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Abstract: Bridges have substantial significance within the transport system, considering that their
functionality is essential for countries’ social and economic development. Accordingly, a superior
level of safety and serviceability must be reached to ensure the operating status of the bridge network.
On that account, the recent collapses of road bridges have led the technical–scientific community
and society to reflect on the effectiveness of their management. Bridges in a network are likely to
share coinciding environmental conditions but may be subjected to distinct structural deterioration
processes over time depending on their age, location, structural type, and other aspects. This variation
is usually not considered in the bridge management predictions. For instance, the Brazilian standards
consider a constant inspection periodicity, regardless of the bridges’ singularities. Consequently, it is
helpful to pinpoint and split the bridge network into classes sharing equivalent deterioration trends
to obtain a more precise prediction and improve the frequency of inspections. This work presents a
representative database of the Brazilian bridge network, including the most relevant data obtained
from inspections. The database was used to calibrate two independent predictive models (Markov
and artificial neural network). The calibrated model was employed to simulate different scenarios,
resulting in significant insights to improve the inspection periodicity. As a result, the bridge’s
location accounting for the differentiation of exposure was a critical point when analyzing the bridge
deterioration process. Finally, the degradation models developed following the proposed procedure
deliver a more reliable forecast when compared to a single degradation model without parameter
analysis. These more reliable models may assist the decision process of the bridge management
system (BMS).

Keywords: highway bridges; bridge inspection; predictive models; Markov; ANN

1. Introduction

A successful Bridge management system (BMS) depends heavily on defining appro-
priate intervention actions to ensure structural safety, functionality, and durability while
maintaining the lowest financial investment related to the available budget [1]. By ac-
counting for an adequate quality control plan and a risk classification, a prolonged quality
assurance of bridges can be assured and, consequently, a proper allocation of funds [2–4].

One of the keys to successful asset management is the use of predictive models that
allow foreseeing, for different periods, the performance of the asset, taking into account the
demand values of exposure. Thus, the subsequent modules related to the time and extent of
the necessary maintenance actions depend entirely on the established deterioration model,
the consequences triggered in case of failure, and the costs of each type of intervention [5].

Many investigations have attempted to improve the deterioration modelling. Ref. [1]
set a probabilistic model (two-dimensional Markov process) to predict bridge deterio-
ration and define the optimal inspection intervals. Ref. [6] applied a two-step cluster
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analysis to identify the most critical parameters, such as age, distance from coastline, and
climatic regions.

Numerous researchers have endeavoured to enhance the deterioration modelling
to predict the remaining service life of bridges in Brazil. Ref. [7] presents the results of
deterioration rates of constructions in 16 studied road segments, based on a methodology
that uses the Markov chains method. During the study, numerous reports of inspections
on bridges were collected, summing up 1707 bridges inspected in an average of 7 years. In
addition to verifying the rates of deterioration and their relationship with possible agents
of degradation, ref. [7] also contributes to the knowledge of inspection practices carried out
in Brazil and their effectiveness in its use for the administration of national road bridges.
On the other hand, ref. [8] analysed the pathological manifestations and the structural
deficiencies of bridges and viaducts of the federal highways in Pernambuco (a Brazilian
state). The obtained results allowed the authors to present the current situation of the
investigated bridges. The work aims to subsidise responsible public agencies’ decision-
making, planning maintenance, thus ensuring more outstanding durability and valuable
life for the bridges.

Additionally, ref. [9] presents the status of the bridges on Brazilian federal highways,
based on data obtained from National Department of Transport Infrastructure (DNIT),
Institute of Road Research (IPR), and National Land Transport Agency (ANTT), among
others, which constitute a register with 5619 bridges, with levels of information that vary in
dimensions, inspection results, sketches, photos, and geographic coordinates. The analysis
of these data provided more significant knowledge about the reality of bridges on Brazilian
federal highways, producing subsidies for the planning of a bridge management system
that is more compatible with reality and led to an understanding of the main aspects that
guide state assessments of the bridges. According to [10], the reinforced concrete beam is
the most used system (2764 bridges), representing more than 58%, followed by a reinforced
concrete slab (777 bridges) and the prestressed concrete (622 bridges), within a spectrum of
4725 bridges. Almost 25.7% of the bridges in the inventory were constructed before 1960,
and 52% were built between 1960 and 1975.

Brazil has an expressive set of bridges, with about 120,000 bridges [11] distributed
sparsely around the entire country, exposed to different environmental conditions. Al-
though most of these bridges have not been catalogued, this article gathers a comprehensive
database containing 10,331 bridges. The database includes geometric information, design
parameters, operating circumstances, and structural conditions. The inventory has specific
limitations regarding the inspections records, such as a short time window of inspection
for many bridges and large amounts of data scatter, added to the subjectivity of the visual
inspection itself that is also a limitation.

Currently, three standards establish the conditions required to carry out inspections
and present the results in Brazil. The DNIT-010 standard [12] has been used to evaluate
bridges located on highways under the jurisdiction of the Federal Government. NBR 9452
standard [13] proposes to assess structural safety in a similar way to DNIT-010 standard [12],
adding indicators related to durability and functionality. The standard published by the São
Paulo State Transport Agency (ARTESP [14]) is responsible for regulating state highways
granted in the State of São Paulo, and it adds the concept of “urgent intervention”.

