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Abstract: Recently, various studies for the use of Fe-based shape memory alloy (Fe-SMA) in the
construction field have been widely conducted. However, most of the studies for using Fe-SMA are
carried out for applying Fe-SMA for strengthening deteriorated structures. However, if Fe-SMA is
used as a reinforcement for new structures, the disadvantages of conventional prestressed concrete
can be effectively solved. Therefore, in this work, an experimental study was conducted to evaluate
the flexural behavior of concrete beams in which Fe-SMA rebars were used as tensile reinforcement.
For the study, ten specimens were constructed with the consideration of the cross-sectional area
and activation of Fe-SMA rebars as experimental variable. Activation of the Fe-SMA rebars by
electrical resistance heating applied an eccentric compressive force to the specimen to induce camber.
The camber increased by an average of 0.093 mm as the cross-sectional area of the Fe-SMA rebar
increased by 100 mm2. It was also confirmed through the four-point bending tests that the initial
crack loads of the activated specimens were 47.6~112.8% greater than those of the nonactivated
specimens. However, the ultimate strength of the activated specimens showed a slight difference of
3% to those of the nonactivated specimens. Therefore, it was confirmed that the effect of Fe-SMA
activation on the ultimate strength of specimens was negligible.

Keywords: Fe-based shape memory alloy; electrical resistance heating; camber; activation

1. Introduction

Reinforced concrete (RC) is one of the most important construction materials in prac-
tical infrastructure and residential buildings in modern society. However, because the
tensile strength of concrete is about eight times smaller than its compressive strength,
the cross-section area of concrete should be larger as the length of a concrete member in-
creases [1]. Steel reinforcement is the passive reinforcing material because the reinforcement
embedded in the concrete begins to limit the crack width and resist the tensile force after
the concrete loses tensile strength [2]. The embedded steel reinforcement inside concrete
starts to corrode by either carbonation or by chlorides. Carbon dioxide and moisture in
air move through cracks from the concrete surface. The carbon dioxide in air reacts with
calcium within the concrete, decreases the pH value of the concrete, and corrodes the steel
reinforcement. In addition, chloride transported through the concrete to steel significantly
increases the corrosion rate of steel reinforcement. The corroded reinforcing steel loses load
resistance and induces concrete scaling [3].

To control crack development in concrete in service, prestressed concrete has been
widely used in civil engineering fields [4]. In contrast to RC, the entire cross-section of
prestressed concrete is recognized to be effective in resisting external forces, and this allows
reduction of its cross-section area and self-weight. As the compression force produced
by the prestressing tendons located in a tension zone of concrete cancels the tensile stress,
the crack development can be controlled, and the downward displacement can also be
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controlled by a proper camber in the concrete beam design [5]. However, a hydraulic jack
and an anchorage device are required to apply tensioning to the tendons and to anchor the
tensioned tendons at both ends of the concrete members, respectively. Their installation
and the tensioning process make the construction process complicated and prolong the
construction period [6]. Additionally, post-tensioning tendons permanently bonded to the
surrounding concrete by in situ grouting cannot be retensioned even if some prestressing
force is lost due to drying shrinkage, concrete creep, and tendon relaxation.

To compensate for these limitations, researchers have conducted studies to generate
the prestressing force by using shape-memory alloys (SMAs) [7–10]. Unlike steel materials,
a SMA material has a shape-memory effect (SME) wherein a material recovers a plastic
deformed shape to its predeformation shape when heated above a designated transfor-
mation temperature [11]. When the prestrained SMA is activated while restraining the
recovery of its plastic deformation, a stress called recovery stress occurs. By using this
special characteristic, if a prestrained SMA rebar embedded in concrete is activated, re-
covery stress occurs because the deformation of the SMA rebar is restrained by the bond
force with the surrounding concrete. This recovery stress can be applied as compressive
force in the prestressed concrete [12]. The usage of SMA instead of prestressing tendons
does not require a hydraulic jack or anchoring device because the SMA is embedded inside
concrete and bonding stress occurs during activation. In addition, prestressed concrete
exploiting SMA can recover the initial recovery stress by simple reactivation even if the
recovery stress is reduced due to dry shrinkage of concrete, creep, and SMA relaxation.
However, the commonly known SMA is a Ni–Ti alloy called nitinol, which is not applicable
in the construction field because of its higher raw material price [13,14].

