
����������
�������

Citation: Wu, L.; Huang, T.; Tong, Y.;

Liang, S. A Modified Compression

Field Theory Based Analytical Model

of RC Slab-Column Joint without

Punching Shear Reinforcement.

Buildings 2022, 12, 226. https://

doi.org/10.3390/buildings12020226

Academic Editors: Jun Xu, Fan Kong

and Ding Wang

Received: 18 January 2022

Accepted: 15 February 2022

Published: 17 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

A Modified Compression Field Theory Based Analytical Model
of RC Slab-Column Joint without Punching Shear Reinforcement
Linfeng Wu 1, Tiancan Huang 2, Yili Tong 1 and Shixue Liang 1,*

1 School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China;
livan2222@163.com (L.W.); t1612345@gmail.com (Y.T.)

2 Earthquake Engineering Research & Test Centre, Guangzhou University, Guangzhou 510006, China;
tiancanhuang@163.com

* Correspondence: liangsx@zstu.edu.cn; Tel.: +86-136-6157-9157

Abstract: RC slab–column structures are widely used because of the advantages of small space
occupation for horizontal members, easy construction and good economy. However, slab–column
joints are prone to punching shear failures, which deteriorates structural safety. This paper provides
an analytical model to predict the punching shear capacity of the RC slab–column joint. A database of
251 test results is established for the shear punching capacity of slab–column joints without punching
shear reinforcement. The performance of existing design codes in predicting the shear resistance of
slab–column joints is investigated and compared based on the database. Then, based on the modified
compression field theory (MCFT) model, an equation for calculating the punching shear resistance of
slab–column joints without punching shear reinforcement is established. The prediction results of
the analytical model are enhanced by using the regression analysis method. The model proposed in
this paper is based on both reliable theoretical and the summary of a large number of test results,
which has higher prediction accuracy than the design codes.

Keywords: RC slab–column joints; punching shear capacity; database; MCFT; design codes

1. Introduction

The RC slab–column structure has no beams between the columns, and thus, is a form
transfer load directly from slabs to columns [1,2]. The slab–column structure also has the
advantages of flexible layout, full use of height space, fast construction speed and low cost.
It is widely used in warehouses, underground garages, bridges and ports [3,4]. However,
the RC slab column structure may undergo punching shear at the slab column joints under
bending and shear loads. With small slab–column deformation, sudden punching shear
failure can occur which leads to serious problems [5–8]. Brittle punching shear failure of RC
slabs is usually caused by high shear stresses around the slab–column joint [9]. Due to the
mechanisms of brittle failure at slab–columns joints, it is easy to cause progressive collapse,
which affects the integrity of the structures [10]. On 24 June 2021, a condominium building
collapsed [11] in which 98 people were killed in the accident (Figure 1). Scholars have
carried out a lot of research in the hope of improving the understanding of the punching
shear [9,12,13]. However, the mechanism of punching shear of slab–column structures is
complex; therefore, the punching shear problem is still open for investigation.
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Figure 1. Collapsed condominium building (photo via Agence France-Presse) [11]. 