The present study aims at applying two probabilistic models, Markov and Artificial
neural network (ANN), to forecast bridge deterioration and improve the inspection pe-
riodicity proposed by the standards [12–14]. The methodology proposed in this study is
implemented using a dataset encompassing information about inspections of 10,331 bridges
throughout Brazil from 2008 to 2021. The investigation results can assist bridge owners and
transport agencies in efficiently allocating maintenance resources and invest the capital cur-
rently allocated for unnecessary inspections in desired infrastructure development projects.

Section 2 discusses the current inspection standards, their applicability and limitations,
focusing on the periodicity of inspections, followed by Section 3, which presents a state-
of-art of the two predictive modeling methods. In Section 4, the most up-to-date bridge
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inventory is presented with additional statistical discussion. Finally, in Section 5, the
methodology and results of the two predictive models are presented.

2. Standards

Given bridge inspection’s strategic and economic importance, several governments
and research centers are dedicated to standardizing inspection techniques, test methods,
and bridge monitoring and management systems. Most of them are linked to government
agencies or directly subordinated to the countries’ transport departments, along with
agreements between governments and universities. Some of the standards on the subject
created by leading Brazilian centers and reference researchers in the inspection field of
bridges and viaducts will now be detailed.

The DNIT-010 standard [12] has been used to evaluate bridges located on highways un-
der the Federal Government jurisdiction. According to this standard, bridges are classified
based on structural safety indexes ranging from 1 to 5, where 1 corresponds to a condition
of precarious stability and 5 to an excellent condition of stability, prescribing/specifying
inspections every two years.

The NBR 9452 standard [13] proposes assessing structural safety in a similar way to
the DNIT-010 standard [12], although it adds indicators related to durability and function-
ality. The bridges are also classified according to condition indexes ranging from 1 to 5,
where 1 corresponds to a critical condition and 5 to an excellent condition. The proposed
periodicity of routine inspections is one year, regardless of the class.

The standard published in 2007 by the São Paulo State Transport Agency (ARTESP [14])
is responsible for regulating state roads granted in the State of São Paulo, adding the concept
of “urgent intervention”. The standard provides a total of eight classes, ranging from C0
(poor condition and urgency of immediate intervention) to A5 (excellent condition and
urgency of intervention in 5 years). The periodicity of routine inspections is one year,
therefore following the requirements of NBR 9452 [13].

Table 1 presents a qualitative comparison between the various bridge evaluation
criteria from the standards. The DNIT [12] and ABNT [13] standards present the same
classification criteria related to structural safety (reliability), ranging from 1 to 5. On the
other hand, the ARTESP [14] standard classifies the bridges according to eight classification
levels of conditions.

Table 1. Qualitative comparison between ABNT/DNIT and ARTESP.

ARTESP ABNT/
DNIT Condition

A5 5
Excellent condition
There is no damage or structural insufficiency
Nothing to do

B4/
A4

4
Good condition
There is some damage, but there are no signs that they are causing structural failure
Nothing to do; maintenance services only

B3/
B2/
C2

3

Apparently good condition
There is damage causing some structural insufficiency, but there are no signs of compromised structural stability
The recovery of the structure can be postponed. However, in this case, the problem should be placed under systematic
observation

C1 2

Poor condition
There is damage generating significant structural insufficiency in the bridge, but there is apparently no real risk of structural
collapse yet
The restoration (usually with structural strengthening) of the bridge must be done in the short term

C0 1

Critical condition/urgent intervention
There is damage causing severe structural insufficiency in the bridge; the element is critical, with a real risk of structural
collapse
Recovery (usually with structural strengthening)—or in some cases, replacement of the bridge—must be done without
delay



Buildings 2022, 12, 124 4 of 22

In the European context, Cost Action TU1406, created in 2015, brings together aca-
demic researchers, industrial professionals, European government agencies, and interna-
tional observers to establish a European guideline on quantifying performance indicators to
evaluate the quality control plan. The result of the Cost Action TU1406 was the publication,
in 2019, of the quality specifications for roadway bridges, standardization at a European
level [4]. The TU1406 proposes five levels to assess the bridge Condition index (CI), ranging
from 1 to 5, associated with the urgency of intervention, where 1 corresponds to a bridge
in good condition and 5 a bridge in critical condition, requiring immediate intervention.
According to [4], the inspections need to be conducted in predefined intervals, but they
should rely on bridge condition and bridge significance to the network. Table 2 presents a
comparison between the bridge assessment systems presented above.

Table 2. Comparison between standards.