On the other hand, since Enami et al. [15] first discovered an iron-based shape memory
alloy (Fe-SMA) in 1975, many researchers have studied Fe-SMAs of various compositions.
Owing to its cheaper raw material price than nitinol, many researchers and engineers can
use Fe-SMA as a construction material. Shahverdi et al. [16] conducted an experimental
study on the use of Fe-SMA strips as reinforcement in conjunction with a near-surface
mounted (NSM) method. The flexural performance of RC beams strengthened with the Fe-
SMA strips by the NSM method was evaluated by a four-point loading test. They concluded
that the initial flexural rigidity was improved in the test specimen with the activated Fe-
SMA using NSM, compared to a specimen with a nonactivated Fe-SMA using NSM. They
reasoned that the recovery stress generated by the activation of Fe-SMA acts as prestressing
force in the tension zone. Michels et al. [17] conducted an experimental study to evaluate
the mechanical properties of Fe-SMA rebars. The diameter of Fe-SMA rebars used in their
study was 16 mm, in accordance with the BS standards. They reported that the ultimate
deformation of Fe-SMA rebars was about 28% higher than that of B500 reinforcement.
In addition, they reported that the recovery stress of the SMA when prestrained to 4%
and heated to 200 ◦C was about 300 MPa, and after 1000 h was reduced by 10% by SMA
relaxation. Hosseini et al. [18] conducted an experimental study to evaluate the recovery
stress of Fe-SMA strips under various conditions. They reported that the recovery stress
decreased when the activated Fe-SMA strips were subjected to cyclic loads. They also
described that the reduced recovery stress could be restored by reactivation of the strips.

However, most of the research for the application of Fe-SMA to the construction field
has focused on application for strengthening deteriorated RC structures or evaluating the
mechanical properties of Fe-SMAs [19–23]. Very little research has been devoted to evaluat-
ing the applicability of Fe-SMA materials as reinforcement for new structures. Therefore,
this study was conducted to evaluate the applicability of Fe-SMA rebars as reinforcement
for new structures. For the study, beam-type concrete specimens reinforced with Fe-SMA
rebars were constructed, and four-point bending tests were performed to experimentally
evaluate the flexural behavior of the specimens. In addition, the reactivation experiment of
Fe-SMA was performed to examine the possibility of retension of the specimens reinforced
with Fe-SMA rebars.
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2. Experiment Program
2.1. Test Specimens

Ten beam specimens reinforced with Fe-SMA rebars were cast to evaluate their flexural
behaviors. As shown in Figure 1, the width, height, and effective depth of the specimens
were 250 mm, 400 mm, and 350 mm, respectively. Their total and effective lengths were
2800 mm and 2600 mm, respectively. In order to avoid shear fracture, ∅13 mm U-shaped
stirrups were embedded at a spacing of 150 mm. The Fe-SMA rebars used in the experiment
had a square cross-section of 10 mm × 10 mm. Thread fasteners of 100 mm length for
bolting were machined at both ends of the Fe-SMA rebars to prevent slippage during the
experiment, as shown in Figure 2. The Fe-SMA rebars were stretched to a targeted prestrain
of 0.04 by a horizontal hydraulic jack. After completing pretension of the Fe-SMA rebars,
the U-shaped stirrups and Fe-SMA rebars were assembled and placed in concrete molds.
Ready-mix concrete from a local batch plant was poured in the concrete molds, and the
concrete beams were demolded three days after casting. The concrete beams were cured for
28 days, and then the Fe-SMA rebars were activated. The cross-sectional areas of Fe-SMA
rebars (200 mm2, 300 mm2, 400 mm2, and 500 mm2), the activation of the Fe-SMA rebars,
and usage of an anchoring device were considered as variables for the experiment, which
are given in Table 1. The variable denoted as “BE” in Table 1 refers to “beam” and the
Arabic number is the number of Fe-SMA rebars. In addition, the letters “A”, “N”, and “R”
denote activation of Fe-SMA, no activation of Fe-SMA, and reactivation of Fe-SMA rebars.
The last letter of “A” or “N” indicates whether or not the anchoring device is used.
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Table 1. Test variables.