Many researchers started with theoretical approaches to find mechanical 
explanations for punching shear and predicted the punching shear resistance of slab–
columns by using various theoretical models. Bazant and Cao [14] introduced the fracture 
mechanics model to study the punching shear process of slab–column and Hallgren [15] 
also used nonlinear fracture mechanics to study the effect of size effect on high-strength 
concrete. Yankelevsky et al. [16], Nielsen [17], Johansen [18], Silva [19], Cai and Lin [20], 
studied the punching shear of slab–column based on the theory of plasticity. Based on 
seismic mitigation strategies and cost-benefit criteria, the deformation and forces at slab–
column joints need to be analyzed and quantified [21]. However, the above models give 
poor consideration to the deformation capacity of slab–columns [21]. Based on elastic thin-
plate theory, Long [22] presented an analytical model for punching shear capacity and 
summarized the criteria for different failure types of slab–column joints. Kinnunen and 
Nylander [23] proposed a model to calculate the ultimate rotation of the slab to study the 
punching shear capacity of RC slabs. The object of study for this model is sector elements 
in the radial flexure cracks. This model considers that when the radial inclined 
compression stress and the tangential compression strain near the column reach critical 
values the punching occurs. Then, the size effect was taken into account and a solution for 
the ultimate rotation was derived by Broms [12,24] to make the model more accurate. 
According to nonlinear fracture mechanics, Hallgren [15] proposed a model that the 
height of the concrete compression zone was used to derive the effects of size effect for 
the punching capacity of high-strength RC slab–column joints. Based on the conclusion of 
Walraven [25], assuming that the width of a critical shear crack is proportional to the 
rotation of the slab, Ruiz and Muttoni [2] proposed critical shear crack theory (CSCT). The 
effects of crack width and aggregate interlocking on the punching resistance of the slab–
column joints were considered in the model. The accuracy of the relationship between the 
rotation angle (ϕ ) and the internal forces in CSCT was verified by experiments. Then, the 
aggregate was considered and CSCT was improved by Guandalini et al. [26]. The 
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Many researchers started with theoretical approaches to find mechanical explanations
for punching shear and predicted the punching shear resistance of slab–columns by us-
ing various theoretical models. Bazant and Cao [14] introduced the fracture mechanics
model to study the punching shear process of slab–column and Hallgren [15] also used
nonlinear fracture mechanics to study the effect of size effect on high-strength concrete.
Yankelevsky et al. [16], Nielsen [17], Johansen [18], Silva [19], Cai and Lin [20], studied the
punching shear of slab–column based on the theory of plasticity. Based on seismic mitiga-
tion strategies and cost-benefit criteria, the deformation and forces at slab–column joints
need to be analyzed and quantified [21]. However, the above models give poor considera-
tion to the deformation capacity of slab–columns [21]. Based on elastic thin-plate theory,
Long [22] presented an analytical model for punching shear capacity and summarized
the criteria for different failure types of slab–column joints. Kinnunen and Nylander [23]
proposed a model to calculate the ultimate rotation of the slab to study the punching shear
capacity of RC slabs. The object of study for this model is sector elements in the radial
flexure cracks. This model considers that when the radial inclined compression stress and
the tangential compression strain near the column reach critical values the punching occurs.
Then, the size effect was taken into account and a solution for the ultimate rotation was
derived by Broms [12,24] to make the model more accurate. According to nonlinear fracture
mechanics, Hallgren [15] proposed a model that the height of the concrete compression zone
was used to derive the effects of size effect for the punching capacity of high-strength RC
slab–column joints. Based on the conclusion of Walraven [25], assuming that the width of a
critical shear crack is proportional to the rotation of the slab, Ruiz and Muttoni [2] proposed
critical shear crack theory (CSCT). The effects of crack width and aggregate interlocking
on the punching resistance of the slab–column joints were considered in the model. The
accuracy of the relationship between the rotation angle (ϕ) and the internal forces in CSCT
was verified by experiments. Then, the aggregate was considered and CSCT was improved
by Guandalini et al. [26]. The theoretical models mentioned above study the punching
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shear behavior of slab–columns from multiple perspectives. The prediction of punching
shear becomes more accurate, but the models and equations are relatively complex.

In RC slabs without punching shear reinforcement, the brittle punching failure has a
higher probability [6], and thus, the slab–column joints without punching shear reinforce-
ment are the research subjects in this paper. As far as we are concerned the punching shear
(within vertical load) of RC slab–column joints without punching shear reinforcement are
similar to shear diagonal tension failure of RC beams with a large shear-to-span ratio, and
this failure is caused by the direct stress and shear stresses in the concrete. Therefore, based
on the Modified Compression Field Theory (MCFT), a punching shear equation is proposed
by transforming the three-dimensional mechanics into two-dimensional plane mechanics.
With detailed specimen parameters, the equation has a relatively simple form and can
achieve relatively accurate prediction.

The purpose of this paper is to establish an analytical model for punching shear
capacity of RC slab–column joint that is based on justified theoretical deduction and the
experimental database. In Section 1, a database that includes 251 slab–column joints tests
are established. The database collects and collates the specific parameters of the slab–
column joints without punching shear reinforcement. In Section 2, a total of five design
codes are selected in this paper. The performance of existing design codes in predicting the
shear resistance of slab–column joints are investigated and compared with the experimental
results from the database. In Section 3, the Modified Compression Field Theory (MCFT) is
applied to give the mechanical basis of punching shear behavior in interior slab–column
joints without punching shear reinforcement. An equation for the punching shear resistance
of slab–column joints without punching shear reinforcement is established. In order to
improve the proposed model, parameters in the model are determined by regression
analysis. The proposed model is compared with the existing methods provided by other
design codes, verifying the correctness and effectiveness of the model.