Standard Year
Performance Indicator Rate

Scale
Frequency of
InspectionsStructural Safety Durability Cost Environment Availability

DNIT-010 2004 3 7 7 7 7 7 5 Biennial
NBR-9452 2019 3 3 3 7 7 7 5 Annual
ARTESP 2007 3 3 3 7 7 7 8 Annual
TU1406 2119 3 3 7 3 3 3 5 Variable

3. Bridge Deterioration Models

Bridge deterioration is the process of decay resulting from normal operating conditions.
The deterioration process exhibits the combined physical and chemical transformations
occurring in various bridge elements. The situation is moderately complex because each
element has its distinctive decay rate. As bridges undergo gradual deterioration processes,
they are subject to periodic inspections. The purpose of the inspection is to detect defects
that may appear throughout the bridge’s life. The records of these inspections can be used
to develop bridge deterioration models, allowing to extrapolate the bridge CI over the
years. Precisely predicting the deterioration rate of each bridge element is hence vital to
the success of any BMS.

Approaches to calculating decay rates for bridge elements can mainly be sorted into
three general categories: deterministic method, stochastic approach, and ANN-based
model [15]. Deterministic models rely on a mathematical or statistical relationship between
the factors that affect bridge degeneration. The outcome of such models is described by
deterministic values representing average expected conditions, i.e., there are no probabili-
ties involved. Deterministic models can be carried out by extrapolation, regression, and
straight-line curve fitting methods [15]. However, deterministic models neglect the un-
certainty inherent in stochastic deterioration nature, are computationally expensive when
updating the model, and overlook the interaction between different bridge components [15].
In the following sections, stochastic and ANN models are adequately discussed.

3.1. Stochastic Models

Stochastic processes have been used to model the deterioration of infrastructure over
time, such as bridges and roads, due to the random nature inherent to a deterioration pro-
cess. A widely used stochastic process is the Markov chain process [16–18]. Markov chain
models capture the uncertainties and randomness of the deterioration process, accumulat-
ing the probability of transition from one condition state to another over several discrete
(or continuous) time intervals. The Markov model simplifies the transition probability by
defining that the next state only depends on the current state and not on the sequence of
preceding ones, as illustrated in Equation (1).

P(Xt+1 = j | Xt = i) = P(i, j) (1)
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The values assumed by i and j are called condition states and are denoted by 5, 4, 3, 2,
and 1, where 1 represents the worst CI, according to Table 1.

A Markov deterioration matrix presents the probability that a bridge will shift condi-
tion within a specified period, generally considered the time between two central inspec-
tions. An example of a Markov deterioration process based on a five condition state model,
with 5 as the best CI, is shown in Figure 1.

5 3 2 1
P55

4
P44 P33 P22 P11
P54 P43 P32 P21

P51
P53

P52
P54

P42

P41

P31

P =


P55 P54 P53 P52 P51
0 P44 P43 P42 P41
0 0 P33 P32 P31
0 0 0 P22 P21
0 0 0 0 P11


Figure 1. Transition probabilities for a 5 state model.

Discrete-time Markov chain is generally used assuming a constant interval between
inspections. The implementation of this model simplifies the mathematical formulation and
its calculation to obtain the performance prediction curve. However, this assumption does
not correspond to reality in many cases since inspections do not occur at uniform intervals.

In the continuous-time Markov chain, the transition between states occurs in a struc-
tured way. Assuming the chain is in a particular state i at time t = 0, the time (dwell time)
spent in the initial state i must have a memoryless property according to one of the Markov
properties, as discussed before. During a continuous-time process, the time between states
has an exponential distribution that depends only on the i state.

The first step to build the Markov model is to estimate the intensity matrix (Q), which
can be initially calculated by Equation (2) using the historical record of the condition states
assigned during inspections.

Q =


−θ1 θ1 0 0 0

0 −θ2 θ2 0 0
0 0 −θ3 θ3 0
0 0 0 −θ4 θ4
0 0 0 0 0

 ;


θ1
θ2
θ3
θ4

 =


q54
q43
q32
q21

 ; qij =
nij

∑ ∆ti
(2)

where qij represents the transition rate between adjacent states, nij is the number of ele-
ments that moved from state i to state j, and ∑ ∆ti is the sum of time intervals between
observations, whose initial state is i.

The transition matrix (P) is related to matrix Q through the following differential
equation:

∂P
∂t

= PQ (3)

Equation (3) is known as the Chapman–Kolmogorov equation. Solving Equation (3),
the transition matrix (P) is given by the following expression:

P = eQ∆t (4)

In order to improve the quality of fit, the initial Markov model is improved through
an optimization process, by minimizing Equation (5) [17]:

log-likelihood =
N

∑
n=1

M

∑
m=1

ln (Pij) (5)

where M is the number of transitions observed in an element, N is the number of analyzed
elements, and Pij is the probability of occurrence of the observed transition, as predicted
by the Markov model.
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3.2. Artificial Neural Networks Models

ANN models have, as their primary source of inspiration, biological neural networks
by the attempt to mimic the human brain’s ability to recognize, associate, and generalize
patterns. Ref. [19] defines the neural network as a massive parallel distributed proces-
sor consisting of simple processing units, which have the natural propensity to store
experimental knowledge and make it available for use.

ANN is a nonlinear statistical technique capable of solving complex problems, able
to learn and, therefore, to generalize. Generalization refers to the fact that the neural
network produces adequate outputs for inputs that were not present during training. These
information-processing capabilities enable neural networks to solve complex problems [19].

