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Abstract: Current practices supporting sustainable building design aim at reducing the expenditure
of natural resources, such as raw materials, energy and water, in the production of construction
supplies. In the current paper water is replaced by fennel centrifugate (FC) for the realization of
cement mortar bricks. After having identified the most suitable cementitious pre-mixed over three
potential candidates, the mechanical and physical characteristics of the FC bricks are compared to
cement mortar bricks, prepared with regular water, by means of bending, compression at ordinary and
high temperatures, imbibition and acoustic tests. From compared results, it is noticed that FC bricks
have the same imbibition property, but tensile and compression (ordinary and high temperatures)
resistances have about 20% less than the control specimen ones. The acoustic tests revealed a better
response of FC bricks to the high frequencies greater than 1600 Hz. However, fennel fibres do not
provide a manifest advantage, likely due to the small size of the centrifuged fragments that are not
able to enhance the product tensile resistance.

Keywords: sustainable building; reuse; fennel wastes; cement mortar; green bricks

1. Introduction

The construction industry has a significant adverse impact on the environment, with
serious worldwide implications. The European industry accounts for about 46% of the
annual construction and demolition waste (CDW) according to Eurostat [1]. Similarly, the
U.S. building industry contributes with 25% of non-industrial waste generation per year [2].
In China, the CDW reaches 30–40% of the total waste and recycling represents less than
5% [3]. From an environmental perspective, this category employs an enormous quantity of
resources, including raw materials, energy and water [4–6]. The first are the focus of many
researchers, which aim at recycling the building elements, either as isolated items or as
components of novel products [7]. Several natural fibres, such as hemp, flax, jute and sisal,
are currently being employed in fibre-reinforced composites [6], whose manufacturing
method was widely investigated in literature [8–14].

Less attention has been paid to the use of water in the building industry, besides
single case-studies, often performed in desertic or semi-desertic regions. Mekonnen and
Hoekstra [15] reported that the overall trade of international virtual water (embodied in the
production of food, fibre and non-food commodities) equals 26% of global water footprint.
In particular, construction consumes 16% of the water, worldwide [7]. For what concerns
the Mediterranean basin, the water availability is scarce and mainly based on mountain
runoff water (50–90%) [16,17]. Thus, it is fundamental to preserve the water amount and
quality, thereby safeguarding the accessible resources [18]. To this regard, the project
aims at employing alternative plant-derived water sources in bricks manufacturing. The
fennel (Foeniculum vulgare) bulb contains about 90 g of water per 100 g of raw product [19].
It is a biennial plant originating from southern Europe and, more generally, from the
Mediterranean region. Nowadays, it is being cultivated worldwide due to its broad use [20].
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In fact, fennel is employed in medicine [21–24], animal nutrition [25,26], pharmaceutics,
cosmetics [27] and fashion industry [28]. Most importantly, fennel plantations can be grown
in arid- and semi-arid regions of the planet [29]. In the production chain, the outermost
rigid leaves are usually discarded for being too hard and fibrous. This selection results in
the disposal of about 30% of the overall production for a total of around 70,000 tons per
year only in the Southern regions of Italy [30].

The innovative pipeline presented by the paper aims at reducing the use of water in
cement production by substituting it with water contained in fennel by-products. In this
context, fennel centrifugate (FC) was employed as additive to cement mortars for bricks
manufacturing. The experimental campaign consists in a preliminary investigation that
intends to identify, among three types, the most suitable cement mortar. The compression
and bending tests, as well as the economic evaluation, revealed the most appropriate type
for the aims of this research. Consequently, a detailed characterization of the manufactured
bricks was performed to evaluate potential physical and mechanical benefits provided
by the supplement of fennel fibres. The investigations include bending, compression (at
ordinary and high temperatures), soaking and acoustic tests.

In accordance with the Green Building Challenge process, the current work aims at:
(1) reducing waste by employing a by-product of the agricultural industry, (2) employing
less water in the process of cement-making by using fennel-centrifugate instead, (3) testing
a new source of natural fibres (fennel), which are widely produced on the Italian territory
and (4) fostering the use of local goods.