2. Experimental Database

According to a literature review, a database of 251 tests is established. The following
criteria are used in collecting tests data: (1) The selected tests are RC slab–column joints
(within vertical load), and the shape of the specimen is rectangular, which can exclude the
influence caused by the shape; (2) The flexure reinforcement is arranged at the bottom of
the slab, and there is no other punching resistance element; (3) The position of the column
is in the middle of the RC slab.

The parameters recorded in the database include the side length of the slab (B); the
side length of the load area or column (c); the effective height of slab (h0: the distance from
the top of the ultimate compression zone to the center of flexure reinforcement); the ratio of
punching-span (λ: ratio of half of the span to the effective height); the cylindrical compres-
sive strength of concrete ( f ′c); the axial tensile strength of concrete ( ft); the reinforcement
ratio (ρ); the yield strength of reinforcement ( fy); the experimental punching shear capacity
(Vt). The concrete compressive strength of some tests is 150 × 150 mm cube compressive
strength fcu,k. Thus, it needs to be converted to the cylindrical compressive strength f ′c
through Equation (1).

fcu,k = 1.226 f ′c (1)

Figure 2 demonstrates the distribution of the above mentioned parameters. As de-
picted in Figure 2, the range of the side length is mainly distributed in 125–1925 mm. The
range of side length of the loading area or column is mainly distributed in 150–280 mm.
It clearly shows that most specimens are not full scale tests. The effective height of the
specimen is around 115 mm. Moreover, 75% of the specimens exhibit the slenderness
ratio h/B = 0.07–0.10. This value conforms to international standards and ensures that
the slab’s flexural behavior is acceptable [27]. In order to study the effects of size effect,
another 25% of the specimens which the slenderness ratio h/B are more than 0.10 or less
than 0.07 are also collected in the database. Zaghlool and Paiva [28] reported that if the
rotation constraint is imposed on the boundary of the slab–column joints, the punching
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resistance capacity can be increased at least 10%. In order to reduce the effects of boundary
constraints, the tests selected are mostly simply-supported. The range of f ′c is 11–78 MPa,
mostly less than 60 MPa. The range of ft is 1.21–6.01 MPa. The specimens selected in the
database are RC slab–column joints, and the proportion of high-strength concrete is small.
Some scholars [3,8,29] have found that the reinforcement ratio has a great influence on the
punching capacity of the slab–column joints. Therefore, the range of ρ selected is wide in
the database, which is in the range 0.33% to 2.73% and mostly concentrated in 0.6−1.8%.
The range of Vt is 105–1041 kN, where 91% of the specimens are less than 700 kN.

The tests sources include: Urban T. et al. (2019) [30]; Goldyn M. et al. (2018) [31];
Sun J. J. et al. (2018) [32]; Caratelli A. et al. (2016) [33]; Carmo R. N. F. et al. (2016) [34];
Youm K. et al. (2014) [35]; Peng J. (2013) [36]; Yang J. et al. (2010) [37]; Guandalini S. et al.
(2009) [26]; Widianto et al. (2009) [38]; Zhang Y.W. et al. (2009) [39]; Lee J. et al. (2008) [40];
Teng S. et al. (2004) [41]; Ospina C.E. et al. (2003) [42]; Reineck K. et al. (2003) [43];
Liu G. Y. et al. (1994) [44]; An Y. J. and Zhao G. F. (1994) [45]; Zheng J. L. and Zheng J. Z.
(1992) [7]; Marzouk H. and Hussein A. (1991) [46]; Regan P. E. (1986) [47]; Li D.G. et al.
(1984) [6]; Mowrer R.D. and Vanderbilt M.D. (1967) [48].
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3. Design Codes for Punching Shear Resistance
3.1. Punching Shear Design Provisions

