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Abstract: Concrete structure construction with a high strength grade in cold regions is a significant
problem that has elicited considerable research attention. In this work, we firstly prepared steel-fiber-
reinforced high-strength concrete (HSC) at −20 ◦C for winter concrete construction in a cold region.
Specifically, the combination of graphene nanoplatelet (GNP) incorporation and electric thermal (ET)
curing could effectively improve the performance when preparing high-strength concrete (GNP-HSC)
at −20 ◦C. The optimal amount of steel fiber added in this work was determined numerically and
experimentally to be 2.5 vol%. The temperature development regularity of the ET-cured sample
was also recorded during the whole curing process. Mechanical property results indicated that the
combination of GNP incorporation and ET curing could effectively stimulate the strength formation
of HSC samples to 91.2 MPa at early age, which is remarkable for concrete construction at −20 ◦C.
Moreover, microstructural analyses (including XRD, TG and SEM analyses) were further conducted
to verify the advantages of GNP incorporation and ET curing on the hydration products, hydration
degree and microstructure of HSC samples. This work provides new insights into the application of GNP
as a nanoscale material to improve the performance of HSC structures at extremely low temperatures.

Keywords: graphene nanoplatelets; electric thermal curing; reactive powder concrete; winter construction

1. Introduction

Reactive powder concrete (RPC) has become an innovative cement-based material over
the last few decades. It has attracted broad attention from researchers worldwide due to its
fine mechanical properties, high toughness and excellent durability [1–3]. The high strength
of RPC closely corresponds to the particle density packing theory, and the utilization of fibers
to reinforce the matrix and the addition of supplementary cementitious materials are also
effective to improve the properties of RPC by densifying the composites and stimulating
hydration inside the sample [3–6]. However, the application of RPC is largely restricted due
to the complicated and strict curing conditions [7,8], especially in cold regions for winter
construction, where the harsh environment is not conducive to the replacement and operation
of the required equipment. Specifically, winter concrete construction is a significant problem
that largely restricts the economic and infrastructure development of many countries [9]. The
main challenge is that cement-based materials fail to form strength under extremely low
temperatures, due to the relatively rapidly occurring frost damage [10,11].

Previously, some curing methods have been presented to cure cement-based materials
in a cold environment, such as thermal insulation curing and the warm shed construction
method [1,12,13]. The main principle of these methods is the transfer of heat generated
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around concrete to the structure, or the direct heating of the concrete. These methods
exhibit strong potential to prevent the concrete structure from incurring frost damage,
leading to the increased strength of the structures [14,15]. However, these methods strongly
rely on the environmental temperature, and the conditions cannot guarantee a continuous
and stable curing temperature for the structure, which will lead to uncontrollable strength
formation in the structure under subzero temperatures [16]. Therefore, a novel curing
method is essential for RPC construction in cold regions.

Recently, electric thermal (ET) curing has been presented to achieve the strength forma-
tion of cement-based materials at various environmental conditions [17–19]. In particular,
ET curing utilizes the heat generated from an electric current passing through the conduc-
tive cement-based materials [20], and the generated heat is expected to provide the required
temperature to improve the strength of RPC at an early age under subzero temperatures.
Under these circumstances, the early-age strength development regularity of ET-cured
samples needs to be clarified; high strength at an early age under subzero temperatures is
essential for concrete construction in cold regions because it can shorten the construction pe-
riod and reduce the total cost of the construction. However, the later strength development
of the ET-cured sample also requires investigation, i.e., when the environmental conditions
become warmer, because the later strength development determines the ultimate mechan-
ical properties and durability of the structure. Good late-stage strength development is
crucial for construction in cold regions [12]. Therefore, it is necessary to investigate the
effect of ET curing on the strength development of the structure.

Low and steady electrical conductivity for ET-cured samples is important to ensure
the ongoing curing process. Steel fibers, as a traditional reinforcement filler with good
electrical conductivity, have been proven to effectively enhance the mechanical properties,
especially the toughness, of cement-based materials [21,22]. Therefore, the utilization of
steel fibers as a reinforcement filler inside ET-cured HSC is reasonable. Moreover, graphene
nanoplatelets (GNPs) are a nanoscale material with excellent electrical conductivity that
can provide superior mechanical properties in cement-based materials [23]. Under these
circumstances, the specific effect of GNP on the performance evolution of HSC structures
prepared by ET curing needs to be thoroughly identified.