2. Materials and Methods
2.1. Experimental Setup

The experimental setup is summarized in the flow chart of Figure 1. Organization of
work steps was done based on consultation of appropriate literature papers [31,32]. Briefly,
a preliminary investigation was performed to settle the most suitable binding agent for a
novel fennel-based composite material (phase I). After having defined the water content
of fennel (%), three cement mortars (A, B and C) were tested. A total of 36 samples (see
Section 2.3.1) were employed. The most appropriate combination was determined with
compression and bending tests. Hence, a detailed physical and mechanical characterization
of the obtained bricks was performed (phase II). For that, two sets of samples were prepared:
(I) 24 parallelepiped samples for bending, compression and shrinkage tests. Four of these
samples were cut and reshaped into 6 equally sized bricks and employed for imbibition
and high temperature compression tests; (II) 12 cylindrical samples for acoustic tests (see
Section 2.3.2).

2.2. The Fennel Water Content

Fennel leaves were centrifuged to obtain the fennel centrifugate (FC) and weighted
on a precision balance (Wunder ACS-3M, Trezzo sull’Adda (Milan), Italy). The blend was
placed in a muffle oven (FM22, Falc Instruments, Treviglio (Bergamo), Italy) at 105 ◦C for
about 10 min to eliminate the water fraction and repeatedly weighted, until stabilization.
The final weight of the dried samples was employed to calculate the fennel ‘dry’ mass
(fibres, carbohydrates, lipids, calcium and vitamins) and the percentage of water. The same
procedure was applied to the edible part of fennel.

2.3. Sample Preparation

All samples were prepared according to the UNI EN 196-1:2016 guidelines [33].



Buildings 2022, 12, 230 3 of 18
Buildings 2022, 11, x FOR PEER REVIEW 3 of 18 
 

 
Figure 1. Overview of the experimental setup. 

2.2. The Fennel Water Content 
Fennel leaves were centrifuged to obtain the fennel centrifugate (FC) and weighted 

on a precision balance (Wunder ACS-3M, Trezzo sull’Adda (Milan), Italy). The blend was 
placed in a muffle oven (FM22, Falc Instruments, Treviglio (Bergamo), Italy) at 105 °C for 
about 10 min to eliminate the water fraction and repeatedly weighted, until stabilization. 
The final weight of the dried samples was employed to calculate the fennel ‘dry’ mass 
(fibres, carbohydrates, lipids, calcium and vitamins) and the percentage of water. The 
same procedure was applied to the edible part of fennel. 

2.3. Sample Preparation 
All samples were prepared according to the UNI EN 196-1:2016 guidelines [33]. 

2.3.1. Phase I Samples 
A total of 36 samples (Table 1, Figure 1) were prepared with one of three commercial 

cement mortars. Each matrix was combined with either water or FC to cast the following 
set of samples: (I) Control samples (cntr): 4 specimens/mortar. These samples were 
prepared by adding 16% tap water to the appropriate cement powder; (II) FC I: 4 
specimens/mortar. In this case, exclusively the water obtained from fennel centrifugation 
was employed. To have a solid comparison between the obtained products, a fixed 
percentage (16%) was chosen. Such percentage was defined as the smallest value among 
the producers’ indications of each cement matrix; (III) FC II: 4 specimens/mortar. The 
samples were prepared by replacing the percentage of water indicated by the producers 
with FC (16% for mortar A, 40% for B and 22% for C) (Figure 2). 

Figure 1. Overview of the experimental setup.

2.3.1. Phase I Samples

A total of 36 samples (Table 1, Figure 1) were prepared with one of three commercial
cement mortars. Each matrix was combined with either water or FC to cast the following set
of samples: (I) Control samples (cntr): 4 specimens/mortar. These samples were prepared
by adding 16% tap water to the appropriate cement powder; (II) FC I: 4 specimens/mortar.
In this case, exclusively the water obtained from fennel centrifugation was employed.
To have a solid comparison between the obtained products, a fixed percentage (16%)
was chosen. Such percentage was defined as the smallest value among the producers’
indications of each cement matrix; (III) FC II: 4 specimens/mortar. The samples were
prepared by replacing the percentage of water indicated by the producers with FC (16% for
mortar A, 40% for B and 22% for C) (Figure 2).
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Figure 2. Preparation of FC (A,B) and casting of phase I specimens (C,D).

