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Abstract: Alkali-activated slag (AAS) is an environmentally friendly green cementitious material
that can replace ordinary Portland cement (OPC) and has attracted extensive research by scholars all
over the world. However, research regarding its creep performance has been lacking, which in turn
affects its further application. The creep of alkali-activated slag concrete is large, and fiber addition
has been shown to improve this problem. Polypropylene (PP) fiber has good alkali resistance and is
economical. This paper studies the effect of the stress–strength ratio and fiber length on the creep
property of PP fiber-reinforced alkali-activated slag (FRAAS) concrete. At the stress–strength ratio
of 0.15, PP fiber addition is able to greatly reduce the creep of concrete. When the stress–strength
ratio increases, the shorter fiber loses the anchoring force and the holes caused by the longer fiber
crack. This in turn leads to the deterioration of the inhibition effect on concrete creep. The CEB-FIP
2010 model is highly accurate, but the final value prediction is small. The early prediction value of
the GL2000 model is rather large and conservative. The creep coefficient of the prediction model
and the measured secant modulus of PP FRAAS concrete with different fiber lengths under different
stress–strength ratios may solve the issue of creep prediction.

Keywords: alkali-activated slag; fiber-reinforced concrete; fiber length; creep; predicting method

1. Introduction

Carbon dioxide emissions are severely threatening the existence and survival of
both the earth and humankind. At present, the world is attempting to reduce carbon
dioxide emissions. For example, China is currently striving to peak its carbon dioxide
emissions by 2030 and achieve carbon neutrality by 2060. Moreover, it should be noted that
China is a developing country, and infrastructure construction is underway. During the
construction process, cement is the most commonly used building material. The carbon
dioxide produced by cement production accounts for 8% of the total global carbon dioxide
emission each year [1]. If there were to be a cementitious material that could replace cement,
carbon dioxide emissions could be greatly reduced. Additionally, steel is also a widely
used material in construction projects. In the production process of steel, a large amount of
waste is unavoidably produced. This is referred to as the granulated blast furnace slag. The
wastes in question are often stacked in open air, in turn causing environmental pollution.
Presently, only a small amount of slag is being used to produce cement admixture after
grinding. It accounts for a total of around 20–30% [2].

Alkali-activated slag is a cementitious material formed by adding an alkali activator
to slag, which appeared in 1940 [3]. The emergence of alkali-activated slag is almost fully
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capable of solving both the problems of pollution caused by cement production and waste
slag utilization. In comparison to cement, alkali-activated slag has better early strength [4,5],
chemical corrosion resistance [6,7], biological erosion resistance [8,9], and freeze–thaw
resistance [10,11]. Alkali-activated slag has many advantages, but some properties have
not been clearly studied, which affects its application, such as creep.

Creep refers to the phenomenon where the deformation of a specimen continuously
increases under long-term load. Creep is capable of affecting the long-term performance
of members, by increasing the deflection of beams and causing pre-stress loss. In compar-
ison to cement concrete, alkali-activated concrete has greater creep [12]. Zhou observed
that under the same parameters, the creep of AAS concrete is about twice that of OPC
concrete. However, thus far, no explanation for how to further reduce the creep has been
provided [13]. Adding fiber into concrete is a satisfactory method for reducing concrete
creep. Fibers are added to concrete to improve tensile strength [14,15] and ductility [16,17].
Moreover, they are also able to reduce the creep of concrete [18,19]. The inhibiting effects of
fiber on creep depends on fiber length, fiber volume ratio [20], and stress–strength ratio [21].
It should be noted that as a common fiber of concrete, PP fiber has the characteristics of
easy processing and low price. Haddad and Smadi [22] compared the inhibition effect of
steel fiber and PP fiber on concrete creep. They indicated that PP fibers tend to have a better
inhibition effect on concrete creep with respect to little volume rate and low cost.

It takes a long time to test the creep of concrete, from 200 days to 1000 days. Due to
the fact that it is unrealistic to test the performance of concrete every time, it is necessary
to predict the creep model of concrete. However, the existing concrete model does not
take the fiber content into consideration. In other words, with respect to AAS concrete
with fiber, the model needs to be improved in order to be able to predict the creep of PP
FRAAS concrete.

