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Abstract: For greater sustainability in construction, coarse recycled aggregate concrete (RAC) is
becoming popular as a replacement for natural aggregate concrete (NAC) in structures. The elastic
modulus of concrete (E) is a fundamental parameter in structure design. However, the empirical
equations for E of NAC cannot apply to RAC because E of RAC is lower than NAC of equal strength,
which hinders the widespread use of RAC to a certain extent. This paper provides a practical equation
for E of RAC based on a comprehensive statistical analysis of 1383 mixes from 154 publications,
allowing designers to easily estimate E of RAC by known parameters at the design stage, such as
compressive strength, replacement rate and quality of recycled aggregate. This equation is developed
by introducing a reduction factor η into the empirical equation for NAC and verified by the additional
experimental results. Compared with JGJ/T443-2018 (a Chinese standard), this paper provides a
more reasonable and accurate estimate by analysing much more data and taking into account other
factors, such as aggregate type and the volume ratio of aggregate to paste.

Keywords: recycled aggregate concrete; elastic modulus; compressive strength; replacement rate;
recycled aggregate quality; practical equation

1. Introduction

The elastic modulus of concrete is a fundamental parameter for designing concrete
structures. Thus, current building codes propose practical equations for the elastic modulus,
such as Equations (1)–(3) [1–3]. The elastic modulus in these equations is a function of
compressive strength, a known parameter at the design stage.

CEB-FIP : ENAC,pred = 21500(f cy/10)1/3 (1)

ACI 318 : ENAC,pred = 4730f cy
0.5 (2)

GB 50010 : ENAC,pred = 105/(2.2 + 34.7/f cu) (3)

where ENAC,pred is the estimation of elastic modulus of NAC, MPa; f cy is the compres-
sive strength measured on cylinders 150/300 mm at an age of 28 days, MPa; f cu is the
compressive strength measured on cubes of 150 mm size at an age of 28 days, MPa.

For greater sustainability in construction, RAC has been considered as a replacement
for NAC in structures. However, due to the old mortar and crushed bricks in coarse
recycled aggregate (RA), the elastic modulus of RAC is lower than NAC of equal com-
pressive strength, meaning that the equations for the elastic modulus of NAC, such as
Equations (1)–(3), cannot apply to RAC. Therefore, many equations for the elastic modulus
of RAC have been developed [4–11]. However, most of them are not practical for the
estimation as they use many parameters unknown at the design stage, such as the detailed
mix proportion of concrete, the aggregate type, the cement type, the aggregate size, the
elastic modulus of the control concrete and so on.
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JGJ/T443-2018 [11] (a Chinese code for recycled concrete structures) proposes a practi-
cal equation, as shown in Equation (4), for the elastic modulus of RAC by introducing a
reduction factor η that depends on the quality and replacement level of RA, as shown in
Equation (5). This is justified by the fact that it takes into account the influence of the elastic
modulus of the mixed aggregate that mainly depends on the porosity of the aggregate
affected by the quality and replacement level of RA. However, there are two problems due
to the limited data for the analysis (only about 500 mixes):

1. It shows that Class I RA has no adverse effect on the elastic modulus. However, a
little old mortar may be attached to Class I RA that reduces the elastic modulus, and
Ohemeng et al. [4] report that RCA made with high-quality RA may gain equal or
higher compressive strength but lower elastic modulus, which means η for Class I RA
should be less than 1.

2. It does not distinguish the influence of Class II and III RA on the elastic modulus.
However, a significant difference in porosity between Class II and III RA may lead to
a different η for them.

ERAC,pred = ηENAC,pred = η(105/(2.2 + 34.7/f cu)) (4)

η = {1, for Class I RA; 0.9 + (0.3 − r)/7, for Class II and III RA} (5)

where RA is classified by GB 25177-2010 [12]; ERAC,pred is the estimation of elastic modulus
of RAC, MPa; r is the replacement rate of RA by weight.

This paper does similar works with JGJ/T443-2018 but analyses more data to enable a
better evaluation of the reduction factor η. A total of 1383 mixes from 154 publications are
collected and analysed statistically. The correlation between η and r for different quality
of RA is quantified. From this, a practical equation for the elastic modulus of RAC in
the form of Equation (4) is proposed. Finally, the equation is validated by the additional
laboratory tests. Designers and engineers can use the simple equation to determine the
elastic modulus of RAC by known parameters at the design stage.