The casted samples were employed for compression tests. The two obtained fragments
were reshaped and consequently joined with a high-strength cement mortar. The latter has
mechanical characteristics superior to that used for the realization of the samples object of
this research.
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Table 1. Samples casted in phase I with 6 fennel-mortar combinations (cntr: control samples (mortar
+ tap water); FC I: mortar and 16% fennel centrifugate; FC II: mortar and variable % of fennel
centrifugate).

Cement Mortar

A B C

Control
(16% H2O)

cntrA1 cntrB1 cntrC1

cntrA2 cntrB2 cntrC2

cntrA3 cntrB3 cntrC3

cntrA4 cntrB4 cntrC4

FC I
(16% fennel
centrifugate)

FCI_A1 FCI_B1 FCI_C1

FCI_A2 FCI_B2 FCI_C2

FCI_A3 FCI_B3 FCI_C3

FCI_A4 FCI_B4 FCI_C4

FC II
(variable % fennel

centrifugate)

FCII_A1 FCII_B1 FCII_C1

FCII_A2 FCII_B2 FCII_C2

FCII_A3 FCII_B3 FCII_C3

FCII_A4 FCII_B4 FCII_C4

2.3.2. Phase II Samples

Twenty-four parallelepiped-shaped specimens (Table 2) were prepared for shrinkage,
bending and compression tests and 8 cylindrical specimens (Table 3), with 2 different
diameters (98 mm for 4 blocks and 24 mm for other 4 blocks), for acoustic tests. The
dimensions of this second group were dictated by the experimental setup for acoustic
analyses, which require the insertion of the cylinders in steel tubes for impedance tests. The
small and large diameters are required to investigate both low- and high-frequency acoustic
waves. All samples (Figure 3) were prepared using mortar A and 16% fennel centrifugate
instead of regular water, in accordance with the supplier’s instructions. Tables 2 and 3
report the sample acronyms and dimensions, as well as the casting and dismantling dates.

Table 2. Parallelepiped (P)-shaped specimens for phase II (cntr: control samples, mortar A + water;
AP: mortar A + fennel centrifugate bricks).

Acronym Casting Date
Dimensions

Dismantling Date
Length (mm) Depth (mm)

cntrP1 07/08/2019 250 120 17/09/2019

cntrP2 07/08/2019 250 120 17/09/2019

cntrP3 07/08/2019 250 120 17/09/2019

cntrP4 07/08/2019 250 120 17/09/2019

cntrP5 24/10/2019 250 120 19/11/2019

cntrP6 24/10/2019 250 120 19/11/2019

cntrP7 24/10/2019 250 120 19/11/2019

cntrP8 24/10/2019 250 120 19/11/2019

cntrP9 24/10/2019 250 120 19/11/2019

cntrP10 24/10/2019 250 120 19/11/2019

AP1 07/08/2019 250 120 17/09/2019

AP2 07/08/2019 250 120 17/09/2019

AP3 07/08/2019 250 120 17/09/2019
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Table 2. Cont.

Acronym Casting Date
Dimensions

Dismantling Date
Length (mm) Depth (mm)

AP4 07/08/2019 250 120 17/09/2019

AP5 07/08/2019 250 120 17/09/2019

AP6 07/08/2019 250 120 17/09/2019

AP7 07/08/2019 250 120 17/09/2019

AP8 07/08/2019 250 120 17/09/2019

AP9 07/08/2019 250 120 17/09/2019

AP10 07/08/2019 250 120 17/09/2019

AP11 07/08/2019 250 120 17/09/2019

AP12 07/08/2019 250 120 17/09/2019

AP13 07/08/2019 250 120 17/09/2019

AP14 07/08/2019 250 120 17/09/2019

Table 3. Cylindrical (C)-shaped specimens for phase II (cntr: control samples, mortar A + tap water;
AC: mortar A + fennel centrifugate bricks).

