this
study matches the findings of [113–115], which indicate that the reduction of the U-value
leads to a significant reduction in energy consumption.
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3.3.3. Effect of Glazing, Window to Wall Ratio and Shading Devices

In this study, the effect of glazing type on students’ thermal discomfort hours (p = 0.0049)
was more than for energy consumption (p = 0.8302) based on SA. Increases in the solar heat
gain coefficient (SHGC) led to increases in building energy consumption and decreases in
thermal discomfort hours, as shown in Figure 9.

1 

 

 

(a) 

 
(b) 

 Figure 9. The effect of glazing type on (a) energy consumption and (b) students’ thermal discom-
fort hours.

To minimise unwanted thermal radiation entering the building, we need to address
the SHGC of windows. The reason behind the effect of SHGC is because, such as Lyons,
Arasteh [116] study shows that direct solar load has a major effect on windows, which
affects thermal comfort. The effect of SHGC in this study matches other studies [11,112],
which indicate that a window’s impact on thermal comfort is dependent on the window’s
properties. In addition, windows are one of the main parameters influencing indoor
thermal environment and energy consumption [117]. In contrast, Singh and Garg [118], in
a simulation study, observed that the annual energy savings by a window are dependent
not only on the window properties, such as the thermal conductivity (U-value) and the
SHGC, but also on other building parameters, such as orientation, climatic conditions and
insulation level. This explains the low importance of the glazing type as an influence on
energy consumption in this study.

Based on the result of SA in this study, the window to wall ratio had a negative
influence on students’ thermal discomfort (SRC = −0.0162) and a positive influence on
building energy consumption (SRC = 0.0519), as shown in Figure 10.
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Figure 10. The effect of window to wall ratio on (a) energy consumption and (b) students’ thermal
discomfort hours.

The window to wall ratio of 20 gave the best energy consumption (lowest value), while
the window to wall ratio of 80 gave the minimum discomfort hours. The results of the
effect of window to wall ratio on energy consumption matched the previous study [119].
When the window to wall ratio increased, the energy consumption increased. On the
other hand, the effect of window to wall ratio in this study was different for thermal
comfort only (the annual thermal comfort hours increased when window to wall ratio
decreased) [120], and both energy consumption and thermal comfort [121], because of the
difference in the amount of incident solar radiation in NSW compared to other climate
zones. The window to wall ratio controls the amount of incident solar radiation entering
the building [120]. For the same reason, we found from the results based on SA in this
study that there was a negative influence of roof window opens ratio on building energy
consumption (SRC = −0.0214) and students’ thermal discomfort (SRC = −0.0027).

Based on the result of PA, there was an inverse relationship between the length
of shading devices and building energy consumption. In contrast, the shading devices
parameter had the reverse effect on building energy consumption and students’ thermal
discomfort hours. For example, a building without shading devices consumed more energy
(less thermal discomfort hours) than one with 1 to 2 m overhang/louvre devices, as shown
in Figure 11.

Shading devices reduce direct rays from the sun but permit natural daylight to access
the building. The effect of shading devices on energy consumption and thermal comfort in
this study agrees with other studies [122,123], which indicates that shading devices signifi-
cantly contribute towards developing indoor thermal environments, avoiding overheating,
and decreasing cooling loads.
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3.3.4. Effect of Occupancy Density

The effect of the occupancy density on thermal discomfort hours and building energy
consumption is shown in Figure 12. However, students’ thermal discomfort and build-
ing energy consumption were affected by occupancy density with the same amount of
significance (p = 0.0006).
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Previous studies [124,125] explain the reason behind the adverse effect on thermal
comfort in the event of an increase in the number of occupants and the direct effect on
the increase in energy consumption. Mjörnell, Johansson [124] showed that extended
occupancy density results in an increased moisture supply, depending on the number of
people staying in the building. When the airflow in the architectural space with excessive
occupancy density is increased, the moisture supply will no longer exceed the critical levels
for moisture damage. However, there will be an increased energy consumption for heating
of the air due to increased air movement [125].

3.3.5. Effect of Infiltration Rate and Mechanical Ventilation Rate per Area

In this study, the infiltration rate parameter had a positive influence on students’
thermal discomfort (SRC = 0.0319) and energy consumption (SRC = 0.0525), as shown in
Figure 13.

The effect of infiltration on building energy consumption (p = 0.0001) was greater
than students’ thermal discomfort (p = 0.0282). Furthermore, the results of this study show
that the better the building crack levels (from very poor to excellent), the lower the energy
consumption (SRC = −0.0214) and student thermal discomfort (SRC = −0.0272). The effect
of crack template (airtightness) on students’ thermal discomfort (p = 0.0612) was more than
building energy consumption (p = 0.1165). Therefore, the results in this study regarding the
effect of infiltration on both students’ thermal comfort and building energy consumption
matched those of previous studies [112,126,127]. The difference in air pressure across the
building envelope was one of the main reasons for infiltration. This is caused by indoor
and outdoor air temperature differences (stack effect), operation of a mechanical ventilation
system and wind movement [126,127]. Infiltration affects the heating/cooling load, indoor
air temperature and indoor air moisture levels in buildings [109]. The rate of infiltration is
affected by outdoor environmental variables, building site, building age and construction
materials. Air tends to infiltrate through low-level leaks when the architectural space is
heating, and exfiltrate from leaks high in the building envelope [128]. Closing air leakage
cracks can reduce the building energy consumption by reducing the infiltration rate [129].