2. Materials and Methods
2.1. Data Collection

First, the publications related to the elastic modulus of RCA are collected.
Second, for each publication, the key information, such as the apparent density (ρa)

and water absorption (wa) of RA, the replacement rate of RA, the compressive strength
and the elastic modulus at 28 days and the shape and size of specimens for strength test, is
identified carefully and transcribed into a spreadsheet. We cross-check it to avoid incorrect
entries or repeated entries.

Notes:

• The ρa can be calculated from the oven-dry density (ρod) and wa, or the saturated
surface dry density (ρssd) and wa, or the ρssd and ρod based on Equations (6) and (7),
although some publications give the ρod or ρssd of RA rather than the ρa.

• This paper uses the weight replacement rate as JGJ/T443-2018 does. Some publications
use the volume replacement rate while others use the weight replacement rate. In fact,
there is little difference between the volume replacement rate and weight replacement
rate in most cases.

• The size effect of strength is considered in this paper. The 150 mm cube compressive
strength is the standard compressive strength in this paper. The conversion factors of
compressive strength are shown in Table 1 [13–16] and similar conversions can be seen
in References [17,18]. For example, for C60 concrete, according to Table 1, we can mul-
tiply the 100 mm × 200 mm cylinder compressive strength by the specific conversion
factor 1.12 to obtain the 150 mm cube compressive strength. The specific conversion
factor 1.12 derives from Reference [15]. In Reference [15], for C60 concrete, the 150 mm
cube compressive strength is approximately 1.16 times the 150 mm × 300 mm cylin-
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der compressive strength, which is also seen in CEB-FIP model code 2010 [1], while
the 150 mm × 300 mm cylinder compressive strength is approximately 0.97 times the
100 mm × 200 mm cylinder compressive strength. Therefore, the 150 mm cube com-
pressive strength can be considered as approximately 1.12 (≈1.16 × 0.97) times the
100 mm × 200 mm cylinder compressive strength. Different kinds of tested specimens
for compressive strength and elastic modulus are adopted in different publications.
The size effect on elastic modulus does not exist as the elastic modulus is the property
of concrete in the elastic stage while the size effect is related to the concrete fracture [19];
however, the size effect on strength is significant. The influence factors include the
cross-sectional shape, the cross-sectional diameter and the height to diameter ratio;
however, the decrease in strength is not significant when the height to diameter ratio
is larger than 2 [13,14].

ρa = ρod/(1 + ρod/1000 − ρssd/1000) (6)

wa = 100(ρssd/ρod − 1) (7)

where ρa, ρod and ρssd are the apparent density, oven-dried density and saturated surface
dry density, respectively, (kg/m3); wa is the water absorption, %.

Table 1. Conversion factors of compressive strength [13–16].

Size/Diameter × Height Shape
Strength Grade

C20–C40 C50 C60 C70 C80

150 mm Cube 1
100 mm Cube 0.95

50 mm × 100 mm Cylinder 1.17 1.13 1.03 1.01 0.99
75 mm × 150 mm Cylinder 1.19 1.15 1.07 1.05 1.04
100 mm × 200 mm Cylinder 1.21 1.17 1.12 1.10 1.08
120 mm × 240 mm Cylinder 1.23 1.19 1.14 1.12 1.10
150 mm × 300 mm Cylinder 1.25 1.20 1.16 1.14 1.12
160 mm × 320 mm Cylinder 1.26 1.21 1.17 1.15 1.13
100 mm × 300 mm Prism 1.23 1.23 1.18 1.15 1.13
120 mm × 360 mm Prism 1.26 1.26 1.22 1.19 1.16
150 mm × 300 mm Prism 1.32 1.32 1.28 1.25 1.22

2.2. Statistic Analysis

The elastic modulus of RCA normally decreases with the increasing replacement
level of RA, the degree of which depends on the quality of RA. Therefore, before the
statistical analysis, the data is divided into several groups according to the quality of RA.
GB 25177-2010 [12] (a Chinese code for coarse recycled aggregate) provides a performance-
based classification for RA, as shown in Table 2. We use it to classify data as JGJ/T443-2018
does. It is worth noting that GB 25177-2010 only specifies Class I, II and III RA; we add Class
IV RA since we find that low-quality RA beyond the requirements of Class III RA can also
produce usable concrete that meets the performance requirements, which uses for reference
the work of Silva et al. [20]. It is also worth noting that “>2450” means the apparent density
of Class I RA should be larger than 2450 kg/m3 and that if the apparent density of a RA is
equal to 2450 kg/m3, the RA belongs to Class II RA rather than Class I RA.