Above all, the question of how to rapidly stimulate the strength formation of RPC
structures with excellent performance at low temperatures in order to meet the construction
requirements in cold regions is now attracting considerable interest. This research focused
on high-strength concrete construction in cold regions. In this work, GNP was incorporated
into the sample to prepare a high-strength concrete sample (GNP-HSC), and ET curing
was utilized to prepare GNP-HSC at −20 ◦C. Steel fibers were used as a reinforcement
conductive filler inside the sample, and the percolation threshold of the steel fiber was
determined numerically and experimentally. The temperature development of the ET-cured
HSC sample at −20 ◦C was experimentally assessed. The early-age mechanical properties
of GNP-HSC samples in different curing conditions were investigated. Moreover, the
corresponding strength development of the sample was also studied and the evolution of the
hydration products, hydration degree and microstructure of the samples was further researched.

2. Materials and Methods
2.1. Materials

In this study, 42.5 Ordinary Portland cement (OPC), in accordance with Chinese
standard GB175-2007, was used as the main cementitious material; the detailed chemical
composition of the cement is listed in Table 1. Silica fume was utilized as a supplementary
cementitious material. The chemical composition of the used silica fume (SF) is shown
in Table 2. The fine aggregate was fine silica sand with the diameter range of 0.84–2 mm.
Steel fibers with a length of 13.0 mm and diameter of 0.2 mm were added to serve as the
electrically conductive filler, and the tensile strength of the fiber was 2850 MPa. GNPs with
the average diameter of 2–5 µm and thickness of 5–10 nm were further incorporated into the
sample, and the electrical resistivity of GNP was 9.2 mΩ·cm. The poly-carboxylate-based
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superplasticizer (SP) produced by HIT-QIANG SHI Concrete Technology Development
Co., Ltd. was utilized to adjust the flowability of the fresh composite.

Table 1. Chemical composition of the cement.

Oxide Species SiO2 Al2O3 Fe2O3 MgO CaO SO3

Oxide content (wt%) 20.86 5.47 3.94 1.73 62.23 2.66

Table 2. Chemical composition of the silica fume.

Oxide Species CaO SiO2 Al2O3 MgO K2O Na2O Fe2O3

Content (wt%) 0.63 87.67 0.28 3.41 1.2 4.12 0.60

2.2. Preparation of GNP-Modified Steel-Fiber-Reinforced High-Strength Concrete (GNP-HSC)

The preparation procedure of GNP-HSC is shown in Figure 1. In particular, GNP,
cement, silica fume and fine quartz sand were initially stirred in the stirring pot for 4 min
to produce a uniform blend. Then, a solution of fresh water and SP was poured into
the mixture for 5 min. Steel fibers were incorporated into the mixture when the mixture
reached a good flowability. Another 6 min of mixing was conducted to ensure a stable
and homogeneous fresh composite of GNP-HSC. Finally, the GNP-HSC mixture was
cast into a cuboid mold with a size of 40 × 40 × 160 mm, and two 60 × 40 mm copper
electrodes were inserted inside the mold 140 mm apart. The initial resistivities of seven
mixtures incorporated with various content of steel fibers from 0 to 3 vol% were prepared
to experimentally determine the optimal content of steel fibers, and detailed mixture
proportions are listed in Table 3. For all samples, the ratio of water to binder was kept at 0.2,
and the ratio of binder to sand was 1:1. The additive amount of GNP was determined to be
0.5 and 1.0 vol%. The content of steel fibers added was chosen according to the volume
ratio of the sample, and the proportions of GNP were used as the volume ratio regarding
cement paste.

Figure 1. Fabrication process of GNP-HSC samples.
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Table 3. Mixing proportions of HSC.

Cement
(kg/m3)

Sand
(kg/m3) w/b Silica Fume

(kg/m3)
Steel Fiber

(vol%) SP (wt%)

1171 1404 0.2 234 0 1
1171 1404 0.2 234 0.5 1.5
1171 1404 0.2 234 1 2
1171 1404 0.2 234 1.5 2
1171 1404 0.2 234 2 2.5
1171 1404 0.2 234 2.5 2.5
1171 1404 0.2 234 3 3

2.3. Resistivity Measurement

The measurement procedure of the initial resistivity is shown in Figure 2. The two-
electrode method was used to measure the resistance of the samples with the TH2811D
digital multimeter produced by Tonghui Electronics Co., Ltd. The resistivity of the samples
was calculated by Equation (1).