In this study, and based on SA, the mechanical ventilation rate per area parameter had
a positive influence on students’ thermal discomfort (SRC = 0.0345) and building energy
consumption (SRC = 0.0099), as shown in Figure 14. The effect of mechanical ventilation
rate per area on students’ thermal discomfort (p = 0.0178) was more than for building
energy consumption (p = 0.4695).
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PA shows that the higher the ventilation rate, the lower the air temperature and
operative temperature as well. Therefore, this decrease in indoor temperature could be
one of the causes of thermal discomfort. The mechanical ventilation rate per area of six
gave the best energy consumption (lowest value), while the mechanical ventilation rate
per area of zero gave the minimum thermal discomfort hours. The results showed a
matching of the effect of mechanical ventilation rate with previous studies [130,131]. On the
other hand, another study by Allab, Kindinis [132] indicates that poor air ventilation rates
lead to thermal discomfort problems and extreme energy consumption. Thermal comfort
regulations related to indoor air quality (IAQ) conditions are not yet theoretically obvious.
For this reason, different minimum ventilation rates for the same types of buildings in
different countries have been adopted [133]. This explains the reverse relationship between
mechanical ventilation rate and students’ thermal comfort based on the SA in this study.

3.3.6. Effect of Building Orientation

The effect of building orientation on both students’ thermal discomfort (SRC = 0.0176)
and building energy consumption (SRC = 0.0129) is shown in Figure 15.
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The effect of building orientation on students’ thermal discomfort (p = 0.2270) was
more than for building energy consumption (p = 0.3436). According to Figure 15 the best
orientation with the lowest thermal discomfort hours (379 h) was (θ = 85◦, θ = 265◦), and the
best orientation with the lowest energy consumption (50,430 kWh) was (θ = 175◦), which
were obtained based on PA. Previous studies [124,134,135] align with the result of this study
regarding the effect of building orientation on both students’ thermal comfort and building
energy consumption. The building’s orientation needs to be directed to the prevailing
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wind, and the presence or absence of natural ventilation has a significant impact [120,134].
Building orientation is an early stage design option with low cost to improve building
users’ thermal comfort and decrease building energy consumption [135].

Despite the influence of those ABDPs on both students’ thermal comfort and building
energy consumption, their effect depends on the ranking of their performance, from the
most to the least influential parameters, as described previously in Table 3.

3.4. Relationship between Students’ Thermal Discomfort Hours and Building Energy Consumption

The same sample of ABDPs was also used in the bivariate regression analysis to
find the empirical relationship between students’ thermal comfort and building energy
consumption. Pearson correlation was used in this study because the interval ratio of
students’ thermal comfort and building energy consumption data had normal distributions,
as shown below inFigure 16.
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Figure 16. Normal distribution of (a) students’ discomfort hours and (b) building energy consumption.

In this study, which is based on a Pearson correlation output using SPSS software,
there was a very weak negative relationship (non-significant relationship) between the
students’ thermal discomfort hours and the building cooling/heating load, r = −0.033,
n = 1845, p = 0.153, p > 0.05 (alpha value). Increases in building energy consumption were
correlated with decreases in students’ discomfort hours. A scatterplot of students’ thermal
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discomfort hours and the total building energy consumption is shown below in Figure 17.
The summary of the Pearson correlation output is shown in Table 4.
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Table 4. Summary output of Pearson analysis.

Correlations

Discomfort (All
Clothing) (h)

Total Site Energy
Consumption (kWh)

Discomfort (All
Clothing) (h)

Pearson Correlation 1 −0.033

Sig. (2-tailed) - 0.153

N 1845 1845

Total site energy
consumption (kWh)

Pearson Correlation −0.033 1

Sig. (2-tailed) 0.153 -

N 1845 1845

A scatterplot shows that the data is scattered. For this reason, cluster analysis can be
a useful data-mining method for any dataset that needs to categorise discrete groups of
parameters. The most common use of cluster analysis is classification. ABDPs are separated
into groups so that each parameter is more similar to other parameters in its group than
to parameters outside the group. In this study, the current iteration was 23, with 4 cluster
groups. The summary of the final size and number of cases in each cluster is shown in
Figure 18.
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The extent of the impact of the ABDPs led to the data being divided into four groups
based on the parameters’ effects on building energy consumption and thermal comfort.
The four clustering groups express the characteristics of the ABDPs that led them to affect
the level of students’ thermal discomfort hours and energy consumption, as shown in
Figure 19. The effect of ABDPs on both students’ thermal discomfort hours and energy
consumption has been discussed through the SA. Each dot in the graph contains input data
for the 15 ABDPs. After analysing each dot, we found a match for the effect of parameters
that had a low p-value in the SA. The first and fourth groups described high thermal
discomfort hours, while high energy consumption characterised the first group and low
energy consumption characterised the fourth group. The second and the third groups
described low thermal discomfort hours, while high energy consumption was seen in the
second group and low energy consumption in the third group.
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4. Conclusions

In the present study, a comprehensive assessment of ABDPs on thermal comfort and
energy consumption was conducted using Monte Carlo techniques in order to identify
the parameters of most concern and show their realistic effects in educational buildings in
NSW, Australia. Based on the results and analysis, the following conclusions can be drawn:

(1) The simulation results showed a significant potential to optimise the ABDPs to achieve
energy saving and thermal comfort in educational buildings in NSW, Australia.

(2) Based on the parametric and sensitivity analyses, there is a very weak relationship
between the students’ thermal discomfort hours and the building cooling/heating
load. However, the cooling and heating set-point temperatures, as well as roof
construction, had a significant impact on the sensitivity of the ABDPs for both building
energy consumption and student thermal comfort (p = 0.0000).

(3) Increasing the cooling set-point temperature from 22 ◦C to 28 ◦C and using a U-value of
0.239 W/m2K in roof construction can reduce the operative temperatures by 14.2% and
20.0%, respectively. These reductions could significantly lower the thermal discomfort
hours by 6.0 and 3.25 times, respectively.