The ANN prediction model can be designed to predict the state condition of highway
bridges. In this work, it was used a multiclass classification neural network (Figure 2) to
develop the ANN prediction model. The Python language [20] and Scikit-learn package [21]
were used to construct the ANN prediction model.

Input
layer

First
hidden
layer

Second
hidden
layer

1

2

3

4

5

Output
layer

Softmax

Figure 2. Multilayer perceptron with two hidden layers and softmax activation function.

All neurons in the hidden layers use the hyperbolic tangent activation function. The
output layer uses the softmax function (Equation (6)). The softmax regression is a logistic
regression that normalizes an input value into a vector that follows a probability distribu-
tion that totals up to 1. Additionally, as the asset cannot self-improve, an addition function
was created to recalculate the probability vector output, imposing a 0 probability to any
probability output that improves the condition state of the asset. Thus, the output is a
vector [P(5), P(4), P(3), P(2), P(1)], which presents the probability future condition states
5, 4, 3, 2, and 1, respectively.

σ(−→z )i =
ezi

∑K
j=1 ezj

(6)

where, σ is the softmax function, −→z is the input vector, ezi is the standard exponential
function for each element of the input vector, K is the number of classes in the multiclass
classifier, and ezj is the standard exponential function for the output vector.

3.3. Statistical Tests

The statistical analysis of a model obtained in a given study is essential for validating
and ensuring an acceptable extrapolation obtained for the population studied. Many
statistical fit tests are applied to categorical data to assess how likely any observed difference
happens by chance between the model and the observed data.

Many statistical tests can evaluate a model against the observed data. A commonly
used statistical test is the chi-square fit test [22]. The chi-square fit test is applied to assess
the fit between a set of observations (sample) and a theoretical distribution, comparing
the distribution of sample data with the theoretical distribution to which the sample
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is supposed to belong. The test is an overall measure of the discrepancy between the
frequencies observed in the sample and the expected frequencies (Equation (7)).

χ2 =
n

∑
i=1

(Oi − Ei)
2

Ei
(7)

where χ2 is the chi-square value, n is the total number of cells in the contingency table, Ei
is the expected frequencies, and Oi is the observed frequencies.

The chi-square test limitation is to not consider the uncertainty inherent to the vari-
able’s possible outcomes. As the database presents a high number of bridges that remain
in the same condition (from one inspection to another), using the chi-square test would get
good results even with a DummyClassifier model (that consistently predicts the majority
outcome [23]).

Cross-entropy can overcome this problem by measuring the dissimilarity between the
sample data and the model. The cross-entropy evaluates the model on a test set to assess
how accurate (based on the computation of likelihood) the model is in predicting the test
data by calculating the “uncertainty” (or “information”) of possible outcomes [24]. The
entropy (H) is the expected value of “information” and is evaluated using the following
Equation (8):

H(X) = E[I(X)] = − 1
N

N

∑
i=1

ln p(xi) (8)

where X is the test set, E is the expected value operator, I is the information content of
X, N is the size of the test set, and p(xi) is the probability of the predicted value xi from
the model.

Although entropy is crucial in assessing the quality of a model, the inverse of the
perplexity (IPP) (Equation (9)) will be used to assess generalization performance. The
inverse of the perplexity represents the probability of generating the expected outcome and
has to be maximized. In other words, better models will tend to assign higher probabilities
to the testing set. In this way, a DummyClassifier model would obtain zero as a result.

IPP(X) =
1

PP(X)
= exp(−H(X)) (9)

where IPP represents the inverse of the perplexity and PP symbolizes the perplexity.
With the statistical test defined, the next step is to distinguish between the model’s

performance on the training data and unseen test data. The common practice to avoid the
model’s overfitting is to divide the dataset into a training set (80%) and a test set (20%).
Subsequently, a stratified k-fold cross-validation technique is performed using the training
dataset (Figure 3), preserving the percentage of samples for each CI. The resampling
method uses different portions of the data (A, B, C, and D) to train and validate a model on
different iterations. The cross-validation gives an idea of how the model might perform in
the worst-case and best-case scenarios when applied to new data [23]. To summarize the
models’ cross-validation accuracy, the mean (µ) and standard deviation (σ) are computed.

Train Test

A Validation

Validation

Validation D

ValidationA

B C

A B

C D

B C D

Figure 3. Train/test split and four-fold cross-validation.
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4. Database

Due to data availability, and considering the large stock of bridges in different exposure
conditions, Brazil was chosen as the object of study for this work. Brazil has an area of
about 8,500,000 km2 distributed in five regions with diverse climatic and social conditions,
presenting an expressive group of bridges, with about 120,000 bridges [11].

A detailed inventory of 10,331 bridges was gathered up to the year 2021. The database
includes information on the: geographic location, total length, deck width, material type,
superstructure type, abutment type, standard traffic load model, year of construction,
Average daily Traffic (ADT), Average daily truck traffic (ADTT), concession type, and
structural condition.

The amount of information of the dataset varies from bridges presenting only their
name, location, total length, and width to bridges with more detailed information, including
results of inspections carried out, sketches, and photos.