With respect to the fiber volume ratio of 0.6%, this paper studies the creep properties
of PP FRAAS concrete with three different lengths (6 mm, 12 mm, and 18 mm) of PP fiber
at the stress–strength ratio of 0.15–0.6. Furthermore, the effects of stress–strength ratio and
fiber length on the creep properties of polypropylene fiber-reinforced alkali slag concrete
are also analyzed in this paper. Finally, it should be noted that according to the test results,
a prediction method of PP FRAAS concrete creep is proposed.

2. Experimental Procedure
2.1. Materials and Mixture

PP FRAAS consists of three parts: cementitious material, aggregate, and fiber. Firstly,
it should be made clear that the cementitious material portion is alkali-activated slag
and is thus composed of slag and activator. The slag considered in this article is locally
produced in Harbin. Furthermore, the activators commonly used to excite slag are sodium
silicate, sodium hydroxide, and sodium carbonate. The slag excited by sodium silicate
(Na2O•nSiO2) has the highest strength [4]. Moreover, in cases where sodium silicate
solution is used as activator, there are three parameters in need of consideration: water–
cement ratio (mass ratio of activator solvent to slag), modulus (n in Na2O•nSiO2), and alkali
dosage (mass ratio of activator solute to slag). Sodium silicate is considered a strong base
and a weak acid salt. Its alkalinity increases with the decrease in the n variable. It should be
noted that when sodium silicate is used as activator, there is an optimal modulus n, usually
1–1.5 [23]. In the present study, the activator modulus is taken to be the intermediate
value of 1.2. Furthermore, due to the fact that the modulus of raw material water glass
(sodium silicate solution) is fixed during production (modulus was too large for AAS), it is
necessary to mix sodium hydroxide with water glass in order to reduce the modulus of raw
material to the optimal modulus. In reference to the activator dosage, an optimal range also
exists, usually 7–20% [24]. In the present experiment, the activator took the median of the
optimal interval, which is 15%. In addition, the water–cement ratio was determined to be
0.5 through the entirety of the test. PP FRAAS concrete has neither bleeding nor sufficient
working performance under this water–cement ratio. The mortar ratio (mass ratio of slag to
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fine aggregate) and sand ratio (mass ratio of fine aggregate to aggregate) were determined
through tests, which are 0.5% and 33%, respectively.

After the introduction of the required raw materials, the specific characteristics of raw ma-
terials were introduced. The slag is produced by Harbin Xinsanfa Building Materials Co., Ltd.,
and its quality is S95. The determination results of the chemical composition of slag are
provided in Table 1. Water glass used in this experiment is produced by the Hebei Julide
chemical plant, with the moisture content and modulus rated at 56% and 2.4, respectively.
Furthermore, sodium hydroxide is made by the Tianjin Continental Chemical Plant. It
is in the form of flake particles, with a purity level of more than 96%. In addition, the
water used in this study is local tap water in the city of Harbin. The stones and sand used
also come from Harbin. It is relevant to note that the particle size of coarse aggregate
is 5–10 mm, while the maximum particle size of sand is 2.5 mm, and its fineness is 2.5,
meaning it belongs to medium coarse sand. After calculation, the mix of raw materials
for making AAS concrete is illustrated in Table 2. Moreover, the PP fiber is produced by
the Shanghai Qichen chemical plant, and the specific parameters of fiber may be found in
Table 3. For additional clarity, pictures of the PP fibers with different lengths are provided
in Figure 1. The fiber–volume ratio (fiber accounts for the volume of concrete) adopts a
more appropriate 0.6%. Under the aforementioned fiber–volume ratio, the fiber length
adopts 6 mm, 12 mm, and 18 mm, respectively. The names of different mix proportions
and corresponding fibers are illustrated in Table 4.

Table 1. Chemical composition of slag (%).

Oxide CaO SiO2 Al2O3 MgO SO3 Fe2O3 Na2O K2O Other

Percentage 42.27 32.84 13.61 6.83 2.21 0.66 0.38 0.28 0.92

Table 2. Mix proportion of AAS.

Slag Fine Aggregate Coarse Aggregate Sodium Silicate NaOH Water

1 2 4 0.264 0.044 0.342

Table 3. Properties of PP fiber.

Length.
(mm)

Diameter
(µm) Elastic Modulus (GPa) Tensile Strength

(MPa)
Density
(kg/m3) Elongation (%) Melting Point (◦C)

6, 12, 18 25 3.85 400 910 30 180
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Table 4. Addition of fiber and reference for each mixture.