(4) The findings of this study are particularly useful for architectural design teams be-
cause they enable designers to decide easily which of the sensitive ABDPs are more
important than the others based on the simulation outcomes. Moreover, architectural
design teams can save time by not focusing on ABDPs that have small effects on
thermal comfort and energy consumption.
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(5) However, there remains a number of important challenges and areas for additional
study. For example, there is a need for more studies regarding indoor thermal per-
formance and students’ thermal comfort, as well as students’ academic performance.
More work is required to design performance criteria to quantitatively evaluate the
ABDPs with UA and SA capabilities.
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Acronyms

ABCB Australian Building Codes Board
ABDPs Architectural Building Design Parameters
BCA Building Code of Australia
BES Building Energy Simulation
EPW EnergyPlus Weather file
HVAC Heating, Ventilation and Air Conditioning
IAQ Indoor Air Quality
IEQ Indoor Environmental Quality
LHS Latin Hypercube Sampling
MC Monte Carlo
MV Mechanical Ventilation
NSW New South Wales
PA Parametric Analysis
PMV Predicted Mean Vote
PPD Predicted Percentage Dissatisfaction
ROC Rate Of Change
SA Sensitivity Analyses
SD Standard Deviation
SHGC Solar Heat Gain Coefficient
SRC Standardised Regression Coefficient
UA Uncertainty Analysis
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19. Kosanović, S.; Fikfak, A.; Folić, B. Sustainability and resilience—(In)consistencies in two design realms. In Sustainable and Resilient
Building Design: Approaches, Methods and Tools; TU Delft Open: Delft, The Netherlands, 2018; pp. 67–82.

20. Mishra, A.; Derks, M.; Kooi, L.; Loomans, M.; Kort, H. Analysing thermal comfort perception of students through the class hour,
during heating season, in a university classroom. Build. Environ. 2017, 125, 464–474. [CrossRef]

21. Allab, Y.; Pellegrino, M.; Guo, X.; Nefzaoui, E.; Kindinis, A. Energy and comfort assessment in educational building: Case study
in a French university campus. Energy Build. 2017, 143, 202–219. [CrossRef]

22. Singh, M.; Ooka, R.; Rijal, H. Thermal comfort in Classrooms: A critical review. In Proceedings of the 10th Windsor Conference—
Rethinking Comfort, Windsor, UK, 12–15 April 2018.

23. Humphreys, M.A.; Nicol, J.F.; Raja, I.A. Field Studies of Indoor Thermal Comfort and the Progress of the Adaptive Approach.
Adv. Build. Energy Res. 2007, 1, 55–88. [CrossRef]

24. Kwok, A.G.; Chun, C. Thermal comfort in Japanese schools. Sol. Energy 2003, 74, 245–252. [CrossRef]
25. Indraganti, M.; Rao, K.D. Effect of age, gender, economic group and tenure on thermal comfort: A field study in residential

buildings in hot and dry climate with seasonal variations. Energy Build. 2010, 42, 273–281. [CrossRef]
26. Karjalainen, S. Thermal comfort and gender: A literature review. Indoor Air 2011, 22, 96–109. [CrossRef] [PubMed]
27. Pereira, L.D.; Raimondo, D.; Corgnati, S.P.; da Silva, M.C.G. Assessment of indoor air quality and thermal comfort in Portuguese

secondary classrooms: Methodology and results. Build. Environ. 2014, 81, 69–80. [CrossRef]
28. Baranova, D.; Sovetnikov, D.; Semashkina, D.; Borodinecs, A. Correlation of energy efficiency and thermal comfort depending on

the ventilation strategy. Procedia Eng. 2017, 205, 503–510. [CrossRef]
29. Zhang, G.; Zheng, C.; Yang, W.; Zhang, Q.; Moschandreas, D.J. Thermal Comfort Investigation of Naturally Ventilated Classrooms

in a Subtropical Region. Indoor Built Environ. 2007, 16, 148–158. [CrossRef]
30. Baker, N.; Standeven, M. Thermal comfort for free-running buildings. Energy Build. 1996, 23, 175–182. [CrossRef]
31. Goto, T.; Toftum, J.; de Dear, R.; Fanger, P.O. Thermal sensation and thermophysiological responses to metabolic step-changes.

Int. J. Biometeorol. 2006, 50, 323–332. [CrossRef]
32. Tushar, W.; Wang, T.; Lan, L.; Xu, Y.; Withanage, C.; Yuen, C.; Wood, K.L. Policy design for controlling set-point temperature of

ACs in shared spaces of buildings. Energy Build. 2017, 134, 105–114. [CrossRef]
33. Wang, Y.; Kuckelkorn, J.M.; Zhao, F.-Y.; Liu, D.; Kirschbaum, A.; Zhang, J.-L. Evaluation on classroom thermal comfort and

energy performance of passive school building by optimizing HVAC control systems. Build. Environ. 2015, 89, 86–106. [CrossRef]
34. Bojic, M.; Patou Parvedy, A.; Boyer, H. Optimization of thermal comfort in building through envelope design. arXiv 2013,

arXiv:1302.5941.

http://doi.org/10.1177/1744259105056267
http://doi.org/10.1016/j.enbuild.2016.05.020
http://doi.org/10.1016/j.seta.2021.101020
http://doi.org/10.3390/en12081414
http://doi.org/10.1016/j.rser.2015.09.055
http://doi.org/10.1016/j.enbuild.2013.01.016
http://doi.org/10.1016/j.buildenv.2007.03.014
http://doi.org/10.1061/(ASCE)0887-3801(2003)17:3(150)
http://doi.org/10.5539/jsd.v4n2p142
http://doi.org/10.1016/j.energy.2011.04.013
http://doi.org/10.1016/j.enbuild.2013.12.046
http://doi.org/10.1002/admt.201901155
http://doi.org/10.1016/j.buildenv.2017.09.016
http://doi.org/10.1016/j.enbuild.2016.11.028
http://doi.org/10.1080/17512549.2007.9687269
http://doi.org/10.1016/S0038-092X(03)00147-6
http://doi.org/10.1016/j.enbuild.2009.09.003
http://doi.org/10.1111/j.1600-0668.2011.00747.x
http://www.ncbi.nlm.nih.gov/pubmed/21955322
http://doi.org/10.1016/j.buildenv.2014.06.008
http://doi.org/10.1016/j.proeng.2017.10.403
http://doi.org/10.1177/1420326X06076792
http://doi.org/10.1016/0378-7788(95)00942-6
http://doi.org/10.1007/s00484-005-0016-5
http://doi.org/10.1016/j.enbuild.2016.10.027
http://doi.org/10.1016/j.buildenv.2015.02.023