The geographic coordinates of each bridge were exported to a Geographic Information
System application [25]. Figure 4 shows the distribution of bridges, considering Brazilian
geography, regions, and states. This figure clearly shows that most bridges (64%) are
located in the southeast and northeast regions. According to the inventory collected, the
states with highest number of bridges (above 500) are the states of Minas Gerais (MG),
São Paulo (SP), Rio de Janeiro (RJ), Rio Grande do Sul (RS), Bahia (BA), Pernambuco (PE),
Paraíba (PR), and Santa Catarina (SC). The states of MG (13.5%) and SP (12.3%) contain
26% of the Brazilian bridges.
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 33.9%

Figure 4. Distribution of bridges in Brazil.

Some key categories were analyzed and presented to understand the available data
about the bridges. Regarding the material type, Figure 5a shows the number of bridges
built per each category. It is possible to notice that the highest number of bridges are
Reinforced concrete (RC), followed by Prestressed concrete (PC), amounting to about 71%
of the total bridge inventory. As only some bridges are constructed by other materials
(such as wood and masonry), they were clustered in one group (others). It is essential to
observe that around 25% of the bridges do not have a material classification available in
the database. Bridges’ type represents the structural system of the bridge. As shown in
Figure 5b, beam (54.4%) has the highest number among all bridges’ types and slabs are
the second (12.4%). As just a few bridges have a different structural system (such as arch
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bridge, cable-stayed bridge, suspension bridge, and truss bridge), they were clustered
in one group (others). This work did not consider the number of spans, length of the
largest span, static scheme, or skew angle, among others parameters, due to the scarcity of
these data.

Rein
for

ced
 Con

cre
te

Pre
str

ess
ed

 Con
cre

te

Ste
el/

Com
po

site
Othe

rs

Not 
Inf

orm
ed

0

1,000

2,000

3,000

4,000

5,000

6,000
N°

 o
f b

rid
ge

s
 52.9%

 18.2%

 3.4%  0.7%

 24.8%

(a)

Bea
m Sla

b

Box
 Gird

er

Othe
rs

Not 
Inf

orm
ed

0

1,000

2,000

3,000

4,000

5,000

6,000

N°
 o

f b
rid

ge
s

 54.4%

 12.4%
 7.7%  6.6%

 18.9%

(b)

Figure 5. Distribution of bridges: (a) material type and (b) bridges’ type.

The jurisdiction defines whether the bridge is managed by the federal, state, or munic-
ipal government. Figure 6a presents the number of bridges per different jurisdiction. The
inventory shows that the federal administration is responsible for the most significant per-
centage of bridges (89.5%), followed by state administration (10.5%). Additionally, federal,
state, and municipal administrations are subdivided into public and private concessions.
Figure 6a shows that most bridges (66%) are under public concession. Even though the
number of Federal public bridges in Figure 6a is way higher, the number of inspections of
Federal private bridges (Figure 6b) overcomes the Federal public one. Considering inspec-
tions should happen once a year [13], it is expected that the total number of inspections
would be proportional to the number of bridges and their ages, but this is not observed,
showing that private concession seems to maintain the inspection schedule more strictly.

Figure 7 shows the distributions of the number of bridges per year of construction. It is
observed that 63% of Brazilian bridges are over 50 years of age. It also manifests the periods
of most significant and minor investment in the bridge construction sector, highlighting
the positive impact of the Maurício Joppert Law (1945), the period of President Juscelino
Kubitscheck (1956 to 1960), the revolutionary period started in 1964, in particular the
construction of the Rio-Niterói Bridge (1974), the negative impact of the 1988 Constitution
that radically altered the financing sector, and the resumption of investment during the
period of President Fernando Henrique Cardoso (1994 to 2002) [9]. Additionally, the ages
of the bridges allow estimating the live load. For example, concerning the standard traffic
load model, most bridges designed between 1960 and 1975 considered a TB-36 on roads:
a vehicle with 360 kN force [26]. The bridges designed after 1985, with the new version
of the Brazilian standard [27], started to consider vehicles with 450 kN force (TB-45) as
standard traffic load model. The high number of bridges for which the year of construction
is unknown (or was not informed) is just one example of the difficulties found for a more
detailed analysis of the existing situation and evidence of missing record information.



Buildings 2022, 12, 124 10 of 22

Fed
era

l Pu
blic

Fed
era

l Pr
iva

te

Sta
te 

Pri
va

te
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

N°
 o

f b
rid

ge
s

 66.4%

 23.1%

 10.5%

(a)

Fed
era

l Pu
blic

Fed
era

l Pr
iva

te

Sta
te 

Pri
va

te
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

N°
 o

f i
ns

pe
ct

io
ns

 43.6%

 54.3%

 2.2%

(b)

Figure 6. Distribution of bridges (a) and inspections (b) per jurisdiction and concession type.
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Figure 7. Number of bridge by year of construction.

The ADT is the average volume of traffic recorded in one day (24 h). This data is
used to assess traffic distribution, measure the demand for a road, and schedule basic
improvements. Figure 8 presents histogram distribution of the ADT and ADTT. The
histogram clearly shows that ADT less than 10,000 has the highest frequency. For the
ADTT case, traffic less than 2000 has the highest frequency. It can also be seen that the
ADTT corresponds, on average, to 34% of ADT.