As for the design codes of RC structures, most of them determine punching shear
failure by the nominal stress in the critical section. Although various aspects are considered
in the design codes, such as the shape of punching shear critical section, size of the critical
section, nominal stress calculation, reinforcement ratio and other controlling factors. There
are five design codes shown in Table 1. In summary, the design codes selected in this
paper can be split into two categories as follows: (1) design codes that do not take into
account the effect of reinforcement ratio, including “Code for Design of Concrete Structures
(GB50010-2010: 2015) [49]”, “Building Code Requirements for Structural Concrete and
Commentary on Building Code Requirements (ACI318-19) [50]” and “Design of Concrete
Structures (CAN/CSA A23.3:19) [51]”; (2) design codes that take into account the effect of
reinforcement ratio including “Design of Concrete Structures (EN 1992-1-1: 2004) [52]” and
“Standard Specifications for Concrete Structures (JSCE: 2012) [53]” Due to the divergences
of existing design codes, an investigation of their predicting results of punching shear
capacity will be conducive to the structural design of slab–column structures.
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Table 1. Design codes for punching shear resistance.

Design Codes Punching Shear Strength

GB50010 [49] VGB = 0.7βh ftηumh0 η = min

{
η1 = 0.4 + 1.2

βs

η2 = 0.5 + αsh0
4um

ACI318 [50] VACI1 = 0.17(1 + 2
βs
)ξ
√

f ′cumh0 VACI2 = 0.083
(

ash0
um

+ 2
)

ξ
√

f ′cumVACI3 = 0.33ξumh0
√

f ′c
CSA [51] VCSA = min

{
0.38

√
f ′cumh0, 0.19(1 + 2

βc
)
√

f ′cumh0, (0.19 + αsch0
um

)
√

f ′cumh0

}
JSCE [53] VJSCE = βcβpβr fpumh0

βd = 4
√

1000/h0 ≤ 1.5βp = (100ρ)1/3 ≤ 1.5

βr = 1 + 1/(1 + 0.25um/h0) fp = 0.2( f ′c)
1/2 ≤ 1.2

EC2 [52] VEC = 1
∂sc

[
0.18k(100ρ f ′c)

1/3 − 0.1σ
]
umh0

≥ 1
∂sc

umh0(0.028k3/2
√

f ′c − 0.1σ)

k = 1 + (200/h0)
0.5 ≤ 2

ρ = (ρxρy)
0.5 ≤ 2%

The section height influence coefficient βh = 1.0; η1 is the influence coefficient of the shape of loaded area; η2 is the
influence coefficient (um/h0); um is the critical perimeter; (The critical section does not consider the angle). βs is
the ratio of long side to short side (2 ≤ βs ≤ 4 for GB50010 [49]); αs is the column position influence coefficient,
which is taken as 40, 30, 20 for the inner, edge and corner column; αse is taken as 1.15, 1.4, 1.5 for the inner, edge
and corner column. αse is taken as 4, 3, 2 for the inner, edge and corner column; ξ is the size effect factor, which is
taken 1 (normal weight concrete) or 0.75 (lightweight concrete); k is the size effect coefficient.

Table 2 clearly shows the difference in the parameters included in the punching shear
design. The main influencing parameters include concrete strength f ′c and ft, flexure
reinforcement ratio ρ, the critical section um, effective height h0, the position of the column
and size effect. The punching shear capacity is related to the concrete tensile strength
directly. Thus, the tensile strength of concrete ft is used in the equation of punching shear
strength in GB50010 [49]. ACI318 [50], EC2 [52], CSA [51] and JSCE [53], take 0.33

√
f ′c ,

( f ′c)
1/3, 0.38

√
f ′c and 0.2

√
f ′c as the tensile strength of concrete in the equation of punching

shear strength. In addition, only EC2 [52] and JSCE [53] include the effect of flexure
reinforcement ratio, and the punching shear capacity is proportional to ρ1/3. All design
codes hope to increase the punching shear capacity by increasing the effective height h0 of
the slab.

Table 2. Comparison between various punching shear equations.