Table 2. Physical property requirements of the performance-based classification [12].

RA Class I II III IV

Apparent density (kg/m3) >2450 >2350 >2250 No limit
Water absorption (%) <3 <5 <8

The basic form of the equation we aim to develop is shown in Equation (8). The
equation changes to Equation (3) when r = 0. Moreover, the coefficient ki represents the
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loss in the elastic modulus due to RA. The ki is different for each class of RA, as shown in
Equation (9). Obviously, k4 > k3 > k2 > k1 > 0.

It seems that the ki can be determined by linear regression based on Equation (10).
However, there are problems. Here, we take the data from Luo et al. [21] and Fonseca
et al. [22] as examples. As shown in Figure 1a, the elastic modulus of 100% RAC using
Class I RA decreases slightly compared with NAC, while the elastic modulus of 100% RAC
using Class III RA decreases significantly, which is in line with our expectations. However,
when we fit the data based on Equation (10), there is an error that k3 < 0 < k1. This is
because the elastic modulus of the control concrete in the work of Luo et al. (Class I RA) is
much lower than the estimation from Equation (3) [21], while that of Fonseca et al. (Class
III RA) is much higher [22]. The essence is that only the compressive strength of concrete,
the quality class and replacement rate of RA are considered in the equation, but the other
factors affecting the elastic modulus, such as aggregate type (e.g., basalt, limestone, etc.), the
volume ratio of aggregate to paste, the volume ratio of coarse aggregate to fine aggregate,
aggregate size and so on, are ignored. Therefore, a correction factor α, as shown in Equation
(11), is introduced to Equation (12) instead of Equation (10) to consider the other factors,
and ERAC/αENAC,pred mainly depends on the quality class and replacement rate of RA,
as shown in Equation (12). At this point, the accurate ki can be gained through linear
regression based on Equation (12), as shown in Figure 1b.
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Figure 1. Introducing α to consider other factors affecting E (data source: Luo et al. [21]; Fonseca
et al. [22]). (a) ERAC/ENAC,pred; (b) ERAC/αENAC,pred.

α shows the variation of ENAC for a given compressive strength due to other factors,
e.g., aggregate type and volume ratio of aggregate to paste. As shown in Figure 2, the
value range of α is (0.65, 1.29), calculated through the statistical analysis of the 332 mixes
of control concrete. It should be noted that α in eight mixes from the references [23–27] is
beyond the range (µ − 3σ, µ + 3σ), where µ is the mean and σ is the Standard Deviation, so
α in the eight mixes are outliers. The data in these references is marked in the database and
is not involved in the statistical analysis. Then, a practical equation for the elastic modulus
of RCA is in the form of Equations (13)–(15).

ERAC,pred = ηENAC,pred = (1-kir)(105/(2.2 + 34.7/f cu)) (8)

ki = {k1, for Class I RA; k2, for Class II RA; k3, for Class III RA; k4, for Class IV RA} (9)

ERAC/(105/(2.2 + 34.7/f cu)) = (1 − kir) (10)

α = Econtrol/ENAC,pred (11)
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ERAC/(α (105/ (2.2 + 34.7/f cu))) = (1 − kir) (12)

ERAC,pred = 0.97(1 − kir)(105/(2.2 + 34.7/f cu)) (13)

ERAC,max = 1.29(1 − kir)(105/(2.2 + 34.7/f cu)) (14)

ERAC,min = 0.65(1 − kir)(105/(2.2 + 34.7/f cu)) (15)

where Econtrol is the elastic modulus of the control concrete and the control concrete is a
NAC that uses the same mix as RAC but uses natural aggregate rather than RA; ERAC is
the measured/actual value of elastic modulus of RAC, MPa; ERAC,pred is the estimation of
elastic modulus of RAC, MPa; and ERAC,max/ERAC,min are the upper/lower bound value of
estimation of elastic modulus of RAC, MPa.

Buildings 2022, 12, x  5 of 20 
 

and is not involved in the statistical analysis. Then, a practical equation for the elastic 
modulus of RCA is in the form of Equations (13) – (15). 