Specimen Area of Fe-SMA
Rebars (mm2) Activation Anchorage

BE-2N-A
200

Nonactivation

Anchorage
BE-2A-A Activation
BE-3N-A

300

Nonactivation
BE-3A-A

ActivationBE-3R-A
BE-3A-N Non-anchorage
BE-4A-A

400
Nonactivation

AnchorageBE-4A-A Activation
BE-5A-A

500
Nonactivation

BE-5A-A Activation

2.2. Materials

The design compressive strength of concrete used for the specimens was 40 MPa, and
Table 2 shows the mix design for this concrete. “W”, “C”, “S”, “G”, and “Ad” in Table 2
refer to water, cement, sand, gravel, and water-reducing admixture, respectively. Maximum
gravel size of 25 mm, an S/a ratio of 47%, and a water-to-cement ratio (W/C) of 30.7%
were considered to produce the concrete material. To evaluate the compressive strength
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of the concrete, five concrete cylinder specimens with sizes of ∅100 mm × 200 mm were
simultaneously cast. The concrete beam and cylinder specimens were cured and demolded
under the identical surrounding conditions. The average compressive strength of the
concrete was 46.2 MPa in accordance with the American Standard for Test and Material
(ASTM) C39/39M [24].

Table 2. Mixing properties of the concrete.

Slump
(cm)

Air Content
(%)

W/B
(%)

S/a
(%)

Weight per Unit Volume (kg/m3)

W C S G AD

12 4.5 30.7 47 192 625 684 780 4.38

The nominal diameter of the steel rebars used as compression rebars and shear stirrups
was 13 mm. The modulus of elasticity and the yielding stress of the steel rebars were
200 GPa and 462 MPa, and their yielding strain was 17.1%. Table 3 shows the material
properties of the steel rebars used.

Table 3. Material properties of the steel rebars.

Standard No. Nominal Diameter
(mm)

Nominal Area
(mm2)

Young’s Modulus
(GPa)

Yield Strength
(MPa)

Ultimate Strength
(MPa)

Elongation
(%)

D13 12.6 126.7 200 462 540 17.1

Figure 3 represents the Fe-SMA rebars used in this paper. The chemical composition of
Fe-SMA rebar is Fe-17Mn-5Si-5Cr-0.3C-1Ti. The Fe-SMA rebars were manufactured using
a vacuum induction melting pot. First, all components of Fe-SMA rebars were placed into
the vacuum induction melting pot to make a 1000 kg ingot. The ingot was heat-treated at
1250 ◦C for six hours to homogenize the alloy and then forged into a plate with a thickness
of 10 mm by hydraulic stamping. The Fe-SMA plates were then cut by a water jet into rebars
with 10 mm square sections. Direct tensile tests were performed to confirm the mechanical
properties of the Fe-SMA rebars. The dimensions of the test samples had a length of
200 mm and a width of 10 mm with a thickness of 2.5 mm, respectively. The direct tensile
tests were performed with a displacement control at a loading rate of 0.5 mm/min in
a universal testing machine (UTM). The strains were measured by strain gauges attached in
the middle of the specimens, and the measured data were collected at one-second intervals
by a data acquisition system (DAQ). Figure 4 shows a typical stress–strain curve of the
Fe-SMA rebars according to the results of the direct tensile tests. The modulus of elasticity,
the ultimate stress, and the corresponding ultimate strain were determined as 201 GPa,
1035 MPa, and 20%, respectively. A special characteristic of the Fe-SMA material is that it
did not show a distinguished yielding point, whereas a clear yield point appeared in the
direct tensile tests of normal steel rebars. Therefore, to determine the yielding stress of the
Fe-SMA rebars, the 0.2% offset method was employed, resulting in an average yielding
stress of 451 MPa.
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The recovery stress of the Fe-SMA bars was evaluated using the same samples as
those for the direct tensile tests. Lee et al. [25] reported that Fe-SMA strips prestrained to
over 4% had reduced corrosion resistance. Moreover, with regard to heating temperature
exceeding 160 ◦C, Park et al. [26] reported that ettringite at the interface between cement
and gravel was melted, and Yeon [27] reported that internal cracks surrounding the Fe-SMA
rebars occurred due to the evaporated internal moisture. From those studies related to
the mechanical behaviors of Fe-SMA rebars, the prestrain and heating temperature were,
respectively, decided as 4% and 160 ◦C. The Fe-SMA rebars were stretched to the targeted
prestrain level using a 100 kN capacity UTM by displacement control at a loading rate of
0.25 mm/min, and the tension was reduced to 0 by the same loading speed after the strains
of the Fe-SMA rebars reached the targeted strain level. To prevent buckling behavior of the
Fe-SMA rebars by heating expansion, a pretensile stress of 50 MPa was applied. After the
pretension, both ends of the samples were fixed by the hydraulic wedges of the UTM. The
Fe-SMA rebars were heated up to a designated transformation temperature by the electric
resistance heating generated from a current of 2A/mm2. The surface temperatures of the
rebars were measured by a noncontacted infrared thermal sensor and were recorded at
one-second intervals using a DAQ, as shown in Figure 5. When the surface temperature
reached the designated transformation heating temperature of 160 ◦C, the electricity was
disconnected, and the specimens were cooled to the ambient temperature. Figure 6 shows
a typical temperature–recovery stress relationship of the Fe-SMA rebars during heating and
cooling. As shown in Figure 6, the recovery stress somewhat decreased at the initial heating
temperature of 35 ◦C due to thermal expansion and thereafter increased steadily with
heating. The recovery stress of 335 MPa occurred when the Fe-SMA rebars were cooled to
the ambient temperature. Figure 7 shows a typical stress–strain curve of the rebars after
the tension was removed. The stress–strain curves were drawn by the following steps: the
stress was reduced while removing the tension; the recovery stress occurred, as shown by
the vertical straight line, at the strain of 0.0327; and the stress was reduced to the zero upon
removing the tension generated by the recovery stress, indicated by the red line in Figure 7.
Specifically, at the red line, the modulus of elasticity of the Fe-SMA rebars was measured as
152 GPa.
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2.3. Test Setup