ρ =
SR
L

(1)

in which ρ is the resistivity, while S and R represent the cross-sectional area and resistance
of the sample, respectively. L represents the distance between the electrodes.

Figure 2. Diagram of resistance measurement procedure.

2.4. Curing Regimes

In this work, the GNP-HSC sample was cured by ET curing at −20 ◦C for 12 h and then
the sample was subjected to room-temperature (RT) curing for another 36 h to investigate
the effect of ET curing on the strength evolution of the samples. Two-day RT curing was also
employed to highlight the effect of ET curing on the mechanical properties of GNP-HSC
samples, and the microstructure of 2-day RT-cured samples was further compared with
that of the samples cured by ET curing.

2.5. Electric Thermal (ET) Curing of GNP-HSC

A detailed diagram of the temperature monitoring and specific ET curing is depicted
in Figure 3. Specifically, the fresh mixture was placed in a refrigerator with an automatic
temperature control system to simulate the ultra-low temperature environment of −20 ◦C.
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The GNP-HSC sample was placed into the refrigerator once the casting was finished, and
the AC voltage was immediately applied to the fresh sample to ensure the generation
of the electric current. Additionally, the thermocouple connected to the multi-channel
temperature measurement system was inserted into the center of the sample to record the
temperature development of GNP-HSC samples cured by ET curing, and the temperature
development was recorded every 30 min.

Figure 3. ET curing and temperature monitoring of GNP-HSC.

The whole ET curing process can be divided into two parts. Firstly, the velocity of heat
generation in the sample is higher than that of the heat release, leading to strong heat exchange
between the hot sample and the cold environment; then, this exchange behavior will finally
terminate due to the balance between the heat generation and the release of heat with the
ongoing ET curing process. At this time, the power of heat generation also meets a balance
with the power of heat release, resulting in a constant curing temperature in the sample. In
this work, electric heat generated from the effect of the alternative current was the main source
of heat generation for the sample; thus, the electric resistance value of the GNP-HSC sample
was measured every 30 min to ensure a stable electric power supply with the value of 30 W
during the process of ET curing. The detailed calculation equation is as follows:

P =
SU2

ρL
(2)

in which P is the electric power and U is the applied voltage of ET curing; detailed
explanations of other parameters have been introduced in Section 2.3.

2.6. Characterization

The compressive strength of the GNP-HSC samples was measured with the loading
rate of 2.4 kN/s with Chinese Standard GB/T 17671-1999 (according to ASTM C 349 [24]).
The flexural strength measurements were conducted via the three-point bending test
with the loading rate of 0.05 kN/s. The tested samples were broken into pieces with a
diameter of 3–5 mm and placed into anhydrous ethanol to stop the hydration process for
further microstructure analyses. X-ray diffraction (XRD) patterns of GNP-HSC samples
were recorded on an X’pert PRO diffractometer within the scanning 2θ range of 5◦–50◦.
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TG analysis was conducted with a TG instrument (STA449F3, Netzsch Company, Selb,
Germany) to obtain the thermo-gravimetric curves of the samples subjected to different
regimes. The thermal tests were conducted at a heating rate of 10 ◦C/min from 50 to 800 ◦C
under a nitrogen atmosphere, with a sample mass of approximately 10 mg.

2.7. Percolation Analysis

The optimal addition amount of steel fiber was initially determined by a numerical
simulation based on the APMS program [25]. The particle sizes of cement and silica fume
are much smaller than those of fine silica sand and steel fiber. Therefore, a mesoscale
numerical model containing steel fiber and fine silica sand was established to investigate
the percolation behavior of steel fibers inside the sample. A digitized sample with the
size of 120 × 120 × 120 µm3 was initially constructed, and this size was greater than the
representative elementary volume (REV) of the sample [26]. Then, fine silica sand particles
were randomly thrown inside the empty domain until the domain was filled with the
particles. The fibers were further placed into the sample without overlapping behavior.
Finally, the percolation analysis was conducted based on the APMS percolation program to
estimate the percolation threshold of the steel fiber network, leading to the determination
of the optimal addition amount of steel fibers to ensure the ideal electric conductivity
behavior [27]. The mathematic relationships between the volume ratio of steel fibers and
the connected fiber fraction were defined as in Equations (3) and (4).

y =
∑c

k=1 Vk

∑n
i=1 Vi

(3)

x =
∑n

i=1 Vi

Vs
(4)

in which x is the volumetric ratio of the steel fibers and the sample, y represents the
connected fraction of steel fibers, Vi is the volume of the individual steel fiber, VS represents
the volume of the particle sample and n is the total amount of the incorporated steel fibers.
The volume of the connected steel fiber cluster and the total amount of the connected steel
fiber cluster are represented by Vk and c, respectively. When y is equal to 1, this indicates
that the full connected network is constructed inside the sample.