ERAC,pred = ηENAC,pred = (1-kir)(105/(2.2 + 34.7/fcu)), (8)

ki = {k1, for Class I RA; k2, for Class II RA; k3, for Class III RA; k4, for Class 
IV RA}, (9)

ERAC/ (105/(2.2 + 34.7/fcu)) = (1-kir), (10)

α = Econtrol/ENAC,pred, (11)

ERAC/ (α (105/ (2.2 + 34.7/fcu))) = (1-kir), (12)

ERAC,pred = 0.97(1-kir)(105/(2.2 + 34.7/fcu)), (13)

ERAC,max = 1.29(1-kir)(105/(2.2 + 34.7/fcu)), (14)

ERAC,min = 0.65(1-kir)(105/(2.2 + 34.7/fcu)) (15)

where Econtrol is the elastic modulus of the control concrete and the control concrete is a 
NAC that uses the same mix as RAC but uses natural aggregate rather than RA; ERAC is 
the measured/actual value of elastic modulus of RAC, MPa; ERAC,pred is the estimation of 
elastic modulus of RAC, MPa; and ERAC,max/ERAC,min are the upper/lower bound value of 
estimation of elastic modulus of RAC, MPa. 

  
  

Figure 2. Distribution of α and ENAC [21,22,28–174]. (a) α~N (0.97,0.162); (b) 1.29ENAC,pred ≥ ENAC ≥ 
0.65ENAC,pred. 

2.3. Laboratory Tests for Verification of the Equation 
The compressive strength and elastic modulus of RCA made with four classes of RA 

are measured, and the results are used for verification of the equation proposed in this 
paper.  

2.3.1. Materials 
The materials used are shown in Table 3. The properties of coarse aggregate are 

shown in Table 4. No admixture is used. RA is treated by presoaking and used under 
saturated surface dry (SSD) conditions. 

  

Figure 2. Distribution of α and ENAC [21,22,28–174]. (a) α~N (0.97,0.162); (b) 1.29ENAC,pred ≥ ENAC

≥ 0.65ENAC,pred.

2.3. Laboratory Tests for Verification of the Equation

The compressive strength and elastic modulus of RCA made with four classes of
RA are measured, and the results are used for verification of the equation proposed in
this paper.

2.3.1. Materials

The materials used are shown in Table 3. The properties of coarse aggregate are shown
in Table 4. No admixture is used. RA is treated by presoaking and used under saturated
surface dry (SSD) conditions.

Table 3. Materials used in the laboratory tests.

Materials Used

Cement PO 42.5R
Water Tap water

Fine aggregate Natural river sand with medium size
Natural coarse aggregate Crushed natural stone

Class I RA Carbonated crushed concrete
Class II RA Crushed concrete
Class III RA Crushed concrete
Class IV RA Crushed concrete + crushed bricks
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Table 4. Properties of coarse aggregate in the laboratory tests.

Size (mm) Gradation Water
Absorption (%)

Apparent Density
(kg/m3)

NA

5–25
5–10 mm (20%)

10–16 mm (30%)
16–25 mm (50%)

0.7 2810
Class I RA 2.5 2650
Class II RA 3.6 2600
Class III RA 5.5 2590
Class IV RA 8.5 2450

2.3.2. Preparation of Specimens

Three groups of control concrete are prepared with water to cement ratios of 0.6, 0.5
and 0.4, respectively. The detailed mix proportions are shown in Table 5. Sixty groups of
RAC are prepared with water to cement ratios of 0.6, 0.5 and 0.4, weight replacement rates
of 20%, 40%, 60%, 80%, 100% and four classes of RA, respectively. Control-0.6 means the
control concrete prepared with the water to cement ratio of 0.6, while RAC-I-20-0.6 means
RAC prepared with Class I RA, the weight replacement rate of 20% and a water to cement
ratio of 0.6.

Table 5. Mix proportions of the control concrete in the laboratory tests (kg/m3).

Coarse Aggregate Fine Aggregate Cement Water

Control-0.6 1088 725 367 220
Control-0.5 1096 644 440 220
Control-0.4 1122 578 500 200

2.3.3. Test for Compressive Strength and Elastic Modulus

To save raw materials, three 100 mm cubes are cast for each group for the strength test
and three 100 mm × 200 mm cylinders for each group are cast for the elastic modulus test.
The specimens are cured in a standard curing room for 28 days and then their compressive
strength and elastic modulus are measured according to GB 50081-2019 [175]. The 100 mm
cube strength is converted to the 150 mm cube strength and the 100 mm × 200 mm cylinder
strength according to Table 1.