Acronym Casting Date
Shape Dismantling

Date
Weight

(g)Diameter (mm) Height (mm)

cntrC1 09/01/2020 98 50 22/01/2020 724

cntrC2 09/01/2020 98 48 22/01/2020 692

cntrC3 09/01/2020 98 55 22/01/2020 738

cntrC4 09/01/2020 28 51 22/01/2020 61

cntrC5 09/01/2020 28 51 22/01/2020 63

cntrC6 09/01/2020 28 50 22/01/2020 63

AC1 09/01/2020 98 49 22/01/2020 680

AC2 09/01/2020 98 52 22/01/2020 701

AC3 09/01/2020 98 51 22/01/2020 711

AC4 09/01/2020 28 51 22/01/2020 59

AC5 09/01/2020 28 52 22/01/2020 64

AC6 09/01/2020 28 49 22/01/2020 59
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Figure 3. Centrifugation of fennel side-products (A) and preparation of cylindrical bricks for acoustic
tests (B).

Two P-shaped control and two P-shaped fennel bricks were cut into 6 equally sized
specimens (Table 4) for high temperature compression and imbibition tests.
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Table 4. Cutting and reshaping of specific samples for high temperature compression and imbibition
tests (cntr: control samples, mortar A + tap water; AP: mortar A + fennel centrifugate bricks).

Original
Sample

Cut and Reshaped (C/R)
Samples

cntrP4 cntrP4_CR1 cntrP4_CR2 cntrP4_CR3 cntrP4_CR4 cntrP5_CR5 cntrP6_CR6

cntrP10 cntrP10_CR1 cntrP10_CR2 cntrP10_CR3 cntrP10_CR4 cntrP10_CR5 cntrP10_CR6

AP10 AP10_CR1 AP10_CR2 AP10_CR3 AP10_CR4 AP10_CR5 AP10_CR6

AP14 AP14_CR1 AP14_CR2 AP14_CR3 AP14_CR4 AP15_CR5 AP16_CR6

2.4. Testing Activities

The physical and mechanical tests (Section 2.4.1, Section 2.4.2, Section 2.4.3, Section 2.4.4,
and Section 2.4.5) were carried out in the laboratory of the Department of Structures for
Engineering and Architecture (DIST), Naples. The acoustic tests were entrusted to the
company “Innovacustica Srl”, Alvignano (Caserta, Italy) and performed at the laboratories
located in in Casalnuovo di Napoli, Italy.

2.4.1. Bending Tests

Three-points bending tests were carried out with a 500 kN MTS 810 Universal Machine
(Germany), as regulated by UNI EN 12390-5:2019 [34]. All 36 phase I- and 9 phase II-samples
(3 cntr- and 6 FC-bricks) were tested for potential use in seismic areas. A concentrated force
(loading speed v = 0.005 MPa/s) was applied in the middle of the specimen, which was
constrained at the ends by two cylindrical supports. The distance between the support pins
was 150 mm and the samples were perfectly centred inside the testing machine (Figure 4).
In addition to measuring the displacement of the upper loading tool, a transducer located
under the specimen reported the downward shift of the brick (Figure 4).
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The flexural strength fcf was calculated with the following equation:

fcf =
3 × F × L

2 × d1 × d2
2

(1)

where F is maximum applied load, L is distance between the support pins, d1 is the
specimen’s length and d2 is the specimen’s depth.

2.4.2. Compression Tests

The compression tests were carried out with a 500 kN MTS 810 Universal Machine
(Germany), as regulated by the UNI EN 12390-3:2019 [35] standards for bricks (Figure 5).
The top plate was designed to automatically align with the specimen. The load was
increased at a speed of 50 N/s. The compressive strength was calculated by dividing the
measured breaking load by the sample’s cross-sectional area.
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2.4.3. Shrinkage Tests

Shrinkage of control- and FC-bricks was calculated by measuring the dimensions at
the dismantling date and after drying (28 days after dismantling), as regulated by UNI
11307:2008 [36].