3. Results
3.1. Numerical and Experimental Investigation of Optimal Amount of Steel Fiber Addition

It is important to ensure the steady and low resistivity of the sample during the ET
curing process. The initial resistivity of cement-based materials may exhibit a relatively
low value due to the existence of a high-content pore solution, while it will experience
an obvious increase because the ongoing hydration process will consume large amounts
of water. Based on a previous study, the incorporation of conductive fillers is beneficial
for constructing a stable conductive network inside the sample in order to maintain the
stability of the electrical resistivity of the sample [19]. Therefore, percolation analysis of
steel fibers was conducted to determine the optimal addition amount of steel fibers as
the main conductive filler. The results of the numerical simulation are shown in Figure 4.
Figure 4a exhibits the spatial distribution situation of fine silica sand. Random sequential
addition was conducted and the spatial distribution of steel fibers without an overlapping
phenomenon is shown Figure 4b. Figure 4c demonstrates the synergistical distribution of
fine silica sand and steel fibers. The percolation threshold result is displayed in Figure 4d,
and a detailed explanation of the y-axis and x-axis is provided in Section 2.7. It can be
seen from Figure 4d that the percolation threshold determined by the numerical simulation
of steel fibers is within the range of 1.75~2.5 vol%. Moreover, experiments were also
conducted to verify the accuracy of the numerical simulation and further determine the
optimal addition of steel fibers, and the addition of steel fibers was prepared as listed in
Table 3. Figure 4e depicts the initial resistivities of the samples with various degrees of
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steel fiber addition. It can be observed from Figure 4e that the initial resistivity exhibited
a decreasing trend with the increase in steel fiber content. The resistivity of the sample
with no addition of steel fibers reached up to 412 Ω·cm, which is not suitable for the
implementation of ET curing. When the steel fiber content increased to 2.5 vol%, the initial
resistivity of the sample decreased to 78 Ω·cm, and with the further increase in the steel
fiber content, the resistivity of the GNP-HSC sample exhibits little change. This indicates
that a fully connected network of steel fibers was constructed inside the GNP-HSC sample.
It is remarkable that the percolation threshold of steel fibers obtained from experiments
corresponds well with the calculated range of 1.5~2.5 vol% of steel fibers from the numerical
simulation results. Based on this, the optimal addition amount of steel fibers inside the
GNP-HSC samples was determined to be 2.5 vol% numerically and experimentally.

Figure 4. Numerical simulation results: (a) the fine silica sand particle model; (b) digitized steel
fibers added to the sample; (c) the digitized steel fibers added to the sample along with the particle
microstructure; (d) the percolation analysis results of the connected steel fibers and (e) resistivity of
the samples with various amounts of steel fiber content.

3.2. Temperature Evolution of GNP-HSC Cured by ET Curing

The typical curve of temperature development of the ET-cured sample with 1 vol%
GNP addition at −20 ◦C, recorded experimentally, is depicted in Figure 5. It can be noticed
from Figure 5 that with the supplied electric power of 20 W, the curing temperature of the
GNP-HSC sample with 1.0 vol% GNP can reach up to 75 ◦C during the 12 h ET curing
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process. In addition, the curing temperature is mainly concentrated within the range
of 63~67 ◦C during ET curing process, which is beneficial for the strength formation of
GNP-HSC samples. In conclusion, the temperature development of the sample cured by
ET curing at −20 ◦C indicates the stability of electrical conductivity during the curing
process, highlighting the potential of ET curing as a high-temperature curing method for
HSC construction in cold regions.

Figure 5. Temperature development of ET-cured GNP-HSC with 1 vol% GNP addition.