3. Dataset

A total of 1383 mixes from 154 publications are collected, as listed in Supplementary
Materials [21–174]. The dataset includes 1051 RAC mixes and 332 mixes of the control
concrete. However, 43 RAC mixes of data are identified as outliers and not involved in the
statistical analysis, as the elastic modulus of the control concrete in these publications is too
high or too low [23–27].

Most RAC mixes use the conventional replacement method, while a few mixes
(26 mixes) use the equivalent mortar volume (EMV) method [86,93,101,111,115,120,126,168].
The EMV method considers the old mortar in RA as a mortar rather than a part of coarse
aggregate and adjusts the coarse aggregate and fresh mortar content of the mix accordingly
to achieve the same total mortar volume as the control mix. Due to the same total mortar
volume, the elastic modulus of the RAC mixes designed by the EMV method is independent
of quality and replacement rate of RA and not lower than NAC of equal strength, as shown
in Figure 3. However, studies of the EMV method are limited [176]. Therefore, this paper
still focuses on the RAC mixes designed by the conventional method.
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Figure 4a,b present the distribution of ERAC/ENAC,pred and the relationship between
ERAC and f cu of 982 RAC mixes produced with different quality and replacement lev-
els of RA, respectively. Ninety-five per cent of ERAC are in the range (0.552ENAC,pred,
1.168ENAC,pred), while 95% of ENAC are in the range (0.65ENAC,pred, 1.29ENAC,pred), as
shown in Section 2.2 (Figure 2). A significant reduction in the elastic modulus due to RA
can be seen. The lower bound value of ERAC/ENAC,pred in this work is 0.552 while the
value calculated by R.V. Silva et al. is 0.61 [5]. The figure of 0.552 may be more accurate as
we use much more data. If the quality and replacement level of RA in RAC are unknown,
Equations (16)–(18) can be used to estimate the elastic modulus of RAC. Note that the use
of increasing RA content has a significant impact on the elastic modulus, and more so if
these exhibit low quality. Therefore, the prediction of the elastic modulus of RAC can be
improved if the quality and replacement level of RA are taken into account.

ERAC,pred = 0.86(105/(2.2 + 34.7/f cu)) (16)

ERAC,max = 1.168(105/(2.2 + 34.7/f cu)) (17)

ERAC,min = 0.552(105/(2.2 + 34.7/f cu)) (18)
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4. Practical Equation for the Elastic Modulus

Figure 5a–h present the relationships between ERAC/αENAC,pred, ERAC/ENAC,pred and
r of RAC mixes produced with different quality of RA, respectively. Although the R2 ob-
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tained in this work seems low, there is a very strong correlation between ERAC/αENAC,pred

and r considering the large sample size. It should be noted that R2 is influenced by the
sample size. From a statistical point of view, the critical value of R2 decreases with the
increase of sample size and R2 > the critical value means there is a very strong correlation,
and the critical value is 0.033 (0.18292) when the sample size is 82 [177]. The R2 obtained in
this work is much higher than the critical value.

Buildings 2022, 12, x  9 of 20 
 

 

  

 

  

  
  

Figure 5. Cont.



Buildings 2022, 12, 187 9 of 18

Buildings 2022, 12, x  9 of 20 
 

 

  

 

  

  
  

Figure 5. Relationships between ERAC/αENAC,pred, ERAC/ENAC,pred and r of
RAC [21,22,28–167,169–174]. (a) Relationship between ERAC/αENAC,pred and r of Class I
RAC; (b) relationship between ERAC/ENAC,pred and r of Class I RAC; (c) relationship between
ERAC/αENAC,pred and r of Class II RAC; (d) relationship between ERAC/ENAC,pred and r of Class II
RAC; (e) relationship between ERAC/αENAC,pred and r of Class III RAC; (f) relationship between
ERAC/ENAC,pred and r of Class III RAC; (g) relationship between ERAC/αENAC,pred and r of Class IV
RAC; (h) relationship between ERAC/ENAC,pred and r of Class IV RAC.

The results reveal that even if Class I RA is used, the elastic modulus of RAC is still
lower than NAC and only slightly higher than RAC made with Class II RA, while the
elastic modulus of RAC made with Class II RA is also only slightly higher than RAC made
with Class III RA. However, it is acceptable that RAC made with Class I, II and III RA have
a reduced value of elastic modulus up to approximately 20% at maximum compared to
NAC of equal strength as the value is within the scatter band for NAC. It should be noted
that the elastic modulus of RAC made with Class IV RA is significantly lower than NAC
of equal strength when high RA replacement levels are used. Class IV RA shall be used
with caution.