Mixture Designation Type of Fiber Fiber Dosage by Volume (%) Fiber Length (mm)

0 None 0 0
P606 PP 0.6 6
P612 PP 0.6 12
P618 PP 0.6 18

Naming convention: Fiber type (basalt) + fiber dosage by volume (single digit) + fiber length (double digits).

Concrete mixing was divided into three stages: dry mixing of slag and aggregate,
mixing with activator, and mixing with fiber. Each aforementioned stage of the mixing test
lasted for 1 min, 30 s, and 2 min, respectively. After mixing, the freshly mixed concrete was
poured into 100 mm × 100 mm × 300 mm and 100 mm × 100 mm × 400 mm molds and
vibrated for 30 s. After vibration, the top of the test piece was covered with plastic film to
prevent moisture loss. The specimen was removed after 3 days, and after demolding, it was
placed in a constant temperature and humidity laboratory for further curing for a period of
28 days. The temperature and humidity of the laboratory were controlled at 20 ± 2 ◦C and
60 ± 3%, respectively.

2.2. Test Process

In order to study creep under different stress–strength ratios, the first factor in need
of determining is the strength of the concrete prism. The size of a prism strength test
piece is 100 mm × 100 mm × 300 mm. The test specification for compressive strength is
GB/T 50081-2002 [25], while the test device is illustrated in Figure 2a. The test results of
compressive strength have been published [26]. After measuring the compressive strength,
the loading stress during the creep test may be determined according to the target stress
water product. This test involves 4 stress–strength ratios, corresponding to each mix
proportion, which are 0.15, 0.3, 0.45, and 0.6, respectively. With regard to cement concrete,
the stress–strength ratio includes a linear creep section and nonlinear allowable creep
section (the stress–strength ratio at the dividing point is 0.4–0.5).
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The creep test is based on the following test specifications: GB/T 50082-2009 [27]. The
size of the creep specimen is 100 mm × 100 mm × 400 mm. Moreover, the equipment used
for creep is depicted in Figure 2b. The name and corresponding working conditions of each
specimen are provided in Table 5. The test results of 0 and P612 have been published [28].

Due to the fact that the deformation measured by the creep instrument includes creep
deformation and shrinkage deformation, the former may be obtained solely by removing
the shrinkage deformation. Although the size of the specimen used in the shrinkage test
differs from the creep specimen, it is 100 mm × 100 mm × 300 mm. However, by pasting
aluminum foil tape on the end surface of the shrinkage specimen, the moisture loss of the
creep specimen is simulated well (moisture is emitted from around the cross-section). The
shrinkage test is illustrated in Figure 2c.

Table 5. Designations and working conditions of each group.

Mixture
Designation 1

Prism Compressive
Strength (MPa) Stress–Strength Ratio Loading Value

(MPa)

0–0.15 43.23 0.15 6.48
0–0.3 43.23 0.30 12.97
0–0.45 43.23 0.45 19.45
0–0.6 43.23 0.60 25.94

P606-0.15 42.53 0.15 6.38
P606-0.3 42.53 0.3 12.76
P606-0.45 42.53 0.45 19.14
P606-0.6 42.53 0.6 25.52
P612-0.15 41.44 0.15 6.22
P612-0.3 41.44 0.3 12.43
P612-0.45 41.44 0.45 18.65
P612-0.6 41.44 0.6 24.86
P618-0.15 39.4 0.15 5.91
P618-0.3 39.4 0.3 11.82
P618-0.45 39.4 0.45 17.73
P618-0.6 39.4 0.6 23.64

1 There were two specimens of each mix proportion under a certain stress–strength ratio (under one creep equipment).

3. Test Results
3.1. Stress-Dependent Strain

The deformation value obtained by the creep instrument represents the total defor-
mation. In addition, the stress-dependent strain is obtained after removing the shrinkage
deformation. The stress-dependent strain consists of two parts: the first is the instanta-
neous deformation at the time of loading, while the other is the creep deformation at the
time of load holding. As can be observed in Figure 3, under each mix proportion, the
stress-dependent strain increases with time. However, the growth rate decreases gradually,
while the creep tends to be stable. These results indicate that the creep of the specimen
below the 0.6 stress–strength ratio is a convergent creep [29]. Simultaneously, under the
same mix proportion and the same time, stress and deformation increase with the increase
in the stress–strength ratio.