Parameter ACI318 [50] GB50010 [49] EC2 [52] CSA [51] JSCE [53]

Compressive strength of concrete 0.33
√

f ′c ft ( f ′c)
1/3 0.38

√
f ′c 0.2

√
f ′c

Ratio of flexure reinforcement / / ρ1/3 / ρ1/3

Location of critical section 0.5h0 0.5h0 2h0 0.5h0 0.5h0
Size effect

√
/

√
/

√

Column position
√ √

/
√

/

3.2. Evaluation of Design Codes

Figure 3 shows the ratio of the experimental punching shear capacity (Vt) to the value
calculated by the design codes (Ve) for RC slab–column joints. The tests are divided by the
ratio of punching-span (λ), and the ordinate is Vt/Ve. The data analyzed include average
value, standard deviation, coefficient of variation, the maximum and minimum of Vt/Ve
and the percentage of exceeding the average (Table 3).
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Table 3. Comparison of punching shear resistance between various design codes.

Design
Codes

Average
Value of

Vt/Ve

Standard
Deviation

Coefficient
of Variation Max Min Value of

Max–Min
Over-Average

Percentage

ACI318 [50] 1.4369 0.1797 0.1200 1.8539 1.0784 0.7575 39.04%
GB50010 [49] 1.2118 0.1489 0.1227 1.5718 0.7178 0.8540 32.67%

EC2 [52] 1.1839 0.1708 0.1443 1.6838 0.8725 0.8113 36.65%
CSA [51] 1.2457 0.1609 0.1292 1.7034 0.8549 0.8485 35.46%
JSCE [53] 1.1826 0.1744 0.1475 1.8124 0.9758 0.8366 40.63%
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Figure 3 shows that the calculation results of the equation used in ACI318 [50] are
mostly larger than the experimental results. Table 3 shows that the average value of
Vt/Ve (1.4369) is large and the coefficient of variation is small. One of the reasons [21] for
these performances is that the flexure reinforcement ratio is not considered in ACI318 [50].
The punching shear strength is typically controlled by VACI3 [13]. However, Some re-
searchers [54–56] have found that if the size of the load area is considerably greater than
the height of the slab, VACI1 and VACI2 are more appropriate. JSCE [53] and EC2 [52]
have the same characteristics, the coefficient of variation is large and the average value of
Vt/Ve is smaller, which means the discreteness of predictions is larger than ACI318 [50],
GB50010 [49] and CSA [51]. Besides, only JSCE [53] and EC2 [52] consider the effect of
flexure reinforcement ratio and the contribution of the yield strength of the flexure reinforce-
ment to resisting punching shear will become limited when ρ > 2% [57]. The discreteness
and the average value of the calculation results of CSA [51] and GB50010 [49] are small.
However, they both have big differences between the maximum of Vt/Ve and the minimum
of Vt/Ve, which means GB50010 [49] and CSA [51] have the limitations to predict the
punching resistance for different size slab–columns.

4. Analytical Model of Shear Punching Capacity
4.1. Modified Compression Field Theory

Modified compression field theory (MCFT) is a method to solve the shear problem of
reinforced concrete members proposed by Vecchio and Collins [58,59]. Based on the average
stress and strain of cracked RC elements, MCFT establishes balance, compatibility and
constitutive equations. Punching failure of RC slab–column joints essentially is shearing
failure [16]. Therefore, in this paper, the basic equations established by MCFT are used to
calculate the stress of RC cracked elements under the plane shear and axial force. Then, the
calculation equation for the punching shear capacity of the slab column is established.

According to the stress state of the cracked concrete element, the stress state of the
reinforcement element and the average stress Mohr circle shown in Figure 4, the balance
equations are established as follows:

τ = τc (2)

σcx = ρxσsx + σf − τc cot θ (3)

σcy = ρyσsy + σf − τc tan θ (4)

τc = (σf − σg)/(tan θ + cot θ) (5)
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The stress of concrete element at the crack is as follows:

σsxcr = (σf + τk cot θ + σsx)/ρsx (6)

σsycr = (σf − τk tan θ + σsy)/ρsy (7)

where σcx and σcy are the average stress of the cracked concrete element in the x direction
and y direction, respectively, ρx and ρy are the horizontal and vertical reinforcement ratios,
respectively, σsx and σsy are transverse and longitudinal reinforcement stress, respectively,
σf is the principal tensile stress of the cracked concrete element, σk is the principal compres-
sive stress of the cracked concrete element, τ and τc are the shear stress and average shear
stress of the element, respectively.