α shows the variation of E due to other factors, e.g., aggregate type and volume ratio
of aggregate to paste. It shows the effectiveness of the introduction of α that the obtained
ki is consistent with our expectations and most of the RAC mixes (about 94%) are in the
range proposed by this work. If the quality and replacement level of RA in RAC are known,
Equations (19)–(24) can be used to estimate the elastic modulus of RAC.

It should be noted that the basic equation of ENAC,pred uses Equation (3) proposed by the
Chinese code GB 50010 [3]. Obviously, other basic equations such as Equations (1) and (2)
can be also used, and the corresponding α and ki can be easily gained by the same method
as shown in Section 2.2.

ERAC,pred = 0.97(1 − 0.1229r)(105/(2.2 + 34.7/f cu)), for Class I RA (19)

ERAC,pred = 0.97(1 − 0.1429r)(105/(2.2 + 34.7/f cu)), for Class II RA (20)

ERAC,pred = 0.97(1 − 0.1744r)(105/(2.2 + 34.7/f cu)), for Class III RA (21)

ERAC,pred = 0.97(1 − 0.2816r)(105/(2.2 + 34.7/f cu)), for Class IV RA (22)

ERAC,max = 1.33ERAC,pred (23)

ERAC,min = 0.67ERAC,pred (24)

5. Verification of the Equation

The experimental results and the ERAC,pred estimated by Equations (19)–(22) are listed
in Table 6. As shown in Table 6, ERAC/ERAC,pred in the experiments are in the range
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(0.92, 1.12) which is much narrower than the range (0.67, 1.33) allowed by Equations (23)
and (24). It verifies Equations (19)–(24) that the ERAC,pred is near ERAC. In order to see this
more intuitively, ERAC vs. ERAC,pred is plotted in Figure 6.

Table 6. Experimental results and ERAC,pred estimated by Equations (19)–(22).

f c (MPa) E (MPa) ERAC,pred
(MPa)

ERAC/ERAC,pred
1 2 3 Mean 1 2 3 Mean

Control-0.6 41.3 42.9 42.8 42.3 33,600 31,800 30,500 31,967
Control-0.5 55.1 56.9 58 56.7 33,400 35,800 36,100 35,100
Control-0.4 68.3 70.8 65.6 68.2 39,100 38,000 37,100 38,067

RAC-I-20-0.6 35.8 42.2 37.9 38.6 26,700 31,800 29,700 29,400 30,539 0.96
RAC-I-40-0.6 39.3 41.8 35.6 38.9 30,600 29,500 26,800 28,967 29,829 0.97
RAC-I-60-0.6 37.5 35.8 38.9 37.4 29,300 29,200 29,700 29,400 28,725 1.02
RAC-I-80-0.6 38.0 38.3 37.3 37.9 30,400 27,900 26,800 28,367 28,066 1.01

RAC-I-100-0.6 36.5 38.9 39.5 38.3 27,400 27,600 29,100 28,033 27,392 1.02
RAC-I-20-0.5 47.1 49.1 50.3 48.8 31,400 32,900 32,700 32,333 32,508 0.99
RAC-I-40-0.5 53.1 54.9 47.0 51.7 31,000 28,800 33,700 31,167 32,118 0.97
RAC-I-60-0.5 47.5 51.7 48.4 49.2 30,400 30,500 32,000 30,967 30,925 1.00
RAC-I-80-0.5 54.5 53.4 46.9 51.6 31,400 30,500 31,300 31,067 30,449 1.02

RAC-I-100-0.5 54.0 49.1 48.0 50.4 31,400 30,800 29,600 30,600 29,450 1.04
RAC-I-20-0.4 52.7 59.7 62.7 58.4 35,800 36,300 34,500 35,533 33,858 1.05
RAC-I-40-0.4 61.2 52.7 66.5 60.1 34,600 33,600 35,700 34,633 33,212 1.04
RAC-I-60-0.4 58.6 57.7 61.2 59.2 33,400 33,600 35,200 34,067 32,244 1.06
RAC-I-80-0.4 59.0 57.6 56.8 57.8 33,100 33,200 34,500 33,600 31,233 1.08