2.4.4. Compression Test at High Temperatures

The samples were preheated at 200 ◦C and 600 ◦C in a muffle oven (FM22, Falc Instru-
ments, Treviglio, Italy) prior to regular compression tests (as described in Section 2.4.2).
The purpose is to evaluate the influence of high temperatures on the mechanical perfor-
mances of samples by simulating a fire scenario. A pilot test was carried out to identify the
procedure timing and potential temperature fluctuations. Three heating cycles were carried
out on the cntrP4_CR1 specimen. The following thermoelectric probes were prepared
(Figure 6A): (I) T1, inserted inside the specimen to a depth of 5 mm; (II) T2, inserted inside
the specimen to a depth of 25 mm; (III) T3, inserted in the oven for the acquisition of the
contact temperature. The data acquisition continued outside the oven to gain the cooling
trend of the bricks. To reproduce the most realistic conditions and evaluate the cooling
resulting from contact with the compression press, the pilot specimen was extracted from
the oven and placed between two steel plates. Thus, it was possible to infer the temperature
at which the brick fails under the compression test (Figure 6B).
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Figure 6. Thermoelectric probes for temperature monitoring (A) and temperature acquisition after
extraction from the oven (B).
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Figure 7 reports the pilot test with preheating at 600 ◦C. A temperature drop is
observed after 102 min due to a voluntary opening of the oven. This was conceived to
estimate the time required to restore the set temperature after extracting a sample.
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2.4.5. Soaking Tests

In order to evaluate the amount of water absorbed by the bricks, they were placed
under water for two weeks. Weight measurements were performed every 24 h [37].

2.4.6. Acoustic Tests

Transmission loss (TL) measurements were carried out using impedance tubes (Kundt
tubes), according to the technical standard ASTM E2611-09 [38]. The instruments are listed
in Table 5.

Table 5. Instruments employed to measure transmission loss.

Type Model Description

4 channels impedance
tubes BSWA SW 422 100 mm diameter tube with loudspeaker

and 100 mm extension tube

4 channels impedance
tubes BSWA SW 477 30 mm diameter tube with loudspeaker

and 30 mm extension tube

Microphones BSWA MPA416 n. 4 1/4” microphones

Power Amplifier BSWA TECH PA50 Power amplifier and signal generator

Sound card BSWA TECH MC3242 4 channels DAQ Card

Sound calibrator BSWA CA115 1000 Hz 114 dB sound calibrator

The investigated frequency range was 63–6300 Hz. The impedance tubes with diame-
ters of 30 mm and 100 mm (Figure 8) covered, respectively, a complete range of 63–1800 Hz
and 800–6300 Hz. In particular, the tube with a larger diameter was used for low frequen-
cies, and the one with a smaller diameter was used for high frequencies.

The samples were intentionally casted with diameters smaller than the impedance
tube to be coated with insulating material before insertion. The purpose was both to
preserve the pipe from scratches and to create a layer of sound insulation between the
mortar surface and the rigid surface of the steel pipe.
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3. Results
3.1. Phase I: Identifying the Ideal Fennel-Mortar Combination
3.1.1. Percentage of Water in Fennel Centrifugate (FC)

The centrifugate of fennel leaves was weighted in duplicate: FC1 (gross weight:
189.04 g) and FC2 (gross weight: 189.36 g). After incubation at 105 ◦C, the dried weights
equalled 5.96 g and 5.99 g, respectively. Thus, the ‘dry’ mass corresponded to 7.5% of
the fennel centrifugate and the water fraction to 92.5%. Concerning the edible part of
fennel, 2.2 g of water-free mass were obtained for 100 g of starting material. The percentage
of water-free mass (mainly fibres) was in line with the chemical composition tables of
fennel [21]. The observed reduction possibly depended on the high content of fibres of the
outer fennel leaves.

3.1.2. Flexural Strength Tests

The results in terms of flexural stress are summarized in Table 6. The specimens
manufactured with mortar A or mortar B and 16% FC did not show great differences in
terms of resistance compared to the control specimens. The greatest reduction in resistance
was observed for mortar C. The overall best performances were registered for bricks
prepared with the mortar A.

Table 6. Results of three-point bending flexural test in terms of flexural stress. The average values are
reported with the standard deviation (SD).

Sample
Mortar A Mortar B Mortar C

Stress
(MPa)

Average ±
SD (MPa)

Stress
(MPa)

Average ±
SD (MPa)

Stress
(MPa)

Average ±
SD (MPa)

Control
(16% H2O)

1 4.14

3.39
± 0.43

2.34

2.77
± 0.55

6.72

5.76
± 1.00

2 3.11 3.72 4.65

3 3.16 2.53 6.79

4 3.16 2.50 4.86

FC I
(16% fennel

centr.)