Figure 8 shows the configuration of the system for activation of the Fe-SMA rebars.
As mentioned before, the beam specimens were laid on the test frame with the net length
of 2600 mm. The Fe-SMA rebars embedded in the beam specimens were activated by
the resistance heating with an electrical voltage of 5 A/mm2. As shown in Figure 8, the
Fe-SMA rebars’ temperatures were measured using a noncontact infrared thermal sensor.
From a preliminary test for the material heating temperature, the central cross-section
temperature of the Fe-SMA rebar reached 160 ◦C when the end of the threaded Fe-SMA
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rebar was heated to 440 ◦C. When the surface temperatures of the Fe-SMA rebars with
and without spiral threads reached 440 ◦C and 160 ◦C, respectively, the power supply
was turned off. The camber generated during the activation of the Fe-SMA rebars was
measured by a linear-variable displacement transducer (LVDT) with a range of 10 mm at
the central bottom of the beam specimens. The data measured by the thermocouples and
LVDTs were collected and stored at one-second intervals using a DAQ. After the camber
of the beam specimens became stable due to activation of the Fe-SMA rebars, four-point
bending tests were carried out using a hydraulic actuator with a capacity of 2000 kN to
evaluate the flexural behaviors of the concrete beams reinforced with the Fe-SMA rebars.
As shown in Figure 1, the spacing between the loading points of the beam specimen was
400 mm, with each point located 200 mm from the center. The four-point bending tests were
carried out by using displacement control at a loading rate of 3 mm/min. Displacements
were measured by using LVDTs at the central bottom of the beam specimens. Initial cracks
and crack propagations were indicated on the surface of the beam specimens. Figure 9
shows the test setup.
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3. Experiment Results and Discussion
3.1. Activation of the Fe-SMA Rebars

Based on the results of the activation of the Fe-SMA rebars, Table 4 shows a comparison
of the experimental and theoretical cambers at the centers of the specimens, and Figure 10
shows the time–displacement curves at the centers of the beam specimens. As shown in
Figure 10, the time–displacement curves are clearly divided into two stages. In the first
stage of the activation, downward displacements caused by the thermal expansion of the
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Fe-SMA rebars were observed. However, as the rebars were continuously activated, the
eccentric compressive forces acting in the concrete tension zones gradually recovered the
downward deformations and eventually induced upward deformations. The maximum
cambers of beams BE-2A-A, BE-3A-A, BE-4A-A, and BE-5A-A due to the activation of the
Fe-SMA bars were 0.140 mm, 0.206 mm, 0.267 mm, and 0.420 mm, respectively. As the
cross-sectional area of the Fe-SMA rebars increased by 100 mm2, the camber increased by
0.093 mm on average. This is because as the area of the Fe-SMA bars increased, the eccentric
compressive forces increased. Figure 11 shows a comparison of the time–displacement
curves at the centers of the beam specimens by activating the Fe-SMA rebars for beam
BE-3A-N without using an anchor and beam BE-3A-A by using an anchor. As shown in
Figure 11, the upward displacement of 0.204 mm for beam BE-3A-A was slightly different
from that for beam BE-3A-N by less than 1%. As mentioned before, beams BE-3A-A and BE-
3A-N depended on the use of the anchoring device at the ends of the Fe-SMA rebars. It was
assumed that the beam specimens remain elastic, and the cambers in the beam specimens
due to the recovery stress of the Fe-SMA rebars can then be theoretically calculated using
Equations (1)–(3).