RAC-I-100-0.4 59.5 68.4 65.3 64.4 32,700 33,200 34,500 33,467 31,064 1.08
RAC-II-20-0.6 36.1 31.7 28.8 32.2 28,200 29,200 29,000 28,800 28,749 1.00
RAC-II-40-0.6 32.1 31.0 31.0 31.4 29,100 29,200 28,700 29,000 27,661 1.05
RAC-II-60-0.6 38.0 36.3 34.2 36.2 27,900 27,900 27,400 27,733 28,069 0.99
RAC-II-80-0.6 35.7 34.4 32.9 34.3 28,200 28,900 28,100 28,400 26,758 1.06

RAC-II-100-0.6 35.7 36.9 34.1 35.6 23,700 25,400 27,800 25,633 26,180 0.98
RAC-II-20-0.5 46.9 48.8 46.2 47.3 31,400 31,200 31,300 31,300 32,120 0.97
RAC-II-40-0.5 43.4 44.9 44.6 44.3 30,400 31,900 31,000 31,100 30,656 1.01
RAC-II-60-0.5 44.6 45.5 43.1 44.4 30,900 31,200 31,300 31,133 29,744 1.05
RAC-II-80-0.5 44.1 39.7 40.1 41.3 29,700 30,500 31,700 30,633 28,258 1.08

RAC-II-100-0.5 48.0 45.6 49.8 47.8 29,700 27,700 30,600 29,333 28,414 1.03
RAC-II-20-0.4 55.5 56.2 50.5 54.1 35,200 33,600 35,700 34,833 33,158 1.05
RAC-II-40-0.4 54.1 53.6 56.1 54.6 35,200 35,100 34,100 34,800 32,253 1.08
RAC-II-60-0.4 58.7 52.3 61.3 57.4 34,200 33,600 34,800 34,200 31,625 1.08
RAC-II-80-0.4 52.3 57.2 50.1 53.2 33,300 34,400 33,300 33,667 30,120 1.12

RAC-II-100-0.4 54.5 47.5 60.3 54.1 30,300 31,700 33,700 31,900 29,260 1.09
RAC-III-20-0.6 33.2 35.2 35.8 34.7 27,500 29,200 29,000 28,567 29,264 0.98
RAC-III-40-0.6 32.4 34.4 36.0 34.3 27,200 27,300 27,700 27,400 28,087 0.98
RAC-III-60-0.6 31.7 34.1 32.9 32.9 24,000 24,800 25,500 24,767 26,684 0.93
RAC-III-80-0.6 28.4 35.2 32.4 32.0 22,300 24,000 24,800 23,700 25,413 0.93

RAC-III-100-0.6 36.3 29.8 29.4 31.8 21,100 25,400 23,500 23,333 24,341 0.96
RAC-III-20-0.5 49.6 45.9 47.0 47.5 31,000 30,800 32,400 31,400 31,945 0.98
RAC-III-40-0.5 42.6 47.3 47.5 45.8 30,000 29,800 29,900 29,900 30,509 0.98
RAC-III-60-0.5 45.6 42.6 46.9 45.0 26,300 28,000 27,200 27,167 29,237 0.93
RAC-III-80-0.5 44.9 45.9 44.9 45.2 26,700 27,100 25,600 26,467 28,130 0.94

RAC-III-100-0.5 46.5 43.4 39.1 43 23,500 24,000 26,000 24,500 26,632 0.92
RAC-III-20-0.4 54.1 55.3 60.9 56.8 34,200 34,400 34,800 34,467 33,300 1.04
RAC-III-40-0.4 58.0 58.0 52.7 56.2 32,600 33,600 33,700 33,300 32,031 1.04
RAC-III-60-0.4 51.4 53.5 49.7 51.5 30,000 30,600 30,700 30,433 30,226 1.01
RAC-III-80-0.4 54.2 53.2 46.5 51.3 29,300 28,900 29,000 29,067 29,018 1.00