According to the geometric deformation conditions of the cracked concrete element
and the average strain Mohr circle (Figures 5 and 6), the strain compatibility equations of
the cracked concrete element can be established:

ε1 = εx + εy + ε2 (8)

tan2 θ =
εx + ε2

ε1 + εx
(9)

γc = 2(εy + ε2) cot θ (10)

where ε1 is the average principal tensile strain of the vertical crack, ε2 is the principal
compressive strain of parallel cracks, εx and εy are the average strains in the x and y
directions, γc is the average shear strain.

The softening effect occurs when the concrete reaches its tensile strength, the following
stress-strain relationships (Figure 7) are used [58] as:

σf =

{
Ecε1 (ε1 ≤ εcr)

0.33
√

f ′c
1+
√

500ε1
(ε1 > εcr)

(11)

σg =
f ′c

0.8 + 170ε1

[
2ε2

ε0
−
(

ε2

ε0

)2
]

(12)

σgmax =
f ′c

0.8 + 170ε1
≤ f ′c (13)

where Ec is the Young’s modulus concrete, ε0 is the peak strain of the concrete, σgmax is the
peak compressive stress of softened concrete.
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The stress-strain relationship of the reinforcement (Figure 8) is elastic-perfectly plastic
as follows:

σsx = Esεsx ≤ fsy (14)

where Es, εsx, fsy is the Young’s modulus, strain, and yield strength of longitudinal reinforcement.
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The RC slab–column joint without punching shear reinforcement presents a rigid-
plastic failure form when punching shear occurs [60], and the failure area forms a punching
cone (Figure 9). In this paper, the effect of the parts which directly contact the surface of the
column (part I) is not considered. Only consider the part of the cone connected with the
column (part II) and 4 prisms can be taken as the free-body. One of the prisms free-body
is shown in Figure 10. Then integrate the stress on the surfaces (part III) of the prisms to
represent the punching shear strength.
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In order to apply the model in a rational way during the analysis, three assumptions are
proposed: (1) The study objects are experimental slab–column joints, which load through
the column. The self-weight of the specimens is not considered, and thus, the vertical
squeeze is not considered. (2) The stress distribution on the analysis surface is assumed to
be uniformly distributed. (3) The pinning of the reinforcement is not considered.

Punching shear failure of the slab–column joints has a three-dimensional property. In
order to transform into two-dimensional plane mechanics, take the lateral surfaces of the
prism (part IV) as the analysis object (Figure 11). Due to the assumptions mentioned before,
the vertical squeeze is not considered, and thus, the vertical load at the punching crack can
be neglected, and there is no vertical reinforcement in the free-body. Therefore, take σcy
and ρy as 0.

σf = τc tan θ (15)
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The equations according to static equivalent principle can be established as follows:

ρxσsx sin θ + σf sin θ = ρxσsx sin θ − σk sin θ − τk cos θ (16)

σf cos θ = −σk cos θ + τk sin θ (17)

The local compressive stress σk is so small that the possible effects can be ignored here
and Equation (18) is obtained from Equations (16) and (17):

σf = τk tan θ (18)

Equation (19) can be obtained from Equations (4), (15) and (18):

τ = τk (19)

The equation of shear stress at the crack proposed by MCFT [58] is:

τk ≤ 0.18
√

f ′c/(0.31 +
24ω

ds + 16
) (20)

The equation of shear strength of RC slab can be established as follows:

τ ≤ 0.18
√

f ′c/(0.31 +
24ω

ad + 16
) (21)

The equation for punching shear strength of slab–column joint is established by
integrating Equation (21) as follows:

Vp = 0.36Lh0
√

f ′c/(0.31 +
24ω

ad + 16
) (22)

where L is the perimeter of the column. ω is the width of critical crack. ad is the size of
aggregate. For ease of calculation, taking ω = 0.0005 0.9h0

sin θ and ad = 20 mm [29].
In order to verify the accuracy of the bearing capacity equation, the database of this