Buildings 2022, 12, 329 26 of 29

35. Hoque, S.; Weil, B. The relationship between comfort perceptions and academic performance in university classroom buildings.
J. Green Build. 2016, 11, 108–117. [CrossRef]

36. Figueiredo, A.; Figueira, J.; Vicente, R.; Maio, R. Thermal comfort and energy performance: Sensitivity analysis to apply the
Passive House concept to the Portuguese climate. Build. Environ. 2016, 103, 276–288. [CrossRef]

37. Fantozzi, F.; Hamdi, H.; Rocca, M.; Vegnuti, S. Use of Automated Control Systems and Advanced Energy Simulations in the
Design of Climate Responsive Educational Building for Mediterranean Area. Sustainability 2019, 11, 1660. [CrossRef]

38. El Khattabi, E.M.; Mharzi, M.; Raefat, S.; Meghari, Z. On the Application of a New Thermal Diagnostic Model: The Passive Elements
Equivalent in Term of Ventilation Inside a Room; IOP Publishing: Bristol, UK, 2018; Volume 353, p. 012003.

39. Ashtiani, A.; Mirzaei, P.A.; Haghighat, F. Indoor thermal condition in urban heat island: Comparison of the artificial neural
network and regression methods prediction. Energy Build. 2014, 76, 597–604. [CrossRef]

40. Green Building Council of Australia. The future of Australian education–Sustainable places for learning. Aust. J. Environ. Educ.
2013, 29, 18–32.

41. Department of Education, N.G. The Educational Facilities Standards & Guidelines (EFSG). Available online: https://efsg.det.nsw.
edu.au/ (accessed on 4 July 2020).

42. Council of Australian Governments [COAG]. Baseline Energy Consumption and Greenhouse Gas. In Emissions in Commercial
Buildings in Australia; Department of Climate Change and Energy Efficiency: Dublin, Ireland, 2012.

43. Ghita, S.A.; Catalina, T. Energy efficiency versus indoor environmental quality in different Romanian countryside schools. Energy
Build. 2015, 92, 140–154. [CrossRef]

44. Zaki, S.A.; Damiati, S.A.; Rijal, H.B.; Hagishima, A.; Razak, A.A. Adaptive thermal comfort in university classrooms in Malaysia
and Japan. Build. Environ. 2017, 122, 294–306. [CrossRef]

45. Velten, K. Mathematical modeling and simulation introduction for scientists and engineers. In Mathematical Modeling and
Simulation for Scientists and Engineers; Wiley-VCH: Weinheim, Germany, 2009.

46. Heiselberg, P.; Brohus, H.; Hesselholt, A.; Rasmussen, H.; Seinre, E.; Thomas, S. Application of sensitivity analysis in design of
sustainable buildings. Renew. Energy 2009, 34, 2030–2036. [CrossRef]

47. Moffiet, T.; Alterman, D.; Hands, S.; Colyvas, K.; Page, A.; Moghtaderi, B. A statistical study on the combined effects of wall
thermal mass and thermal resistance on internal air temperatures. J. Build. Phys. 2015, 38, 419–443. [CrossRef]

48. Buratti, C.; Moretti, E.; Belloni, E.; Cotana, F. Unsteady simulation of energy performance and thermal comfort in non-residential
buildings. Build. Environ. 2013, 59, 482–491. [CrossRef]

49. Stavrakakis, G.; Zervas, P.; Sarimveis, H.; Markatos, N. Development of a computational tool to quantify architectural-design
effects on thermal comfort in naturally ventilated rural houses. Build. Environ. 2010, 45, 65–80. [CrossRef]

50. Zhang, A.; Bokel, R.; Dobbelsteen, A.V.D.; Sun, Y.; Huang, Q.; Zhang, Q. The Effect of Geometry Parameters on Energy and
Thermal Performance of School Buildings in Cold Climates of China. Sustainability 2017, 9, 1708. [CrossRef]

51. Magnier, L.; Haghighat, F. Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and
Artificial Neural Network. Build. Environ. 2010, 45, 739–746. [CrossRef]

52. Alghamdi, S.; Tang, P.; Kanjanabootra, S.; Alterman, D. Architectural Building Design Parameters in Australian Educational
Buildings: A Review. Int. J. Adv. Mech. Civ. Eng. IJAMCE 2019, 2019, 65–72.

53. Evins, R. A review of computational optimisation methods applied to sustainable building design. Renew. Sustain. Energy Rev.
2013, 22, 230–245. [CrossRef]

54. Chong, A.; Xu, W.; Lam, K. Uncertainty Analysis In Building Energy Simulation. A Practical Approach. In Proceedings of the 4th
International IBPSA Conference, Hyderabad, India, 7–9 December 2015.

55. Pang, Z.; O’Neill, Z. Uncertainty quantification and sensitivity analysis of the domestic hot water usage in hotels. Appl. Energy
2018, 232, 424–442. [CrossRef]

56. Yu, W.; Li, B.; Jia, H.; Zhang, M.; Wang, D. Application of multi-objective genetic algorithm to optimize energy efficiency and
thermal comfort in building design. Energy Build. 2015, 88, 135–143. [CrossRef]

57. Wilde, P.D. Building Performance Analysis; Wiley: New York, NY, USA, 2018.
58. Garg, V. Building Energy Simulation: A Workbook Using DesignBuilder; Mathur, J., Tetali, S., Bhatia, A., Eds.; CRC Press: Boca Raton,

FL, USA; Taylor & Francis Group: Boca Raton, FL, USA, 2017.
59. Kaplan, M.; Caner, P. Guidelines for Energy Simulation of Commercial Buildings: Final; Kaplan Engineering: Portland, OR, USA, 1992.
60. Leal, S. Case study of a simplified building energy modeling for performance simulation. Build. Simul. 2013, 2013, 333–339.
61. Wang, S.; Xu, X. Simplified building model for transient thermal performance estimation using GA-based parameter identification.