1 2.95

3.30
± 0.42

4.20

2.81
± 1.03

1.18

1.35
± 0.12

2 3.57 2.00 1.47

3 2.83 3.40 1.45

4 3.83 1.65 1.29

FC II
(variable %

fennel centr.)

1 2.52

2.36
± 0.39

1.50

1.05
± 0.29

0.19

0.29
± 0.08

2 1.86 0.96 0.37

3 2.91 1.04 0.24

4 2.16 0.69 0.37
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3.1.3. Compression Tests

The results are summarized in Table 7. The highest strength values were obtained
with mortar B. The specimens prepared with FC water displayed a drastic reduction in
resistance of over 80%. Despite this decrease, for all blocks the average resistance values
were greater than 5 MPa, which is the lowest admissible value for employing artificial
blocks in the construction of load-bearing walls. This reduction was clearly marked for the
samples assembled with mortar C. For mortar A-FC bricks, a 30% drop in resistance was
observed with respect to the control specimens.

Table 7. Results of compression tests in terms of tensile strength. The average values are reported
with the standard deviation (SD).

Sample
Mortar A Mortar B Mortar C

Stress
(MPa)

Average ±
SD (MPa)

Stress
(MPa)

Average ±
SD (MPa)

Stress
(MPa)

Average ±
SD (MPa)

Control
(16% H2O)

1 17.58

18.65
± 0.65

32.48

36.15
± 3.66

15.81

20.03
± 3.44

2 18.73 42.24 19.43

3 19.31 35.10 19.49

4 18.97 34.79 25.41

FC I
(16% fennel

centr.)

1 11.40

12.92
± 3.02

7.18

7.87
± 3.98

1.13

1.35
± 0.23

2 15.05 10.45 1.58

3 8.86 12.15 1.58

4 16.54 1.71 1.11

FC II
(variable %

fennel centr.)

1 14.14

12.66
± 1.83

6.16

6.72
± 1.98

0.82

0.58
± 0.17

2 14.14 5.92 0.41

3 12.73 10.02 0.66

4 9.65 4.77 0.44

Based on the results of bending and compression tests, mortar A was chosen for the
assembly of bricks. Thus, greater resistances were measured for mortar A when replacing
regular water with fennel centrifugate. Furthermore, the costs of the mortar were lower.

3.2. Phase II: Physical and Mechanical Characterization of the Fennel-Mortara Composite Bricks
3.2.1. Shrinkage Tests

The average dimensions of all samples with the standard deviations are reported in
Table 8. With respect to the original size (250 mm × 120 mm), the results did not show
substantial differences in shrinkage between the control- and FC-samples (A).

Table 8. Average and standard deviation (SD) of shrinkage on all tested samples.

Sample Width ± SD (mm) Length ± SD (mm)

Control 249.0 ± 0.4 118.0 ± 0.7

A 249.0 ± 0.5 119.0 ± 0.7

Shrinkage is greatly influenced by the relative humidity of the surrounding environ-
ment and by the surface-to-volume ratio of the investigated element. Its extent is also
conditioned by the installation method and the composition of the mortar, i.e., the water-to-
cement ratio and the total amount of cement. An increase in concrete percentage causes
an amplification of the phenomenon. It should be noted that shrinkage causes damaging
cracks only in hyperstatically linked elements. For elements constrained in an isostatic
manner, the damage is absent.
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3.2.2. Bending Tests

The bending tests (Table 9) revealed a 21% reduction of the average bending ten-
sile strength ∆fctf for the samples supplemented with fennel centrifugate. The load-
displacement and stress–strain (σ-ε) diagrams are presented in Figure 9A,B. It should
be noted that the results did not show substantial differences between the displacements
measured by the transducer and those recorded by the loading tool.

Table 9. Results of bending tests.

Acronym Speed
(mm/s)

Loadmax
(KN)

fctf
(MPa)

Average
± SD (MPa)

∆fctf
(%)

cntrP1 0.05 4.64 4.37
4.03

± 0.32
-cntrP2 0.01 3.96 3.61

cntrP3 0.005 4.40 4.12

AP1 0.005 3.23 3.15

3.19
± 0.35

−21.0

AP2 0.005 2.43 2.69

AP3 0.005 3.23 2.89

AP4 0.005 4.29 3.14

AP5 0.005 3.70 3.68

AP6 0.005 4.10 3.56
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Figure 9. Results of bending tests in terms of load-displacement (A) and stress(σ)–strain(ε) (B). Yellow
indicates control- and green/blue stands for FC-samples.