The bridges sum up approximately 626 km of length distributed according to Figure 8c,
with an average of 69 m. The data shows that 40.3% of the bridges have an extension equal
to or less than 30 m, and 29.0% show an extension higher than 60 m.

Visual inspections constitute the main form of evaluation of bridges in Brazil, and the
records of these inspections are used to assist in the construction and history of the bridge
inventory. The first inspections presented in the inventory date back to 2008, covering
approximately 13 years and resulting in 24,127 inspections. Figure 9 shows the periodicity
of inspections carried out in the period mentioned above. The time between inspections
that equals 0 means that only one inspection is available for the bridge. As can be concluded,
visual inspections are carried out mostly annually, according to what was discussed in
Figure 2.
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Figure 8. Distribution of bridges according to (a) ADT, (b) ADTT, and (c) total length.
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Figure 9. Periodicity of inspections.

5. Methodology and Results

The previously described bridges’ condition data are used to develop the Markov
model and the ANN model. Before implementing the predictive models, a filtering process
was performed on the database to remove inconsistencies. For example, ungraded records
were removed, along with cases where an improvement in grade was observed. This last
effect can be attributed to maintenance actions not included in the inventory or imprecision
in evaluating the bridge’s condition due to the subjectivity of the inspectors in the visual
inspection technique [28–30]. Unfortunately, the database does not differentiate one case
from the other, and all positive transitions had to be assumed as repair activities [30].

The original database includes a total of 10,331 bridge assets and 24,127 inspections.
After the filtering process, only 7,754 bridges and 12,681 inspections were considered for



Buildings 2022, 12, 124 12 of 22

the deterioration modeling, keeping a reasonable amount of data [28,31]. A summary of
the inspection transitions are presented in Figure 10.
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5.1. Markov Model

As bridges in a network are likely to share comparable environmental conditions,
it would be plausible to presume that the deterioration processes should be similar in
equivalent scenarios if considering load and environment. Hence, in the first part of the
analysis, the bridges were assumed to have the same deterioration processes regardless of
structure type, location, and material of the superstructure.

Equation (10) shows the developed transition probability matrices for a general bridge,
representing the deterioration process under normal operational conditions in Brazil.
Table 3 summarizes the Markov model’s accuracy. The model achieved the same accuracy
during training and validation but had a higher dispersion during the latter. The model
reached a slightly lower accuracy during testing but showed that it could generalize to the
unseen data.


θ1
θ2
θ3
θ4

 =


0.42326519
0.09922577
0.0597748
0.0695101

 P(1) =


0.655 0.3274 0.017 0.0004 0.00

0 0.9055 0.092 0.003 0.00
0 0 0.942 0.056 0.002
0 0 0 0.933 0.067
0 0 0 0 1

 (10)

Table 3. Markov model performance during training, validation, and testing.

Dataset IPP
µ(σ)

Training 0.670 (0.003)
Validation 0.670 (0.012)

Testing 0.664

The following results are presented as a form of illustration considering a 100-year
time horizon for a general bridge asset. During this period, no maintenance activities are
assumed, i.e., the bridge is allowed to decay constantly.

Figure 11a shows the probability of a bridge to be in a determined CI over time. It is
possible to observe that the probability of a bridge remaining in the CI equal to 5 drops
significantly in just a few years. For the case of the CI equal to 3 and 2, it is possible to
observe a more flat curve, meaning that these CIs remain for a longer period. Brazilian
standards do not specify a lifespan for the structures, but in principle, it seems to be
assumed as 50 years. Considering 50 years as the lifespan, 70% of bridges reach the CI
equal to 1. In Figure 11b, the average of the bridges reaches the CI equal to 3 in 14 years
and the CI equal to 2 in 32 years. Additionally, it is possible to observe a high dispersion in
the time that the bridge reaches the CI equal to 2, ranging from 10 to 75 years.
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Figure 11. Results from Markov model. (a) Transition probability over time; (b) expected condition
over time.

Clusters

Previously, the bridges were assumed to have the same deterioration processes. How-
ever, it is plausible that the deterioration processes should be different in bridges subjected
to different conditions, such as material type, geographic location, and geometric proper-
ties. Thus, taking a step forward to improve the results, the bridges were clustered into
specific categories.

The first attempt of clustering the database was by material type. Thus, considering
the types of materials mentioned before (Figure 5a), the Markov model was run consid-
ering only the bridge records belonging to each material type. Figure 12a presents the
deterioration of bridges with different materials. As observed, reinforced and prestressed
concrete bridges have similar deterioration rates, whereas steel and composite bridges
have a higher deterioration.

Concerning geographic location, the bridges were categorized by states and regions
(Figure 4) to demonstrate their different performance and lifespan. Figure 12b shows the
deterioration curves for each state, showing no significant difference between states from
condition 5 to condition 3. If condition 2 (poor condition in Table 1) is adopted as the
minimum acceptable condition, the predicted average service life of a bridge in BA, RJ,
and SP is 25, 45, and 60 years, respectively, with SP presenting the best performance. The
anomalous behavior of the SC curve is justified by a high density of inspections with CI
equal to 5 in 2015 and 2016, having no further inspections after it. The significant variation
of the bridge service life illustrates the considerable impact of the state management policies
on the performance of a bridge.