paper is used for testifying, as shown in Figure 12.
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Figure 12 shows that there is some deviation in the results of the punching shear ca-
pacity equation established by MCFT. MCFT believes that the shear capacity of the concrete
slab is provided by the shear stress transferred along the crack surface [58]. However, the
contribution of the flexure reinforcement to resist punching shear is ignored, so the results
are relatively small. For slab–column joints without punching shear reinforcement, the ratio
of flexure reinforcement is the key index that affects the punching shear strength. Through
experiments and numerical simulations, Li [61] found that when the reinforcement ratio
was greater than 0.95%, the probability of punching failure occurred at the slab–column
joint was the largest. Li [6] increased the reinforcement ratio by 0.4% in the experiments,
but the punching shear capacity increased by 12%. Chen et al. [62] concluded that the
increase in the reinforcement ratio significantly improved the punching shear capacity,
ductility and lateral stiffness of the slab–column joints. EC2 [52] and JSCE [53] also consid-
ered the effects of the ratio of flexure reinforcement on the punching shear strength of the
slab–column joints.

It is necessary to consider the effects of the reinforcement ratio. Therefore, the rein-
forcement ratio ρ is used to modify the equation of punching shear strength (Equation (22)).
Moreover, referring to various design codes, the critical section um is added to the equation.
Assuming that the punching shear strength equation is:

Vp = 0.36α(ρ)kumh0L
√

f ′c/(0.31 +
24ω

ad + 16
) (23)

ft = 0.395αc2 f 0.55
cu,k (24)

where α is the undetermined coefficient.
Regression analysis can be used to study the effect of the single variable reinforcement

ratio ρ for punching shear capacity, and the effects of other parameters can be eliminated
at the same time. Firstly, the middle term Y = (ρ)k is defined, and the specimens in
the database are grouped with similar parameters (deviation less than 3%) except ρ. For
example, in the first group of specimens, ρ is different, but the values of parameters, such as
fcu,k, λ, fy, and h0 are similar (the deviation is less than 3%). The specimens in the database
can be divided into m groups (i = 1, 2, . . . , m), and the number of specimens in each group
is greater than or equal to 2. Each group has a total of n specimens (j = 1, 2, . . . , n).

The value of k is taken 1 at first. The ratio of the experimental punching shear capacity
Vt to the middle term Y = (ρ)k can be calculated. Then the average value of each group Xi
can be calculated as follows:

Xi =

n
∑

j=1

Vij
Yij

n
(25)

The relative deviation eij of each specimen and the average deviation e of all specimens
can be obtained as follows:

eij =

∣∣∣Vij
Yij
− Xi

∣∣∣
Xi

(26)

e =

m
∑

i=1

n
∑

j=1
eij

m
∑

i=1
n

(27)

The coefficient k is adjusted until the average deviation e is the smallest. When k = 0.2,
the average deviation e reaches the smallest value (0.05379).

It can be seen from Table 3 that the value of the critical section perimeters are taken
differently. The location of 0.5h0, 1.5h0 and 2h0 from the load area are selected as the
critical section, respectively, that is: um = 4(c + h0), um = 4(c + 3h0) and um = 4(c + 4h0).
Therefore, α0.5h0 = 2.60, α1.5h0 = 1.56 and α2.0h0= 1.30 can be calculated.



Buildings 2022, 12, 226 15 of 19

The equation of punching shear strength with different critical section perimeters can
be established as follows:

Vp = 0.94(ρ)1/5umh0L
√

f ′c/(0.31 +
24ω

ad + 16
), when um = 4(c + h0) (28)

Vp = 0.56(ρ)1/5umh0L
√

f ′c/(0.31 +
24ω

ad + 16
), when um = 4(c + 3h0) (29)

Vp = 0.47(ρ)1/5umh0L
√

f ′c/(0.31 +
24ω

ad + 16
), when um = 4(c + 4h0) (30)

4.2. Calculation Results

Based on the database in this paper, the punching shear capacity of the slab–column
joints without punching shear reinforcement can be calculated using Equations (28)–(30).
The calculation results are shown in Figure 13 and Table 4. It is clearly shown that the
dispersion of Equation (30) is smaller than Equations (28) and (29). At the same time,
referring to EC2 [52], the critical section perimeter um is taken 4(c + 4h0).
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Figure 13. Punching shear capacity of different critical section perimeter: (a) um = 4 (c + h0 );
(b) um = 4 (c + 3h0 ); (c) um = 4 (c + 4h0 ).

Table 4. Comparison of punching shear with different critical section perimeter.