3.2.3. Compression Tests

On average, the specimens with additives provided a 17.8% decrease in compressive
strength ∆σm. The results are plotted in Figure 10 and reported in Table 10.
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Table 10. Results of compression tests.

Acronym Speed
(mm/s)

Loadmax
(KN)

σ

(MPa)
Average

± SD (MPa)
∆σm
(%)

cntrP1 0.01 312.08 21.07
21.31
± 2.50

-cntrP2 0.01 272.23 18.38

cntrP3 0.01 362.68 24.48

AP1 0.01 295.68 19.96

17.52
± 2.89

−17.8

AP3 0.01 248.81 16.80

AP4 0.01 214.56 14.48

AP5 0.01 217.09 14.65

AP6 0.01 321.93 21.73

3.2.4. Compression Tests at High Temperatures

The results on the 12 specimens, grouped according to the preheating temperature,
are reported in terms of flexural stress–strain (σ-ε) diagrams in Figure 11. Based on the
results obtained during the pilot test, it was possible to calculate the exact temperature of
the specimen at both the beginning and the end of the test. The results are summarized in
Tables 11 and 12.

Table 11. Overview of compression tests at 200 ◦C.

Samples at 200 ◦C

Sample Tsample (◦C) ∆tstart Tstart (◦C) ∆tbreakage
Tbreakage

(◦C)
σmax

(MPa)
Average

± SD (MPa)

cntrP4_CR4 193.3 00:00:45 191.2 00:05:35 133.4 17.75
18.07
± 0.23cntrP4_CR2 193.3 00:00:32 192.0 00:06:43 119.8 18.27

cntrP4_CR5 193.3 00:00:35 191.8 00:05:34 133.7 18.18

AP10_CR1 193.3 00:00:37 191.7 00:04:09 152.7 13.73
14.68
± 0.98AP10_CR2 193.3 00:00:35 191.8 00:04:06 153.2 14.28

AP10_CR3 193.3 00:00:38 191.7 00:04:06 153.2 16.02
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Figure 11. Load-displacement diagrams for samples preheated at 200 ◦C (A) and 600 ◦C (B). Yellow
indicates control- and green stands for FC-samples.

Table 12. Overview of compression tests at 600 ◦C.

Samples at 600 ◦C

Sample Tsample (◦C) ∆tstart Tstart (◦C) ∆tbreakage
Tbreakage

(◦C)
σmax

(MPa)
Average

± SD (MPa)

cntrP4_CR3 601.2 00:00:35 596.5 00:04:36 508.6 16.02
15.18
± 4.38cntrP4_CR6 601.2 00:00:39 596.5 00:04:27 512.9 9.44

cntrP10_CR5 601.2 00:00:45 595.1 00:06:31 447.8 20.07

AP10_CR4 601.2 00:00:35 596.5 00:04:37 508.6 17.38
12.03
± 3.78AP10_CR5 601.2 00:00:38 596.5 00:04:23 516.0 9.43

AP10_CR6 601.2 00:00:34 597.2 00:05:05 492.5 9.28

The obtained results were compared with the compression tests at room temperature
described in the previous paragraph. The summary diagram of the trends is reported in
Figure 12. The temperature decreased by 15% in control specimens and 35% in samples
prepared with FC, along with the tension state. The specimens supplemented with FC
presented stress values greater than 9 MPa at 600 ◦C, which overcomes the minimum
resistance limit allowed in the seismic area (5 MPa).
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Figure 12. Comparison of test results in terms of compression stress vs. temperature. Yellow indicates
control- and green FC-samples.

3.2.5. Soaking Tests

The results show a similar trend for control- and FC-bricks. The initial weight increased
by 8% when compared to the initial weight. The plateau was reached after 48 h. Because of
the great difference in size, and therefore in weight, the data are plotted in two different
graphs (Figure 13).
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Figure 13. Soaking tests on small (A) and big (B) samples. Yellow indicates control- and green/blue
FC-samples.