Table 4. Summary of the upward midspan displacements.

Specimen δupward,exp (mm) δupward,theory (mm) δupward,exp/δupward,theory

BE-2A-A 0.140 0.193 0.725
BE-3A-A 0.206 0.287 0.718
BE-4A-A 0.297 0.379 0.784
BE-5A-A 0.420 0.469 0.896
Average 0.781
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δupward = (MrecL2)/
(
8Ec Ig

)
(1)

Mrec = Prece (2)

Prec = Asma frec (3)

where δupward is the camber, Mrec is the moment caused by the eccentric compressive
force generated by the recovery stress of the Fe-SMA rebars, Prec is the compressive force
generated by the recovery stress of the Fe-SMA rebars, e is the eccentric distance from the
centroid line, Asma is the area of the Fe-SMA rebars, and frec is the recovery stress of the
Fe-SMA rebars. In addition, Ig is the moment of inertia of the beam cross-section and Ec is
the concrete modulus of elasticity. Ig and e are calculated using the transformed section
method and the parallel axis theorem, as expressed in Equations (4)–(10). Ec is calculated
from Equation (11) in accordance with ACI 318.

ns =
Es

Ec
, nsma =

Esma

Ec
(4)

yt =
0.5bh2 + (ns − 1)Asd′ + (nsma − 1)Asmad

bh + (ns − 1)As + (nsma − 1)Asma
(5)

e = d− yt (6)

Ic = bh3/12 + bh(0.5h− yt)
2 (7)

Is = (ns − 1)As
(
yt − d′

)2 (8)

Isma = (nsma − 1)Asma(yt − d)2 (9)

Ig = Ic + Is + Isma (10)

Ec = 4700
√

fck (11)

where Es denotes the modulus of elasticity of reinforcement and Esma is the modulus
of elasticity of the Fe-SMA rebars without tension after activation, respectively. ns and
nsma denote the elastic moduli of the reinforcement and the Fe-SMA rebars, respectively.
In addition, b, h, d, and d’ denote the width, height, effective depth, and depth of the
compression reinforcement, respectively, and yt and As are the depth of the neutral axis
and the cross-sectional area of the reinforcement. Ic, Is, and Isma denote the effective second
moments of area for the concrete, compression reinforcement, and Fe-SMA rebars.

Figure 12 shows a comparison of the cambers from the theoretical and experiment
results. In Table 4, the experimental camber was 21.9% smaller than the theoretical value,
resulting in an average ratio of the theoretical to experimental results of 0.781. This is
because the Fe-SMA rebars embedded inside the concrete beam specimens were activated
by the heat of hydration during curing of the beam specimens. In general, concrete material
with compressive strength above 40 MPa is categorized as high-strength concrete, and it
has relatively higher heat of hydration due to the cement volume being larger than that of
normal concrete. The compressive strength of the concrete in this study was 46.2 MPa, and
higher heat of hydration might have been generated during concrete curing.

With these results, it is noted that a method to control the heat of hydration during the
concrete curing should be considered in the step of casting the concrete specimens using
the Fe-SMA rebars.
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3.2. Failure Mode

Figure 13 shows the crack patterns on the beam specimens, and the experiment results
are given in Table 5. In the initial loading stage, cracks developed at the bottom of all
central beam specimens. The vertical displacement at the central bottom of the specimens
increased with the increasing load, resulting in cracks propagating to the compression zone
of the beam specimens, and failure occurred in the compression zone with the concrete
being crushed. As shown in Figure 13, the number of flexural cracks in beams BE-2N-A,
BE-3N-A, BE-4N-A, and BE-5N-A, where the Fe-SMA rebars were not activated, was 6, 10,
12, and 12, respectively. In the specimens where Fe-SMA was activated, an increase in the
number of flexural cracks was observed as the amount of the Fe-SMA rebars increased. As
for general RC members, it was found that more flexural cracks occurred in the concrete
members reinforced with Fe-SMA rebars as the amount of Fe-SMA increased.