3.3. Mechanical Properties

The compressive strength results of GNP-HSC samples subjected to various curing
conditions are exhibited in Figure 6a. It can be seen that the GNP-HSC sample cured by
12 h ET curing and 36 h RT curing exhibits higher compressive strength regardless of the
amount of GNP added. In particular, the compressive strength of the GNP0-HSC sample
cured by 12 h ET curing and 36 h RT curing reached up to 78.5 MPa, experiencing an
obvious increase (27.2%) in comparison with that of the GNP0-HSC sample cured by 2-day
RT curing (61.7 MPa). Further, the incorporation of GNP can also improve the compressive
strength of the samples. The compressive strengths of the ET-cured GNP0.5-HSC and
GNP1.0-HSC samples subjected to 12 h ET and 36 h RT curing were 85.6 and 91.2 MPa,
respectively. These values are 9.0% and 16.2% higher than that of the sample with no GNP
incorporation. The enhancement effect of GNP can also be observed in the samples cured
by 2-day RT curing, as shown in Figure 6a. The flexural strengths of the samples subjected
to various curing conditions develop in the same regularity as the compressive strength and
are shown in Figure 6b. As depicted in Figure 6b, the flexural strength of the GNP0-HSC
sample cured by 2-day RT curing reached 10.5 MPa, and early-age ET curing at −20 ◦C can
effectively improve the flexural strength by 30.5% up to 13.7 MPa. Moreover, the flexural
strengths of the samples were greatly enhanced with the addition of GNP. The flexural
strengths of ET-cured samples with 0.5 and 1.0 vol% GNP addition reached up to 14.5 and
15.1 MPa, respectively.

The mechanical property results highlight the advantage of the combination of early-
age ET curing and GNP incorporation for improving the early-age performance of GNP-
HSC samples at −20 ◦C. The implementation of ET curing as a self-heating curing method
can ensure the strength formation of concrete structures in extremely cold environments,
and the incorporation of GNP can further stimulate the strength development of the
samples. This highlights the potential of the implementation of GNP-HSC structure con-
struction at subzero temperatures in cold regions.
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Figure 6. Mechanical properties of GNP-HSC samples cured by different curing regimes: (a) Com-
pressive strength and (b) flexural strength.

3.4. Hydration Products of GNP-HSC Samples
3.4.1. XRD Analysis

The XRD patterns of GNP-HSC samples cured by ET curing and 2-day RT curing
with different amounts of GNP content were obtained to identify the phase composition of
hydrated samples, as shown in Figure 7. It can be observed from Figure 7 that the clinker
inside the samples can react with the water to form C-S-H gel and portlandite, and the silica
fume can partly react with portlandite to form extra C-S-H [28,29]. The existing phases of
the GNP-HSC samples (mainly including alite (C3S), Ca(OH)2, Belite (C2S) and (CaCO3))
are almost the same, and this indicates that the hydration reaction inside the samples
subjected to different curing conditions is consistent. Moreover, a large amount of C3S
can be observed inside the sample because of the characteristic of cementitious materials
with a low water content [30,31]. The strength of the cementitious materials mainly relies
on the hydration effect of C3S at an early age, because it can intensively react with water
to produce CH at the early age of hydration. As demonstrated in Figure 7, the samples
subjected to early-age ET curing possess a higher CH peak level compared with that of the
sample cured by 2-day RT curing with the same amount of GNP added, indicating the more
thorough hydration reaction inside the ET-cured GNP-HSC samples. Further, the samples
with GNP incorporation also exhibit a higher CH level under the same curing method,
indicating the advantage of GNP incorporation for improving the hydration effect inside
the sample. The XRD analysis results further highlight the importance of ET curing and
GNP incorporation to improve the hydration degree of GNP-HSC samples under extremely
low temperatures.

3.4.2. TG Analysis

The thermal analysis results of the GNP-HSC samples cured by 2-day RT curing and
early-age ET curing with different GNP amounts are shown in Figure 8a,b, respectively.
Additionally, the differential thermogravigram (DTG) curve was obtained by the first-
order differential treatment of the TG curve and is exhibited in the patterns. It is effective
to utilize the DTG curve to identify different heat absorption peaks corresponding to
different thermal decomposition phases inside the sample. TG analysis is an effective
method to determine the content of hydration products such as C-S-H gel, ettringite
(AFt) and crystalline portlandite (CH). As depicted in Figure 8b, three dominating heat
adsorption peaks can be observed in the DTG curves. The first peak at the temperature
range of 80–120 ◦C indicates the removal of bound water of C-S-H and AFt, and the second
peak located between 400 and 430 ◦C is induced by the decomposition of portlandite
(CH) [32–34]; the third peak shown around 650 ◦C is considered to be evidence of the
existence of CaCO3.