3.2.6. Acoustic Tests

An increase of sound insulation could be a potential benefit of the fennel fibrous
components incorporated into the bricks. Figure 14 reports the transmission loss for all the
investigated frequencies for control- and FC-samples.
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Figure 14. Transmission loss deriving from acoustic tests on control- (A) and FC-bricks (B). Yellow
indicates control- and green FC-samples.

The TL curves present a similar trend. However, the curves of control samples are
shifted towards higher frequencies, especially sample cntrC1. A possible explanation of
this behaviour relies on the irregular circular shape of the specimens, which created gaps
between the walls of the tube and the specimens. Future measurements can be improved by
further reducing the specimen’s diameter and better sealing the edges when inserting the
samples into the tubes. To facilitate comparisons between the two groups, the TL averages
obtained at each frequency are plotted in a single graph (Figure 15).
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Figure 15. TL averages of control- (yellow) and FC-samples (green) plotted for all the measured
frequencies.

At medium-low frequencies, of a major interest in the civil sector [39], the fennel
centrifugate bricks display a behaviour comparable to controls. However, it provides a
better insulation at higher frequencies.

4. Conclusions and Future Perspectives

The presented work aimed at supporting the use of fennel processing waste in the
construction industry. Fennel centrifugate (FC) can be combined with matrices into bricks,
which are environmentally sustainable due to the following reasons: (1) water is preserved,
as it is replaced by fennel centrifugate; (2) agricultural waste is reduced by giving a second



Buildings 2022, 12, 230 16 of 18

life to fennel by-products that find less employment in satellite industries; (3) fennel fibres
could be employed as additional source of natural fibres in building industry. Furthermore,
the use of fennel by-products in building industry is in line with the current directives to
prefer the employment of local goods.

The experimental campaign was designed to first identify, among three different
mortar-fennel combinations, the most suitable one for the mentioned research objectives.
Mortar A was chosen based on the physical and mechanical performances, as well as for
the reduced cost. Thus, mortar A was employed for the preparation of a set of samples
used in the second phase of testing. The latter was intended to provide a broader picture
of the material performance. It was achieved that, for bricks manufactured with 16% of
FC instead of water, mortar A is preferable to mortar B because of its significantly greater
resistances (almost double). The bricks manufactured with mortar A did not show any
significant reduction in size compared to the control specimens and, overall, there was a
minimal shrinkage compared to the original dimensions. The bending tests highlighted
a 20% reduction of tensile strength in the FC-bricks compared to the control specimens.
The samples supplemented with fennel subjected to compression tests displayed a 17.8%
resistance reduction compared to control specimens.

The same test performed at high temperature revealed a 15% reduction in compressive
strength for the control specimens, which increased to 35% for FC bricks. Nonetheless, in
both cases, at 600 ◦C the values were greater than 9 MPa, which exceeds the minimum
resistance limit allowed in seismic areas (5 MPa).

The imbibition tests showed an increase of weight that equals 8% in mass for both
control specimens and FC bricks after 24 h. After that period, the weight remained constant
over the subsequent 14 days.

The acoustic tests showed that the insulation characteristics of the two types of mate-
rials are comparable. In particular, they showed a similar behaviour at low frequencies,
which is of greater interest in the civil sector, but a better response at high frequencies.

In conclusion, the paper revealed that the replacement of water by fennel centrifugate
for the preparation of cement mortar bricks results in products with performances equiva-
lent to the ordinary mortar bricks. The addition of fibres did not produce evident benefits.
This was probably due to the centrifugation process of fennel, which possibly results in
too small fragments to give a significant contribution to tensile resistance. For this reason,
further developments of the research will be devoted to investigating the effect of longer
fennel fibres to improve the flexural strength of the tested bricks, as well as the long-term
performances of tested products due to aging of the fennel particles contained in the used
water. Moreover, a cost analysis will be done to evaluate the economic convenience of
these bricks and a Life Cycle Assessment phase will be useful to quantify the energy spent
for producing, using and dismantling the examined building products during their whole
life. Results deriving from future research developments will be used to produce a new
prototyping line able to generate a new type of green bricks for building constructions.
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