Figure 12c presents the results obtained regarding the regions, where it is possible to
observe no significant difference between them, except the central–west region. The only
remark, in this case, is the small amount of data that might hinder the actual behavior of
this region compared to the others.

Additionally, the bridges were grouped into three categories according to their length.
As discussed in Section 4, the bridges were rated as short (for bridges shorter or equal
30 m), medium (for bridges longer than 30 m and shorter than 60 m), and long (for bridges
longer than 60 m). As illustrated in Figure 12d, longer bridges show a higher deterioration
compared to medium and short bridges. This observation is reasonable as it is expected
that there is a higher probability of having deterioration in a long bridge than in a short one.

The clustered Markov models reached higher accuracy during testing than the not
clustered one, as summarized in Table 4. It can be observed that the most remarkable
improvement was achieved when splitting the data by material type. These results show
that adding new features to the model help to improve its performance.
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Figure 12. Expected condition over time. (a) Material type; (b) state; (c) region; (d) bridge length.

Table 4. Clustered Markov models performance during testing.

Cluster IPP

All 0.664

Material 0.683
State 0.667

Region 0.672
Length 0.679

This section has evidenced the influence of selecting a suitable cluster to predict a
typical bridge performance. As these predictions are the basis for BMS, inaccuracies might
have significant impacts, especially in budget plans. Additionally, carrying out analysis
with a fragmented database, as in the case of the Markov model, does not seem to be a
good alternative as it can lead to unsafe predictions.

5.2. Artificial Neural Network

Similar to the Markov model analysis, the first assumption was to consider similar
deterioration processes for all bridges. For the first ANN model, two input nodes were
considered in the input layer, one for the initial CI and the other for the time between
inspections (Figure 9). The optimal configuration for the ANN classifier was determined by
trial and error. The inverse of the perplexity (IPP) was used as an entropy indicator, where
a higher rate indicates a lower entropy between the labels and predictions. Accordingly,
the final configuration of the ANN is a one-layer network with five hidden neurons in
the layer.

Comparing the ANN model against the Markov model, it is possible to observe, in
Table 5, that the ANN model achieved higher accuracy during training, validation, and
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testing. Even though the test accuracy in the ANN model is slightly lower than the training
and validation, the results show that the model could generalize.

Table 5. ANN and Markov models performance during training, validation, and testing.

Model Training Validation Testing

Markov 0.670 (0.003) 0.670 (0.012) 0.664
ANN 0.673 (0.003) 0.673 (0.010) 0.670

With the model calibrated, the performance of the bridge can be evaluated over the
years. Three approaches were considered to predict the model throughout the years.
For the first approach (Figure 13a), it is reasonable to assume the extrapolation of up to
100 years. As can be seen, the model could not extrapolate or make predictions outside
the training data range. Once it leaves the range for which the model has data, it simply
keeps predicting the last known point until it reaches a specific one (40 years), where it
drops abruptly. The model cannot generate “new” responses outside of what was seen in
the training data.

Another approach to predicting performance over the years is to obtain the transition
probability matrix for one year and evaluate the performance over the years, similar to the
Markov model. Figure 13b presents the results for this approach. It is possible to observe
that the ANN model yields higher deterioration results. However, it is tricky to consider
only one year between inspections when working with the ANN model as it was trained
with a time distribution of up to 10 years (Figure 9).
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Figure 13. Evolution of the degradation over time by ANN model. (a) Extrapolation approach;
(b) 1 year approach; (c) Monte Carlo approach.
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The final approach considered to obtain the CI through the years was a Monte Carlo
(MC) simulation based on the inspection periodicity distribution in Figure 9. During the
simulation, one million artificial bridges were generated with an initial CI equal to 5. For
each bridge, a random inspection periodicity was picked from the distribution (Figure 9)
and a new CI was calculated based on the probability from the calibrated model. After all
the bridges achieved 100 years, the mean and standard deviation were calculated by year,
generating the expected values and confidence interval presented in Figure 13c. As can be
seen, the results from the ANN are now very similar to the Markov results.

5.2.1. Filling the Database by ANN

As it was pointed out, the inspection periodicity as an input parameter can increase
the complexity of the ANN model. Therefore, a reasonable strategy is to eliminate it as
input by filling the empty inspections in the dataset and making the interval between
inspections constant (1 year). Different approaches could be used to reach such desired
results. One could assume the bridge maintains the same CI until the next inspection. For
example, if a bridge has a CI equal to 4 in 2008 and in the next inspection, in 2011, its CI is
equal to 2, the CI assumed for 2009 and 2010 would be 4 for both years. Another approach
would be to use a linear interpolation between the inspection records to fill the gap. In this
case, the CI for 2009 and 2010 would be 3 and 3.