Int. J. Therm. Sci. 2006, 45, 419–432. [CrossRef]
62. Macdonald, I.A. Quantifying the Effects of Uncertainty in Building Simulation; University of Strathclyde Glasgow: Glasgow, UK, 2002.
63. Hopfe, C. The Impact of Future Climate Scenarios on Decision Making in Building Performance Simulation-A Case Study; University of

Paris: Paris, France, 2009; p. 18.
64. Breesch, H.; Janssens, A. Performance evaluation of passive cooling in office buildings based on uncertainty and sensitivity

analysis. Sol. Energy 2010, 84, 1453–1467. [CrossRef]
65. Loutzenhiser, P.; Manz, H.; Felsmann, C.; Strachan, P.; Frank, T.; Maxwell, G. Empirical validation of models to compute solar

irradiance on inclined surfaces for building energy simulation. Sol. Energy 2007, 81, 254–267. [CrossRef]

http://doi.org/10.3992/jgb.11.1.108.1
http://doi.org/10.1016/j.buildenv.2016.03.031
http://doi.org/10.3390/su11061660
http://doi.org/10.1016/j.enbuild.2014.03.018
https://efsg.det.nsw.edu.au/
https://efsg.det.nsw.edu.au/
http://doi.org/10.1016/j.enbuild.2015.01.049
http://doi.org/10.1016/j.buildenv.2017.06.016
http://doi.org/10.1016/j.renene.2009.02.016
http://doi.org/10.1177/1744259113516248
http://doi.org/10.1016/j.buildenv.2012.09.015
http://doi.org/10.1016/j.buildenv.2009.05.006
http://doi.org/10.3390/su9101708
http://doi.org/10.1016/j.buildenv.2009.08.016
http://doi.org/10.1016/j.rser.2013.02.004
http://doi.org/10.1016/j.apenergy.2018.09.221
http://doi.org/10.1016/j.enbuild.2014.11.063
http://doi.org/10.1016/j.ijthermalsci.2005.06.009
http://doi.org/10.1016/j.solener.2010.05.008
http://doi.org/10.1016/j.solener.2006.03.009


Buildings 2022, 12, 329 27 of 29

66. Barbhuiya, S.; Barbhuiya, S. Thermal comfort and energy consumption in a UK educational building. Build. Environ. 2013,
68, 1–11. [CrossRef]

67. Issa, M.A.A. Building Performance Simulation for Architects, Comparing Three Leading Simulation Tools; The University of Texas:
San Antonio, TX, USA, 2018.

68. Solmaz, A.S. A critical review on building performance simulation tools. Alam Cipta 2019, 12, 7–21.
69. Galbraith, S.; Daniel, J.; Vissel, B. A Study of Clustered Data and Approaches to Its Analysis. J. Neurosci. 2010, 30, 10601–10608.

[CrossRef]
70. Shiel, P.; Tarantino, S.; Fischer, M. Parametric analysis of design stage building energy performance simulation models. Energy

Build. 2018, 172, 78–93. [CrossRef]
71. Naboni, E. Comparison of Conventional, Parametric and Evolutionary Optimization Approaches for the Architectural Design

of Nearly Zero Energy Buildings. In Proceedings of the 13th Conference of International Building Performance Simulation
Association, Chambéry, France, 26–28 August 2013; pp. 26–28.

72. Ulukavak Harputlugil, G.; Hensen, J.; Wilde, P. Simulation as a Tool to Develop Guidelines for the Design of School Schemes for Four
Climatic Regions of Turkiye; Tsinghua University: Beijing, China, 2007.

73. Chen, P.Y. Correlation parametric and nonparametric measures. In Quantitative Applications in the Social Sciences; Popovich, P.M.,
Ed.; SAGE: Thousands Oaks, CA, USA, 2002.

74. Hennig, C. Handbook of Cluster Analysis, 1st ed.; Meila, M., Murtagh, F., Rocci, R., Eds.; CRC Press: Boca Raton, FL, USA, 2015.
75. Bansal, A.; Sharma, M.; Goel, S. Improved K-mean Clustering Algorithm for Prediction Analysis using Classification Technique

in Data Mining. Int. J. Comput. Appl. 2017, 157, 35–40. [CrossRef]
76. Conry, M.C. The Clustering of Health Behaviours in Ireland and Their Relationship with Mental Health, Self-Rated Health and Quality of

Life; BMC Public Health: Berlin, Germany, 2011; Volume 11, p. 692.
77. Gravetter, F.J.; Forzano, L.A.B. Research Methods for the Behavioral Sciences; Cengage Learning: Boston, MA, USA, 2011.
78. Aye, L.; Charters, W.W.S.; Fandino, A.M.; Robinson, J.R.W. Thermal performance of sustainable energy features. Solar 2005,

2005, 1–10.
79. Balbis-Morejón, M.; Rey-Hernández, J.; Amaris-Castilla, C.; Velasco-Gómez, E.; José-Alonso, J.S.; Rey-Martínez, F. Experimental

Study and Analysis of Thermal Comfort in a University Campus Building in Tropical Climate. Sustainability 2020, 12, 8886.
[CrossRef]

80. Pellegrino, M.; Simonetti, M.; Chiesa, G. Reducing thermal discomfort and energy consumption of Indian residential buildings:
Model validation by in-field measurements and simulation of low-cost interventions. Energy Build. 2016, 113, 145–158. [CrossRef]

81. Kisilewicz, T. On the Role of External Walls in the Reduction of Energy Demand and the Mitigation of Human Thermal Discomfort.
Sustainability 2019, 11, 1061. [CrossRef]

82. DesignBuilder Software. Comfort Analysis. Available online: https://designbuilder.co.uk//helpv2/Content/Comfort_Analysis.
htm (accessed on 2 February 2021).