By comparing the stress and deformation under different mix proportions, it has been
shown that when the fiber length is 6 mm, the inhibition effect of PP fiber on creep is
negative, and that the creep is greater than that of plain AAS concrete. By observing the
length of other fibers, it was noted that the addition of fibers significantly reduces the creep
at the stress–strength ratio of 0.3–0.6. According to Zhang’s theory, the inhibition effect of
fiber on creep, under the same fiber volume ratio, becomes stronger with the increase in
fiber length. However, once the diameter length ratio of fiber exceeds 50, the inhibition
effect of the diameter length ratio on fiber creep is no longer different [21]. According
to the aforementioned theory, as well as Table 3, when the diameter of the PP fiber is
multiplied by 50, the critical point of fiber length is 1.25 mm. The value of 6 mm far exceeds
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1.25 mm, but it still does not provide enough constraints. This shows that PP fiber needs
a longer bonding length with concrete in order to display the inhibition effect on creep.
Theoretical research provides a clear law, but it is not applicable to all fibers. Some fibers
(such as PP fiber in this test) still need to verify whether the theory is applicable through
practical experiments.
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The addition of fiber reduces the creep but also reduces the compressive strength. In
order to simply reduce creep, adding fiber is a feasible method. If both compressive strength
and creep need to be considered, the ratio of creep to loading stress can be referred to.

3.2. Specific Creep

The ratio of creep to loading stress is termed specific creep. Creep is capable of
removing the influence of the stress–strength ratio to a certain extent. For cement concrete,
when the stress–strength ratio is less than 0.4, the creep deformation of concrete will have
a linear relationship with the stress [30]. This means that the specific creep curve at the
stress–strength ratio below 0.4 will coincide. However, from Figure 4, it can be observed
that under the same fiber length, even when the stress–strength ratio is lower than 0.4, the
specific creep curves of different stress–strength ratios do not coincide. This shows that
there is no linear creep in PP FRAAS under different fiber lengths.
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Specific creep values for the same mix proportion at different stress–strength ratios
are provided in Figure 4. As can be observed in Figure 4, under each mix proportion, the
specific creep increases with time. However, the growth rate decreases gradually. It may be
observed from Figure 4a that the spacing between specific creep curves of AAS concrete
without fiber under different stress–strength ratios is uniform. The interval between the
specific creep curves in Figure 4b–d becomes uneven. This indicates that the creep inhibition
effect of fiber is different under different stress–strength ratios. When the fiber length is
6–18 mm, the specific creep curve at the 0.15 stress–strength ratio is far away from the 0.3
and 0.45 stress–strength ratios, and the value is small. This demonstrates that fiber plays an
important role in inhibiting creep at the level of 0.15. By observing the three creep curves
of P606-0.6, P612-0.6, and P618-0.6, it can be noted that the specific creep curves of P606-0.6
and P618-0.6 are far away from the specific creep curves under the stress–strength ratio
of 0.45, and the values are large. However, P612-0.6 is close to P612-0.45. There are two
reasons for this phenomenon. Firstly, under a high stress–strength ratio, 6 mm provides
insufficient anchoring force for PP fiber, which can no longer restrict creep. Secondly, under
the condition of fiber length of 18 mm, too-long fiber will cause more cavities [31] and
reduce strength [26,32]. These cavities will crack at a high stress–strength ratio [28], which
will counteract the inhibition of fiber on creep. In addition, at a high stress–strength ratio,
the mechanism of fiber-inhibiting creep is to inhibit the development of microcracks [33].
Therefore, for PP fiber under the same fiber volume ratio, too-long (18 mm) or too-short
(6 mm) fiber will not have a better inhibition effect on the creep of concrete under a high
stress–strength ratio.
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In order to demonstrate the working state of different fiber lengths more intuitively
under a certain stress–strength ratio, Figure 5 illustrates specific creep values for different
stress–strength ratios at mix proportions. Specific creep values for the 0.15 stress–strength
ratio at different mix proportions were between 50 and 60 µε/MPa. Specific creep values for
the 0.3 stress–strength ratio at different mix proportions were between 90 and 110 µε/MPa.
Specific creep values for the 0.45 stress–strength ratio at different mix proportions were
between 100 and 120 µε/MPa. Specific creep values for the 0.6 stress–strength ratio at
different mix proportions were between 110 and 140 µε/MPa. From Figure 5a, it may
be seen that the addition of fiber greatly reduces the creep at the stress–strength ratio
of 0.15. Taking into consideration that the engineering design is conservative, and the
actual working stress will not be very high, the addition of fiber can indeed reduce creep.
Furthermore, from both Figure 5b,c, we can conclude that when the stress–strength ratio
increases to 0.3 and 0.45, the addition of fiber has little inhibitory effect on creep and even
has side effects. The worst inhibition effect may be noted with the P606 mix proportion.
The fiber pull-out mechanism is an important reason affecting the creep of fiber-reinforced
concrete [34]. It is once more confirmed that the creep inhibition effect of PP fiber is
insufficient when the fiber is particularly short. As shown in Figure 5d, P612 still has a
certain inhibitory effect on creep at the stress–strength ratio of 0.6, while neither P606 nor
P618 have an inhibitory effect on creep at this stress–strength ratio but have side effects.
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3.3. Creep Coefficient