As shown in Figure 13a, four deflection cracks with the widths greater than 1 mm
developed at the central bottom of beam BE-2N-A, where the Fe-SMA rebars were not
activated. On the other hand, beam BE-2A-A with the activated Fe-SMA rebars had three
major cracks with the width greater than 1 mm. The difference between beams BE-2A-A
and BE-2N-A was the activation of the Fe-SMA rebars. Comparing the crack configurations
from Figure 13a–h, the activation of the Fe-SMA rebars reduced the crack occurrences by
about 60%, compared to the beams where the Fe-SMA rebars were not activated. This
phenomenon might be attributed to the recovery stress of the Fe-SMA rebars caused by the
SME acting on the beam specimen in the tension zone as the compressive force.

3.3. Load–Deflection Relationships
3.3.1. Effect of Fe-SMA Activation

Figure 14 shows a comparison of the load–deflection relationships between beam with
the nonactivated Fe-SMA rebars and beam with the activated Fe-SMA rebars. As shown
in Figure 14a, the initial cracks occurred at the loads of 42.31 kN and 64.46 kN for beams
BE-2N-A and BE-2A-A, respectively, and beam BE-2A-A had a higher initial cracking
load by 47.6%. The initial cracking loads of beams BE-3A-A, BE-4A-A, and BE-5A-A
increased by 63.0%, 76.9%, and 112.8%, respectively, compared to the test specimens with
the nonactivated Fe-SMA rebars. This is because the compressive strength generated by the
recovery stress of the Fe-SMA rebars in the tension zone of the beam specimens increased
the crack development resistance. However, the ultimate loads of the beam specimens
that had identical areas of the Fe-SMA rebars were slightly different, within a range of
variations from 0.38% to 2.86%, regardless of whether the rebars were activated or not.
These results indicate that the compressive strength introduced to the compression zone of
the beam specimens did not have a significant impact in the ultimate load stage, similar
to the PSC members. In other words, the recovery stress of the Fe-SMA rebars can play
a significant role in improving usability by controlling the initial cracks.
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Table 5. Summary of the test results.

Specimen
Initial Crack Ultimate State

Failure
ModeDeflection

(mm)
Load
(kN)

Deflection
(mm)

Load
(kN)

BE-2N-A 0.71 42.31 43.82 122.77

Flexural

BE-2A-A 1.45 62.46 39.47 119.26
BE-3N-A 0.96 50.01 43.33 165.9
BE-3A-A 1.25 81.51 38.41 166.53
BE-3R-A 1.2 81.38 37.11 159.44
BE-3A-N 0.95 80.14 42.62 165.64
BE-4A-A 0.95 53.92 38.71 203.14
BE-4A-A 1.81 95.42 40.00 205.86
BE-5A-A 1.03 50.74 28.43 249.94
BE-5A-A 1.89 107.98 35.00 246.28
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Figure 14. Load–deflection curves of the beams with and without Fe-SMA activation. (a) Beams BE-
2N-A and BE-2A-A. (b) Beams BE-3N-A and BE-3A-A. (c) Beams BE-4N-A and BE-4A-A. (d) Beams
BE-5N-A and BE-5A-A.