83. Santamaria, B.M.; Gonzalo, F.A.; Aguirregabiria, B.; Ramos, J.H. Evaluation of Thermal Comfort and Energy Consumption of
Water Flow Glazing as a Radiant Heating and Cooling System: A Case Study of an Office Space. Sustainability 2020, 12, 7596.
[CrossRef]

84. Caetano, D.S.; Kalz, D.E.; Lomardo, L.L.; Rosa, L.P. Evaluation of thermal comfort and occupant satisfaction in office buildings in
hot and humid climate regions by means of field surveys. Energy Procedia 2017, 115, 183–194. [CrossRef]

85. Manache, G.; Melching, C. Sensitivity of latin hypercube sampling to sample size and distributional assumptions. In Proceedings
of the 32nd Congress of the International Association of Hydraulic Engineering and Research, Venice, Italy, 1–6 July 2007.

86. Budaiwi, I.; Abdou, A. HVAC system operational strategies for reduced energy consumption in buildings with intermittent
occupancy: The case of mosques. Energy Convers. Manag. 2013, 73, 37–50. [CrossRef]

87. Daghigh, R. Assessing the thermal comfort and ventilation in Malaysia and the surrounding regions. Renew. Sustain. Energy Rev.
2015, 48, 681–691. [CrossRef]

88. Wang, X.; Kendrick, C.; Ogden, R.; Walliman, N.; Baiche, B. A case study on energy consumption and overheating for a UK
industrial building with rooflights. Appl. Energy 2013, 104, 337–344. [CrossRef]

89. Lapisa, R.; Karudin, A.; Martias, M.; Krismadinata, K.; Ambiyar, A.; Romani, Z.; Salagnac, P. Effect of skylight–roof ratio on
warehouse building energy balance and thermal–visual comfort in hot-humid climate area. Asian J. Civ. Eng. 2020, 21, 915–923.
[CrossRef]

90. Gray, J.B.; Cook, R.D.; Weisberg, S. Applied Regression Including Computing and Graphics. Technometrics 2000, 42, 426. [CrossRef]
91. Mishra, P.; Pandey, C.M.; Singh, U.; Gupta, A.; Sahu, C.; Keshri, A. Descriptive statistics and normality tests for sta-tistical data.

Ann. Card. Anaesth. 2019, 22, 67–72. [CrossRef]
92. Vetter, T.R. Descriptive statistics: Reporting the answers to the 5 basic questions of who, what, why, when, where, and a sixth, so

what? Anesth. Analg. 2017, 125, 1797–1802. [CrossRef]
93. Kaliyadan, F.; Kulkarni, V. Types of Variables, Descriptive Statistics, and Sample Size. Indian Dermatol. Online J. 2019, 10, 82–86.

[CrossRef]
94. Hirashima, S.D.S.; Katzschner, A.; Ferreira, D.G.; De Assis, E.S.; Katzschner, L. Thermal comfort comparison and evaluation in

different climates. Urban Clim. 2018, 23, 219–230. [CrossRef]

http://doi.org/10.1016/j.buildenv.2013.06.002
http://doi.org/10.1523/JNEUROSCI.0362-10.2010
http://doi.org/10.1016/j.enbuild.2018.04.045
http://doi.org/10.5120/ijca2017912719
http://doi.org/10.3390/su12218886
http://doi.org/10.1016/j.enbuild.2015.12.015
http://doi.org/10.3390/su11041061
https://designbuilder.co.uk//helpv2/Content/Comfort_Analysis.htm
https://designbuilder.co.uk//helpv2/Content/Comfort_Analysis.htm
http://doi.org/10.3390/su12187596
http://doi.org/10.1016/j.egypro.2017.05.017
http://doi.org/10.1016/j.enconman.2013.04.008
http://doi.org/10.1016/j.rser.2015.04.017
http://doi.org/10.1016/j.apenergy.2012.10.047
http://doi.org/10.1007/s42107-020-00249-9
http://doi.org/10.2307/1270953
http://doi.org/10.4103/aca.ACA_157_18
http://doi.org/10.1213/ANE.0000000000002471
http://doi.org/10.4103/idoj.idoj_468_18
http://doi.org/10.1016/j.uclim.2016.08.007


Buildings 2022, 12, 329 28 of 29

95. Eskin, N.; Türkmen, H. Analysis of annual heating and cooling energy requirements for office buildings in different climates in
Turkey. Energy Build. 2008, 40, 763–773. [CrossRef]

96. Fernández-Agüera, J.; Domínguez-Amarillo, S.; Sendra, J.J.; Suárez, R. An approach to modelling envelope airtightness in
multi-family social housing in Mediterranean Europe based on the situation in Spain. Energy Build. 2016, 128, 236–253. [CrossRef]

97. Fernández-Agüera, J.; Domínguez-Amarillo, S.; Alonso, C.; Martín-Consuegra, F. Thermal comfort and indoor air quality in
low-income housing in Spain: The influence of airtightness and occupant behaviour. Energy Build. 2019, 199, 102–114. [CrossRef]

98. Rodrigues, L.; Tubelo, R.; Pasos, A.V.; Gonçalves, J.C.S.; Wood, C.; Gillott, M. Quantifying airtightness in Brazilian residential
buildings with focus on its contribution to thermal comfort. Build. Res. Inf. 2020, 49, 639–660. [CrossRef]