Critical Section Position α Average Ratio Standard Deviation Coefficient Of
Variation

Over-Average
Percentage

0.5h0 2.60 1.00 0.180247 0.180247 39.8%
1.5h0 1.56 1.00 0.148922 0.148922 42.3%
2.0h0 1.30 1.00 0.139113 0.139113 42.3%

In the above analysis process, the solution of coefficient k can evaluate the contribution
of the single parameter reinforcement ratio ρ to the punching shear capacity of slab–column
joints. When k = 0.2 and the average deviation e reaches the smallest, the effect of the
reinforcement ratio ρ to punching shear is best demonstrated. The revised equation of
punching shear strength can be established as follows:

Vp = 0.47(ρ)1/5umh0L
√

f ′c/(0.31 +
24ω

ad + 16
) (31)

In order to verify the accuracy of Equation (31). Some specimens are selected which
are out of the database in this paper. Table 5 shows the specimens parameters [63]. The
punching shear strength is calculated by Equation (31) and the equations used in various
design codes. The calculation results are shown in Figure 14. It can be seen that the results
of the punching shear capacity calculated by the equation proposed in this paper have a
lower degree of dispersion, and the calculated value is closer to the experimental value.
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Table 5. Specimens parameters.

Number h0/mm fc/MPa ρ fy/MPa λ Vt/kN

C70-30-1 [63] 150 32.29 0.86% 604.0 7 443
C70-30-1 [63] 150 29.69 1.28% 604.0 7 570
C70-30-1 [63] 150 35.56 1.73% 453.6 7 690
C70-30-1 [63] 150 52.96 0.86% 604.0 7 693
C70-30-1 [63] 150 48.56 1.28% 604.0 7 771
C70-30-1 [63] 150 48.98 1.73% 453.6 7 800
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5. Conclusions

The present paper introduces the models for punching shear strength of slab–column joints
without punching shear reinforcement in the design codes. A database with 251 specimens
is established by searching the literature. Then, the punching shear strength is predicted
by the various design codes. Finally, referring to the CMFT theory, an equation for the
punching shear capacity of the slab–column joints without punching shear reinforcement
is established. By summarizing the investigation of design codes and the analytical model
established in this paper, the following conclusions can be obtained:

(1) The database established in this paper has the characteristic of a small amount of
extreme data and adequate specimens. It is suitable for the various research aspects
of the slab–column joints without punching shear reinforcement in further work.

(2) There are some differences in the parameters included in the design codes. The design
codes proposed in this paper all consider the relative of punching shear capacity
with the concrete strength. Where only GB50010 [49] uses tensile strength in the
equation, the other design codes use compressive strength. Moreover, only EC2 [52]
and JSCE [53] consider the effects of reinforcement ratio for punching shear. Other
parameters, such as the position of the column, the size effect and the critical perimeter
are not the same.

(3) Design codes have different results in predicting punching shear for the database in
this paper. ACI318 [50] has a relatively small coefficient of variation and a low degree
of discreteness. But the predicting values are visibly higher than the experimental re-
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sults which indicate conservative results. JSCE [53] has a large coefficient of variation.
EC2 [52] has a large dispersion, but the average value is the smallest of other design
codes. GB50010 [49] has a small dispersion and average value, but the applicable
range of the equation is small.

(4) The punching shear failure criterion of RC slab–column (within vertical load) without
punching shear reinforcement proposed are combined the shear diagonal tension
failure of RC beams with a large shear-to-span ratio, and the failure is caused by the
direct stress and shear stresses in the concrete.

(5) The model of MCFT can be used to predict the punching shear is based on three
assumptions, which are essential to transform the three-dimensional mechanics into
two-dimensional planar mechanics. The punching shear strength is decided by
integrating the stress on the punching surfaces, which is proposed by the stress state
of the cracked concrete units in the critical shear crack.

(6) The punching shear capacity equation established based on the MCFT model has
limitations before being modified, which is conservative. To ensure the accuracy of
the equation, a regression analysis is also applied according to the database. It is
shown by the comparison between existing design codes and the proposed model
that the model is more accurate when the reinforcement ratio and critical section are
considered. The characteristic of the equation established in this paper is that both
have reliable theoretical support and summaries of a large number of test results, as
well as high prediction accuracy and low dispersion.
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