RAC-III-100-0.4 46.5 52.5 45.6 48.2 28,000 27,200 26,500 27,233 27,427 0.99
RAC-IV-20-0.6 33.3 36.3 31.4 33.7 25,800 28,300 27,600 27,233 28,334 0.96
RAC-IV-40-0.6 32.7 32.8 32.7 32.7 26,100 27,300 28,000 27,133 26,402 1.03
RAC-IV-60-0.6 30.3 28.1 29.8 29.4 22,500 24,800 24,600 23,967 23,847 1.00
RAC-IV-80-0.6 33.7 31.7 34.1 33.2 23,600 23,400 23,400 23,467 23,149 1.01
RAC-IV-100-0.6 30.2 26.8 34.1 30.4 18,700 21,400 21,600 20,567 20,847 0.99
RAC-IV-20-0.5 44.9 45.6 47.3 45.9 28,500 28,900 29,300 28,900 30,972 0.93
RAC-IV-40-0.5 45.5 46.2 42.6 44.8 28,200 29,900 29,600 29,233 28,931 1.01
RAC-IV-60-0.5 45.2 40.8 45.1 43.7 25,100 26,100 26,200 25,800 26,924 0.96
RAC-IV-80-0.5 47.1 43.8 39.3 43.4 25,700 26,500 25,600 25,933 25,053 1.04
RAC-IV-100-0.5 37.5 40.3 37.9 38.6 23,300 21,000 25,100 23,133 22,481 1.03
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Table 6. Cont.

f c (MPa) E (MPa) ERAC,pred
(MPa)

ERAC/ERAC,pred
1 2 3 Mean 1 2 3 Mean

RAC-IV-20-0.4 61.3 59.1 55.1 58.5 31,400 32,300 32,200 31,967 32,772 0.98
RAC-IV-40-0.4 51.7 51.7 54.3 52.6 31,000 31,600 31,900 31,500 30,095 1.05
RAC-IV-60-0.4 55.3 48.8 46.6 50.2 28,000 28,500 28,800 28,433 27,886 1.02
RAC-IV-80-0.4 46.9 55.9 51.9 51.6 25,600 27,800 28,800 27,400 26,157 1.05
RAC-IV-100-0.4 47.5 46.6 45.7 46.6 22,500 26,000 25,100 24,533 23,665 1.04
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6. Comparison with JGJ/T443-2018

Table 7 shows values of the reduction factor η in JGJ/T443-2018 and this work for
different quality of RA when r = 1, respectively. The η values in this work is more in line
with our expectations as the η value for Class I RA is less than 1 and the η value for Class
II RA is larger than that Class III RA, as shown in Table 7. Compared with this work,
JGJ/T443 overestimates the elastic modulus of RAC using Class I RA and underestimates
that of RAC using Class II RA. However, the estimation for the elastic modulus of RAC
using Class III RA by JGJ/T443-2018 and this work is close.

Table 7. Values of η in JGJ/T443-2018 and this work when r = 1.

Class I RA Class II RA Class III RA

JGJ/T443-2018 [11] 1 0.8 0.8
This work 0.85 0.83 0.8

7. Conclusions

Although RAC may exhibit similar compressive strength to NAC, as the RA content
increases the elastic modulus decreases, the degree of which depends on the quality of RA.
This paper aims to use the reduction factor η to quantify the loss of the elastic modulus
and propose a practical equation for the elastic modulus of RAC based on a comprehensive
statistical analysis of 1383 concrete mixes from 154 publications. Based on the results of
this investigation, the following conclusions can be drawn:

• For a given compressive strength, the elastic modulus of RAC in most studies is in the
range (0.552ENAC,pred, 1.168ENAC,pred). It should be noted that this prediction interval
is applicable only when the compressive strength is known while the other factors
are unknown.

• The correlation between the reduction factor η and the replacement rate for different
quality of RA is determined. The results show that the reduced elastic modulus of RAC
made with Class I, II or III RA is acceptable; however, the reduced elastic modulus
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of RAC made with high replacement rates of Class IV RA is so low that Class IV RA
must be used with caution.

• The prediction interval (scatter band) of the elastic modulus of RAC is provided
considering the variation of the elastic modulus due to other factors, e.g., aggregate
type and volume ratio of aggregate to paste.

• JGJ/T443-2018 overestimates the elastic modulus of RAC made with Class I RA and
underestimates that of RAC made with Class II RA.

• The experimental results verify the equation proposed in this work. If the replacement
rate and quality (classified by the apparent density and water absorption) of RA are
known, designers and engineers can use the simple equation to determine the elastic
modulus of RAC by means of the compressive strength.

It should be noted that these conclusions only apply to RAC designed by the conven-
tional method. The elastic modulus of RAC designed by the EMV method is not lower than
NAC of equal strength due to the same mortar volume. However, the related studies are
limited. Therefore, further studies need to be conducted to ensure the effectiveness of the
EMV method and the reliability of the results.
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