Further, detailed statistics of the CH and total weight losses for the samples subjected
to different curing conditions are shown in Figure 9. It can be seen from Figure 9 that
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the implementation of ET curing could effectively improve the hydration degree of the
samples compared with the RT curing method. Moreover, the incorporation of GNP can
further enhance the hydration degree of HSC samples. In particular, the samples with
increasing GNP content exhibit higher total weight loss regardless of the curing method,
which is an indicator of the more thorough hydration reaction inside the sample (including
the hydration of cement and the pozzolanic reaction of silica fume) [35]. In addition, the
ET-cured sample with 1.0 vol% addition of GNP exhibits the highest total weight loss of
8.3%, highlighting the advantage of GNP incorporation for the hydration degree inside
ET-cured samples, and this is consistent with the XRD analysis result shown in Figure 7.

Figure 7. XRD patterns of GNP-HSC samples cured by different curing regimes.

Figure 8. TG analysis of the GNP-HSC samples with different curing conditions: (a) TG analysis and
(b) DTG analysis.

3.5. SEM Analysis

SEM analysis was conducted to investigate the microstructure of HF-HSC samples
subjected to various methods. The corresponding images are shown in Figure 10. Specif-
ically, Figure 10a exhibits the microstructure of the 3-day RT-cured sample, where the
anchoring situation between the steel fiber and the matrix is poor, and an obvious crack
can be observed in the interfacial transition zone around the fiber [36]. Nevertheless, the
implementation of ET curing can effectively eliminate this adverse effect. The anchoring
situation between the steel fiber and the matrix is well improved, as exhibited in Figure 10b.
Moreover, hydration products show a trend to attach onto the steel fiber inside the ET-cured
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sample, as shown in Figure 10b, which is beneficial for improving the mechanical properties
of GNP-HSC samples. Moreover, the incorporation of GNP inside the ET-cured sample is
also beneficial for the performance of the samples. In particular, a dense microstructure can
be observed in the ET-cured samples with 1 vol% GNP addition, as depicted in Figure 10c–f.
Moreover, it can be seen from Figure 10d,f that the hydration products also exhibit a trend
to attach to the GNP as a conductive filler; it can be concluded from this phenomenon that
GNPs can also serve as a nucleation site for hydration products, which is advantageous for
improving the hydration degree of HSC samples [37].

Figure 9. Detailed statistics of portlandite and total weight losses of the samples under different
curing conditions.

Figure 10. SEM morphologies of GNP-HSC samples cured by different methods: RT-cured sam-
ples with the magnification of (a) 130× and ET-cured sample with the magnification of (b) 100×,
(c) 10,000×, (d) 20,000×, (e) 20,000× and (f) 20,000×.
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4. Conclusions and Future Work

In conclusion, GNP was utilized in this work to effectively improve the performance
of ET-cured HSC samples at −20 ◦C. The optimal incorporation amount of steel fibers
as the main conductive filler was initially determined numerically and experimentally.
The temperature development of ET-cured HSC samples under −20 ◦C was also recorded.
Moreover, the multi-scale properties of GNP-HSC samples were further investigated. The
tentative conclusions are as follows:

(1) The optimal addition content of conductive steel fibers was numerically and experi-
mentally determined to be 2.5 vol%. The temperature development of HSC samples
cured by ET curing under −20 ◦C was recorded. The ET-cured samples exhibited
great temperature development regularity and the curing temperature of the sample
was maintained in the range of 60~70 ◦C.

(2) The incorporation of GNP could effectively enhance the mechanical properties of HSC
samples. In particular, the compressive strengths of the 12 h ET-cured GNP0.5-HSC
and GNP1.0-HSC samples, respectively, reached up to 85.6 and 91.2 MPa with further
36 h RT curing, which are 9.0% and 16.2% higher than that of the ET-cured sample with
no GNP addition. Moreover, the implementation of ET curing is also advantageous for
the performance of GNP-HSC samples: with the same GNP content added, ET-cured
samples possessed higher mechanical properties than RT-cured samples.

(3) The results of the XRD, TG and SEM analyses suggest that the incorporation of
GNP can stimulate the hydration reaction in ET-cured GNP-HSC samples with a
higher hydration degree and denser microstructure, emphasizing the superiority
of GNP incorporation for the performance of ET-cured samples for winter concrete
construction in cold regions.

In this work, the combination of ET curing and GNP incorporation was adopted to
promote the strength formation of GNP-HSC samples at −20 ◦C, laying a solid foundation for
high-strength concrete construction in cold regions. However, future studies should further
investigate the specific effects of the multi-conditions of ET curing on the performance of high-
strength concrete, such as curing temperature, curing duration and environmental temperature.
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