99. Boslaugh, S. Statistics in a Nutshell, 2nd ed.; O’Reilly: Beijing, China, 2012.
100. Schmider, E.; Ziegler, M.; Danay, E.; Beyer, L.; Bühner, M. Is It Really Robust? Methodology 2010, 6, 147–151. [CrossRef]
101. Hopfe, C.J.; Hensen, J.L.M. Uncertainty analysis in building performance simulation for design support. Energy Build. 2011,

43, 2798–2805. [CrossRef]
102. Pianosi, F.; Beven, K.; Freer, J.; Hall, J.W.; Rougier, J.; Stephenson, D.B.; Wagener, T. Sensitivity analysis of environmental models:

A systematic review with practical workflow. Environ. Model. Softw. 2016, 79, 214–232. [CrossRef]
103. Gray, J. Applied Regression Analysis, Linear Models, and Related Methods; Sage Publications, Inc.: Thousands Oaks, CA, USA, 2012;

Volume 40.
104. Tan, J.; Cui, Y.; Luo, Y. Assessment of uncertainty and sensitivity analyses for ORYZA model under different ranges of parameter

variation. Eur. J. Agron. 2017, 91, 54–62. [CrossRef]
105. Gupta, S.K. The relevance of confidence interval and P-value in inferential statistics. Indian J. Pharmacol. 2012, 44, 143–144. [CrossRef]
106. Chen, J. Advanced Technical Analysis Concepts-Rate of Change (ROC). Available online: https://www.investopedia.com/terms/

r/rateofchange.asp (accessed on 20 May 2020).
107. Kazanci, O.; Toftum, J.; Olesen, B.W. Effect of set-point variation on thermal comfort and energy use in a plus-energy dwelling.

In Proceedings of the 9th Windsor Conference: Making Comfort Relevant, Windsor, UK, 7–10 April 2016.
108. Hoyt, T.; Arens, E.; Zhang, H. Extending air temperature setpoints: Simulated energy savings and design considerations for new

and retrofit buildings. Build. Environ. 2015, 88, 89–96. [CrossRef]
109. Sadineni, S.B.; Madala, S.; Boehm, R.F. Passive building energy savings: A review of building envelope components. Renew.

Sustain. Energy Rev. 2011, 15, 3617–3631. [CrossRef]
110. Hashemi, A.; Cruickshank, H.; Cheshmehzangi, A. Improving thermal comfort in low-income tropical housing: The case of

Uganda. In Proceedings of the ZEMCH 2015 International Conference, Bari & Lecce, Italy, 21–25 September 2015.
111. Reilly, A.; Kinnane, O. The impact of thermal mass on building energy consumption. Appl. Energy 2017, 198, 108–121. [CrossRef]
112. Balaras, C. The role of thermal mass on the cooling load of buildings. An overview of computational methods. Energy Build. 1996,

24, 1–10. [CrossRef]
113. Bikas, D.; Chastas, P. The Effect of the U Value in the Energy Performance of Residential Buildings in Greece. J. Sustain. Arch. Civ.

Eng. 2014, 6, 58–65. [CrossRef]
114. Kumar, A.; Suman, B. Experimental evaluation of insulation materials for walls and roofs and their impact on indoor thermal

comfort under composite climate. Build. Environ. 2013, 59, 635–643. [CrossRef]
115. Christian, J.E.; Kosny, J. Thermal performance and wall ratings. ASHRAE J. 1996, 38, 3.
116. Lyons, P.R.; Arasteh, D.; Huizenga, C. Window performance for human thermal comfort. Trans. Am. Soc. Heat. Refrig. Air Cond.

Eng. 2000, 106, 594–604.
117. Ralegaonkar, R.; Gupta, R. Review of intelligent building construction: A passive solar architecture approach. Renew. Sustain.

Energy Rev. 2010, 14, 2238–2242. [CrossRef]
118. Singh, M.; Garg, S. Energy rating of different glazings for Indian climates. Energy 2009, 34, 1986–1992. [CrossRef]
119. Liping, W.; Hien, W.N. The impacts of ventilation strategies and facade on indoor thermal environment for naturally ventilated

residential buildings in Singapore. Build. Environ. 2007, 42, 4006–4015. [CrossRef]
120. Al-Tamimi, N.A.M. Impact of Building Envelope Modifications on the Thermal Performance of Glazed High-Rise Residential Buildings in

the Tropics; University Science Malaysia: Penang, Malaysia, 2011.
121. Pathirana, S.; Rodrigo, A.; Halwatura, R. Effect of building shape, orientation, window to wall ratios and zones on energy

efficiency and thermal comfort of naturally ventilated houses in tropical climate. Int. J. Energy Environ. Eng. 2019, 10, 107–120.
[CrossRef]

122. Gugliermetti, F.; Bisegna, F. Daylighting with external shading devices: Design and simulation algorithms. Build. Environ. 2006,
41, 136–149. [CrossRef]

123. Al-Tamimi, N.A.; Fadzil, S.F.S. The Potential of Shading Devices for Temperature Reduction in High.-Rise Residential Buildings
in the Tropics. Proc. Eng. 2011, 21, 273–282. [CrossRef]

124. Mjörnell, K.; Johansson, D.; Bagge, H. The Effect of High Occupancy Density on IAQ, Moisture Conditions and Energy Use in
Apartments. Energies 2019, 12, 4454. [CrossRef]

125. Elsharkawy, H.; Zahiri, S. The significance of occupancy profiles in determining post retrofit indoor thermal comfort, overheating
risk and building energy performance. Build. Environ. 2020, 172, 106676. [CrossRef]