3.3.2. Effect of Fe-SMA Areas

Figure 15 shows the load–deflection curves of the beam specimens with different
areas of the Fe-SMA rebars. The initial crack loads were 42.31 kN, 50.01 kN, 53.92 kN,
and 50.74 kN for beams BE-2N-A, BE-3N-A, BE-4A-A, and BE-5A-A, respectively, when
the areas of the nonactivated Fe-SMA rebars increased by about 6.7%, i.e., the areas of the
Fe-SMA rebars were increased by 100 mm2. As shown in Figure 15a, the initial flexural
rigidity was significantly improved after the initial crack occurred as the cross-sectional
areas of the Fe-SMA rebars increased. The ultimate loads of beams BE-2N-A, BE-3N-A,
BE-4N-A, and BE-4N-A were 122.8 kN, 165.9 kN, 203.1 kN, and 250.0 kN, respectively, and
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they increased by an average of 26.8% when the cross-sectional areas of the Fe-SMA rebars
were increased by 100 mm2. These results demonstrate that the cross-sectional areas of the
Fe-SMA rebars affected the ultimate loads rather than the initial loads. Figure 15b shows
a comparison of the load–deflection curves of the beam specimens with the increasing cross-
sectional areas of the Fe-SMA rebars in the beam specimens with the activated Fe-SMA
rebars. The initial cracking loads of beams BE-2A-A, BE-3A-A, BE-4A-A, and BE-4A-A were
62.5 kN, 81.5 kN, 95.4 kN, and 108.0 kN, respectively. That is, unlike the beam specimens
with the nonactivated Fe-SMA rebars, the initial crack loads increased by an average of
20% when the cross-sectional area of the Fe-SMA rebars was increased by 100 mm2. In
addition, the initial stiffness increased significantly after the initial crack occurred due
to the increase in the cross-sectional area of the Fe-SMA rebars, as shown in the beams
reinforced with the nonactivated Fe-SMA rebars. When the cross-sectional area of the
Fe-SMA rebars was increased by 100 mm2, the ultimate loads increased by an average
of 26.9%, as in the case of the beam specimens reinforced with the nonactivated Fe-SMA
rebars. Figure 16 shows a comparison of the initial crack loads and ultimate loads due to
the increase in the cross-sectional area of the Fe-SMA rebars. The square and circle symbols
in Figure 16 represent the initial crack loads and ultimate loads, respectively, and black
and red colors, respectively, represent the activated and nonactivated Fe-SMA rebars in
the beam specimens. As shown in Figure 16, the initial crack loads of the beam specimens
reinforced with the activated Fe-SMA rebars were noticeably higher than those of the
specimens reinforced with the nonactivated Fe-SMA rebars. However, significant increases
in the ultimate loads were shown with the increasing Fe-SMA rebar area, regardless of
activation of the Fe-SMA rebars. That is, it can be concluded that the activation of the
Fe-SMA rebars has no significant effect on the ultimate loads.
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3.3.3. Effect of Anchoring Fe-SMA Rebars

Figure 17 shows a comparison of the load–deflection curves depending on usage of
the anchoring device at the ends of the beam specimens. The anchoring device was applied
to prevent slippage of the Fe-SMA rebars at both ends of the specimens. The initial crack
on beam BE-3A-A, where the Fe-SMA rebars were fixed at both ends by the anchoring
device, occurred at a load of 81.5 kN, whereas the initial crack on beam BE-3N-A, where
the anchoring device was not used, occurred at a load of 80.1 kN. As shown in Figure 17,
there was only an insignificant difference of 0.5% between the two initial crack loads on
the load–deflection curves. The anchoring device for the Fe-SMA rebars did not impact
the camber, as seen from a comparison of Figures 11 and 17. Thus, the compressive force
by the activation of the Fe-SMA rebars was sufficiently introduced to the beam specimens
without strength loss by slippage, which indicated that the anchoring device at both sides
of the specimen was not required. However, this study used high-strength concrete with
a compressive strength of 46.2 MPa, which might affect the bonding strength between the
Fe-SMA rebars and concrete. Thus, the usability and effectiveness of the anchoring device
for normal concrete should be researched as further study.
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3.3.4. Effect of Reactivating Fe-SMA Rebars