Creep coefficient is defined as the ratio of creep deformation compared to instanta-
neous deformation. When compared to specific creep, which excludes the influence of
stress, the creep coefficient further excludes the influence of elastic modulus and becomes a
dimensionless number. Creep coefficients for the same mix proportions at different stress–
strength ratios are illustrated in Figure 6. It may be observed that there is little difference in
creep coefficients at different stress–strength ratios under the same mix proportion. The
creep coefficient increases continuously with age, and the growth rate slows down gradu-
ally. At 360 d, the creep coefficients of the same mix proportion at different stress–strength
ratios are basically concentrated in the range of 1.5–1.9. This is different from OPC concrete,
as the stress–strength ratio of OPC concrete is greater than 0.4, the creep coefficient of OPC
concrete will increase [30].
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Through comparison of the creep coefficients of different mix proportions, the gap is
not very large. This means that under the same fiber volume ratio, PP fibers with different
lengths have little effect on the creep coefficient of PP FRAAS concrete. This is convenient to
the prediction of creep. Creep belongs to a long-term test, and it is unrealistic to determine
the creep magnitude every time. Therefore, it is important to utilize the creep prediction
model. The existing four mature models are the GL2000 [35], CEB-FIP 2010 [30], ACI
209R-92 [36], and B3 [37] models. Although their respective parameters are different, the
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first three models choose to calculate the creep coefficient first. The creep prediction of
FRAAS concrete with different fiber lengths with a unified creep coefficient will become
very convenient.

4. Method for Predicting Creep of FRAAS Concrete

It should firstly be noted that the mean value of the creep coefficient of four mix
proportions under different stress–strength ratios was calculated. Since the fiber content
was not considered in the four models, only the parameters of AAS concrete were input
into the model for creep prediction. The mean value and prediction curve of each mix
proportion are illustrated in Figure 7. From Figure 7, it may be observed that the ACI
209R-92 model has sufficient accuracy in the early stage. However, the predicted value
in the later stage is small. Furthermore, similarly to the ACI model, the CEB-FIP 2010
model has satisfactory precision in the early stage and slightly poorer precision in the
later stage. Nevertheless, its precision is considered acceptable. The prediction value of
the GL2000 model is large, and the growth rate is high in the early stage. However, the
models were to be more accurate for the final value of 360 days. Lastly, the B3 model
has been shown to be completely inaccurate. The reason for its inaccuracy is the fact
that the B3 model calculates the same parameters as the specific creep while calculating
the creep coefficient by multiplying the elastic modulus [13]. Therefore, the calculated
elastic modulus is inconsistent with the multiplied actual elastic modulus, resulting in an
inaccurate creep coefficient.
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In order to further illustrate the model prediction accuracy, the CEB-FIP 2010 and
GL2000 model with satisfactory prediction effects were selected. In addition, as demon-
strated in Table 6, the R2 values of model predictions were calculated. As can be observed
from Table 6, the CEB-FIP 2010 model has high accuracy with respect to each mix proportion.
Conversely, the GL2000 model has been shown to have poor prediction accuracy.
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Table 6. R2 values of CEB-FIP 2010 and GL2000 models.