126. Sfakianaki, A.; Pavlou, K.; Santamouris, M.; Livada, I.; Assimakopoulos, M.-N.; Mantas, P.; Christakopoulos, A. Air tightness
measurements of residential houses in Athens, Greece. Build. Environ. 2008, 43, 398–405. [CrossRef]

http://doi.org/10.1016/j.enbuild.2007.05.008
http://doi.org/10.1016/j.enbuild.2016.06.074
http://doi.org/10.1016/j.enbuild.2019.06.052
http://doi.org/10.1080/09613218.2020.1825064
http://doi.org/10.1027/1614-2241/a000016
http://doi.org/10.1016/j.enbuild.2011.06.034
http://doi.org/10.1016/j.envsoft.2016.02.008
http://doi.org/10.1016/j.eja.2017.09.001
http://doi.org/10.4103/0253-7613.91895
https://www.investopedia.com/terms/r/rateofchange.asp
https://www.investopedia.com/terms/r/rateofchange.asp
http://doi.org/10.1016/j.buildenv.2014.09.010
http://doi.org/10.1016/j.rser.2011.07.014
http://doi.org/10.1016/j.apenergy.2017.04.024
http://doi.org/10.1016/0378-7788(95)00956-6
http://doi.org/10.5755/j01.sace.6.1.5950
http://doi.org/10.1016/j.buildenv.2012.09.023
http://doi.org/10.1016/j.rser.2010.04.016
http://doi.org/10.1016/j.energy.2009.08.013
http://doi.org/10.1016/j.buildenv.2006.06.027
http://doi.org/10.1007/s40095-018-0295-3
http://doi.org/10.1016/j.buildenv.2004.12.011
http://doi.org/10.1016/j.proeng.2011.11.2015
http://doi.org/10.3390/en12234454
http://doi.org/10.1016/j.buildenv.2020.106676
http://doi.org/10.1016/j.buildenv.2007.01.006


Buildings 2022, 12, 329 29 of 29

127. Faria, L.C.D.; Romero, M.D.A.; Porras-Amores, C.; Pirró, L.F.D.S.; Saez, P.V. Prediction of the Impact of Air Speed Produced by a
Mechanical Fan and Operative Temperature on the Thermal Sensation. Buildings 2022, 12, 101. [CrossRef]

128. Younes, C.; Shdid, C.A.; Bitsuamlak, G. Air infiltration through building envelopes: A review. J. Build. Phys. 2011, 35, 267–302.
[CrossRef]

129. Kent, R. Chapter 7-Buildings and Offices. In Energy Management in Plastics Processing, 3rd ed.; Kent, R., Ed.; Elsevier: Amsterdam,
The Netherlands, 2018; pp. 345–370.

130. Franco, A.; Schito, E. Definition of Optimal Ventilation Rates for Balancing Comfort and Energy Use in Indoor Spaces Using CO2
Concentration Data. Building 2020, 10, 135. [CrossRef]

131. Maddalena, R.; Mendell, M.J.; Eliseeva, K.; Chan, W.; Sullivan, D.P.; Russell, M.; Satish, U.; Fisk, W.J. Effects of ventilation rate per
person and per floor area on perceived air quality, sick building syndrome symptoms, and decision-making. Indoor Air 2015,
25, 362–370. [CrossRef] [PubMed]

132. Allab, Y.; Kindinis, A.; Causone, F.; Tatti, A.; Simonet, S.; Bayeul-Lainé, A. Ventilation Rates and Thermal Comfort Assessment in a
Naturally Ventilated Classroom; Aalborg University: Aalborg, Denmark, 2016.

133. Wouters, P.; Barles, P.; Blomsterberg, Å.; Bulsing, P.; De Gids, W.; Delmotte, C.; Faÿsse, J.C.; Filleux, C.; Hardegger, P.; Leal, V.;
et al. Towards Improved Performances of Mechanical Ventilation Systems. Tip-Vent Project, EC Joule. Research Funded by The
European Commission in the framework of Non Nuclear Enery Programme, Joule IV. 2001. Available online: https://www.
researchgate.net/publication/313573886_Towards_improved_performances_of_mechanical_ventilation_systems (accessed on
10 February 2019).

134. Ahsanullah, S.I.; Van Zandt, S. The impact of zoning regulations on thermal comfort in non-conditioned housing in hot, humid
climates: Findings from Dhaka, Bangladesh. Neth. J. Hous. Built Environ. 2014, 29, 677–697. [CrossRef]

135. Albatayneh, A.; Alterman, D.; Page, A.; Moghtaderi, B. The Significance of the Orientation on the Overall buildings Thermal
Performance-Case Study in Australia. Energy Procedia 2018, 152, 372–377. [CrossRef]

http://doi.org/10.3390/buildings12020101
http://doi.org/10.1177/1744259111423085
http://doi.org/10.3390/buildings10080135
http://doi.org/10.1111/ina.12149
http://www.ncbi.nlm.nih.gov/pubmed/25142723
https://www.researchgate.net/publication/313573886_Towards_improved_performances_of_mechanical_ventilation_systems
https://www.researchgate.net/publication/313573886_Towards_improved_performances_of_mechanical_ventilation_systems
http://doi.org/10.1007/s10901-013-9373-2
http://doi.org/10.1016/j.egypro.2018.09.159

	Introduction 
	Research Methods 
	Simulation Process Using Monte Carlo (MC) Technique 
	Prototype Description of the Application of BES Model to Building Design Example and Climate 
	Determination of Input and Output Variables 
	Sampling and Assignment of Probability Density Functions 

	Results and Discussion 
	Uncertainty Analysis (UA) 
	Sensitivity Analysis (SA) 
	Influential Factors on Energy Consumption for Each Output 
	Influential Factors on Thermal Comfort for each Output 

	The Effect of ABDPs on Indoor Thermal Environment 
	Effect of Cooling and Heating Set-Point Temperatures 
	Effect of Roof and Wall Construction and Thermal Mass 
	Effect of Glazing, Window to Wall Ratio and Shading Devices 
	Effect of Occupancy Density 
	Effect of Infiltration Rate and Mechanical Ventilation Rate per Area 
	Effect of Building Orientation 

	Relationship between Students’ Thermal Discomfort Hours and Building Energy Consumption 

	Conclusions 
	References