When the Fe-SMA rebars are repeatedly reactivated, it is necessary to evaluate whether
the compressive force repeatedly acts as the recovery stress is repeatedly generated. The ef-
fectiveness of the reactivated Fe-SMA rebars was evaluated on beam BE-3R-A by activating
the Fe-SMA rebars four times. The evaluation was performed according to the following
steps: (1) the Fe-SMA rebars were activated in accordance with Section 2.3 in this paper;
(2) the beam specimen was loaded by 70% of its ultimate load. However, the last forth load-
ing was carried out until the specimen was destroyed; (3) the applied load was completely
removed from the beam specimen. As shown in Figure 18, the crack width at the central
bottom of the beam specimen was measured by a clip-on gauge attached to the concrete
crack during the reactivation of the Fe-SMA rebars. The crack control performance was
evaluated by measuring the crack width on the specimen without applied load. Figure 19
shows the time–upward displacement relationships during reactivations of the Fe-SMA
rebars. After the first reactivation, a camber of 0.204 mm was observed on beam BE-3R-A,
which was not loaded. However, beam BE-3R-A loaded by 70% of its ultimate load showed
cambers of 0.581 mm, 0.456 mm, and 0.484 mm, respectively, at the second, third, and
fourth activations. These upward displacements were 285%, 224%, and 237% larger than
the value of 0.204 mm for the beam specimen with the Fe-SMA rebars that were activated
once. The reasons for the larger cambers with reactivations of the Fe-SMA rebars were the
reduced rigidity and bending crack development due to the iterations of the cyclic load.
Furthermore, the cambers of beam BE-3R-A at the third and fourth reactivations were 21.5%
and 16.7% smaller, respectively, than those after the second reactivation. This might be
because the increased number of activations resulted in the decreases in the recovery stress
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of the Fe-SMA rebars. In this study, the relationship between the number of activations
and the reduced recovery stress of the Fe-SMA rebars was not clearly demonstrated. Thus,
further research on the correlation between them should be carried out.
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Figure 20 shows the relationships of the surface crack width with the time in the
tension zone of the beam specimen BE-3R-A during the activation of the Fe-SMA rebars.
The flexural crack widths in beam BE-3R-A decreased by 0.06 mm to 0.071 mm from the
second reactivation to the fourth reactivation of the Fe-SMA rebars. Those crack widths
were smaller than the allowable crack width for all of the corrosion conditions considered in
ACI 318 [28]. Therefore, it is determined that the surface crack width could be controlled by
reactivating Fe-SMA rebars to be less than the allowable crack for preventing deterioration
of the internal concrete and the embedded steel reinforcement even if cracks occurred.
Figure 21 shows the load–deflection curves of beam BE-3A-A with Fe-SMA with one-time
activation of the Fe-SMA rebars and of beam BE-3R-A with FE-SMA activated four times.
As shown in Figure 21, beam BE-3R-A had a residual deformation after 70% of the ultimate
load was removed, and some of the residual deformation was thereafter recovered by the
reactivation of the Fe-SMA rebars. When 70% of the ultimate load was applied again to
beam BE-3R-A, the load–deflection relationship returned to the previous 70% loading point
for the corresponding displacement. Beam BE-3R-A with the Fe-SMA rebars where the
Fe-SMA rebars were activated four times was loaded until the specimen showed failure in
the compression zone. From the load–deflection curves in Figure 21, a comparison of the
ultimate loads between beams BE-3R-A and BE-3A-A revealed only a 4.3% difference. For
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this result, it is noted that repeated activations of the Fe-SMA rebars did not substantially
affect the flexural strength of the beam specimens.
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4. Conclusions

In this paper, experimental investigations were conducted to evaluate the flexural
behaviors of the concrete beams with embedded Fe-SMA rebars, and the following conclu-
sions can be drawn.

1. When the Fe-SMA rebars were activated, downward deflections due to initial thermal
expansion occurred, but cambers occurred due to the recovery stress of the Fe-SMA
rebars. When the area of the Fe-SMA rebars was increased by 100 mm2, the camber
increased by 0.093 mm on average.

2. The theoretically calculated camber of the concrete beam specimen by the activation of
the Fe-SMA rebars was 22% lower than that from experimental test. This is because the
heat of hydration activated the embedded Fe-SMA bars inside the concrete member.
Thus, controlling the heat of hydration should be considered for casting a concrete
member using Fe-SMA rebar as tensile reinforcement.

3. The initial cracking loads of the beam specimens with the activated Fe-SMA rebars
were 47.6% to 112.8% higher than those of the nonactivated case. The increased initial
crack loads were due to the introduction of the compressive force generated by the
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recovery stress of the Fe-SMA rebars. At the ultimate loads, the load differences were
below 3%, depending on whether the Fe-SMA rebars were activated.

4. Using an anchoring device to prevent slippage of the Fe-SMA rebars slightly improved
the camber and increased the flexural strength of the beam specimens by less than 2%.
Thus, the bonding strength at the interface between the concrete and Fe-SMA rebars
is sufficient to resist the slippage of the Fe-SMA rebars in the concrete beam members.

5. When the Fe-SMA bars were reactivated after applying 70% of the ultimate load, the
deflection generated in the beam specimens was recovered by 0.456 mm ~ 0.581 mm,
and the crack widths were recovered by 0.060 mm ~ 0.071 mm. Thus, the prestressed
concrete using Fe-SMA rebars is expected to improve usability by recovering the lost
prestressing force through reactivations even if the prestressing force is reduced due
to various causes.

6. After four times of activation, it was confirmed that the load–displacement curves
from the beam specimen with the rebars only activated once and the beam specimen
with four-times-activated rebars were similar. In addition, the ultimate loads of the
beam specimens with the reactivated rebars showed slight differences of only 4.3%
compared to those of the beam specimen with the rebars activated four times. There-
fore, it is noted that repeated activations on the Fe-SMA rebars may not substantially
affect the flexural strength of the beam specimens.

7. As a result of the study, the prestressed concrete using Fe-SMA rebars is expected
to be an alternative option that can solve various problems of the conventional
prestressed concrete.
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