Model 0 P606 P612 P618

CEB-FIP 2010 0.96 0.93 0.87 0.95
GL2000 0.72 0.8 0.44 0.79

Moreover, in an attempt to demonstrate the effect of model prediction more intuitively,
the ratio of model prediction value to test value is illustrated in Figure 8. From Figure 8,
it may be observed that the predicted value of the CEB-FIP 2010 model is close to the
experimental value, and the prediction effect is better. In addition, the prediction accuracy
of the GL2000 model is general (the predicted value is slightly larger). However, a larger
predicted value may mean that it is more conservative and suitable for design. Lastly, it
was noted that the GL2000 model was better than the CEB-FIP 2010 model in predicting the
final value of creep. Therefore, the R2 value cannot be used solely in the quality evaluation
of a model.
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The prediction of creep coefficient is solved in the previous paragraph, followed by the
prediction of specific creep and stress-dependent strain. As has been previously mentioned,
the specific creep and creep coefficients are transformed into each other through the elastic
modulus. At present, ordinary concrete is very mature, and its elastic modulus can be
calculated directly by inputting parameters into the model. Nevertheless, due to the fact
that AAS concrete is presently not mature, no unified formula for elastic modulus may
be proposed. With respect to the elastic modulus in this study, the secant modulus of PP
FRAAS concrete under different stresses was calculated by using the stress and measured
deformation loaded on the creep specimen. These calculations are illustrated in Figure 9.
From Figure 9, it may be noted that the secant modulus of PP FRAAS concrete gradually
decreases with the increase in the stress–strength ratio, which is approximately linear.
When the stress–strength ratio increased from 0.15 to 0.6, the secant modulus of PP concrete
decreased from about 2 to about 1.4. The slope between the secant modulus and stress–
strength ratio under the same mix proportion is about −1.3. Thus, when calculating the
specific creep, the unified elastic modulus cannot be applied; rather, the secant modulus
needs to be used.
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The secant modulus of each mix proportion under different stress–strength ratios
is each mix. Moreover, the predicted specific creep is obtained by combining the creep
coefficient calculated by both the CEB-FIP 2010 and GL2000 models. This is shown in
Figure 10a. In addition, after the specific creep has been obtained, the stress and deforma-
tion may be calculated by multiplying the actual loading stress and actual instantaneous
deformation, as illustrated by Figure 10b. As can be seen from Figure 10b, this prediction
method has high accuracy. Through the aforementioned process, the creep of PP FRAAS
concrete with different fiber lengths can be predicted more accurately under different
stress–strength ratios.
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5. Conclusions 
This paper aimed to demonstrate the effects of different fiber lengths and stress–

strength ratios on the creep properties of PP FRAAS concrete with a fiber volume ratio of 
0.6%. The experiments conducted for this article yielded several important results. 
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Finally, the creep coefficient of the prediction model and the measured secant mod-
ulus of PP FRAAS concrete with different fiber lengths under different stress–strength 
ratios can solve the problem of creep prediction. 
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5. Conclusions

This paper aimed to demonstrate the effects of different fiber lengths and stress–
strength ratios on the creep properties of PP FRAAS concrete with a fiber volume ratio of
0.6%. The experiments conducted for this article yielded several important results.

Firstly, when the fiber volume ratio is 0.6%, PP FRAAS concrete with a fiber length of
6–18 mm is convergent creep below the 0.6 stress–strength ratio. However, different from
cement concrete, there is no evident linear creep.

Secondly, different lengths of PP fiber can significantly inhibit the creep of PP FRAAS
concrete when the stress–strength ratio is 0.15. Moreover, when the stress–strength ratio
increases, the shorter fiber (6 mm) will lose its anchoring force, and the holes caused by the
longer fiber (18 mm) will crack, which will in turn lead to the deterioration of the inhibition
effect on concrete creep.

Thirdly, under the same length of fiber, the creep coefficient difference of PP FRAAS
concrete under different stress–strength ratios is not large, and the creep coefficient differ-
ence between different fiber lengths is essentially the same.

Fourthly, both the CEB-FIP 2010 and GL2000 models are effective in predicting creep.
In reference to the CEB-FIP 2010 model, it shows high accuracy, although the final value
prediction is relatively small. Furthermore, while the early prediction value of the GL2000
model is large and conservative, the final value prediction appears to be more accurate.

Finally, the creep coefficient of the prediction model and the measured secant modulus
of PP FRAAS concrete with different fiber lengths under different stress–strength ratios can
solve the problem of creep prediction.
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