Even though these approaches could solve the problem, they do not consider the
stochastic behavior of the deterioration process. Thus, predictive models such as Markov
and ANN would be a better option to fill in the gaps reliably. For the context of this work,
and considering the results obtained in Table 5, the approach selected is the one proposed
by [32], where the authors used an ANN model to generate artificial historical bridge
condition indexes. The example already discussed was used to exemplify the application
of the selected methodology, as illustrated in Figure 14.

ID 2008 2009 2010 2011

Bridge 1 4 - - 2

Bridge 2 5 - - 3

ID 2008 2009 2010 2011

Bridge 1 4 4 3 2

Bridge 2 5 4 4 3

ANN

Figure 14. Filling by ANN.

The final dataset was filled by artificial historical bridge condition indexes generated
from a MC simulation using the proposed methodology [32] and the inspection periodicity
distribution in Figure 9. A total of 4720 data points were generated, inducing the database
to go from 12,681 to 17,401 inspections.

5.2.2. Additional Features

Considering the deterioration processes should differ in bridges subjected to different
conditions, the model was updated by adding new features one at a time, attempting to
improve the results. The new parameters found to be significant to bridge deterioration
were the Gross domestic product (GDP), ADTT, total length, and geographic location. For
the case of categorical data, one-hot encoding [21,23] was used to feed the model. Figure 15
presents the results for some of the new parameters.

Previously, in the Markov model, the total length was modeled as a categorical
parameter. Now, for the case of the ANN model, it has been modeled as a continuum
parameter. The results presented in Figure 15a confirm the same outcome presented in
Figure 12d, where longer bridges show a higher deterioration than shorter bridges. It is
important to point out here the advantage of the ANN model, over Markov models, in
being able to use continuum inputs instead of only categorical ones.
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Figure 15. Expected condition over time. (a) Bridge length; (b) GDP in USD billion for 2018; (c) ADTT.

The results presented earlier in Figure 12b clarify and help to understand how each
state manages its bridges. However, the state is a categorical feature with no natural
meaning built into it. In order to view the situation from another perspective, the categorical
parameter (states) was converted into an economic continuum parameter (GDP). Figure 15b
illustrates the influence of the GDP. It is possible to observe that states with a higher GDP
have a better performance. The significant variation of the bridge service life demonstrates
the considerable impact of the GDP on the performance of the bridge. To have an idea of
the impact, let us adopt condition 2 (poor condition in Table 1) as the minimum acceptable
condition. By observing Figure 15b, it is possible to notice that it could vary from 30 years
up to 100 years. Additionally, no significant difference from condition 5 to condition 3
was observed.

Some studies [33,34] have observed a significant influence of ADTT on bridge per-
formance, by an negative correlation. Thus, it was expected to observe the same results
in the analysis carried out. However, as demonstrated in Figure 15c, the results show a
low, or almost zero, influence of ADTT on bridge performance. A possible explanation
of why the ADTT did not present the expected results is the fact that the ADTT and the
GDP have a positive correlation. In other words, the influence of the GDP might be hiding
the influence of ADTT. Another possible reason is that bridges with a high ADTT usually
receive more attention from the managers. Further analysis considering the weight and
traffic distribution [35] could help to enhance the results.

The knowledge of the degree of atmospheric aggressiveness is vital in building mainte-
nance management to ensure the project’s useful life [36]. Humidity and high temperatures
notably favor the degradation processes of materials exposed to the atmosphere. Wetting
time, type and concentration of gaseous pollutants and particulate matter in the atmo-
sphere determine the magnitude of the attack. The availability of values for these variables
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greatly assists in assessing the potential risk of corrosion. Figure 16 illustrates a modified
Brooks atmospheric corrosivity index for the Brazilian region.

3 2 1 0 1 2
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1e7

Very low
Low
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Very high

Figure 16. Modified Brooks atmospheric corrosivity index (adapted from [36]).

Although the theoretical conceptualisation in the Brooks index is straightforward, as
it only considers humidity and temperature as intervening factors, it can be of value in
qualifying the aggressiveness of large rural areas in Brazil, where the data are scarce or
nonexistent. On the other hand, when evaluating large cities, industrial areas, and coastal
regions, it is essential to be aware that the polluting agents (not considered in the Brooks
index [36]) cause a substantial increase in the corrosion rate.

Considering that the location of bridges influences the speed of bridge degradation,
particularly for bridges located on the coastal strip, different distances from the coastline
were analyzed. Figure 17a presents the results for coastline distance. As can be observed,
the coastline distance significantly influences the deterioration process. Figure 17b illus-
trates the influence of each aggressive zone, identifying an additional band (very high) into
the map proposed by Brooks (Figure 16), defined by a distance of less than 5 km from the
coast. From Figure 16, it is possible to conclude that bridges located on the coastline and in
the north of Brazil have an unquestionably high deterioration process.

As we are now using a new database, a new analysis not considering any cluster was
performed to be used as a reference value. A summary of the results is presented in Table 6.
These results show that adding new features to the model help to improve its performance.
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Figure 17. Expected condition over time: (a) Coastline distance; (b) aggressive zones.

Table 6. Clustered ANN models performance during testing.

Model Training Validation Testing

All 0.729 (0.005) 0.729 (0.002) 0.710

Length 0.744 (0.009) 0.743 (0.002) 0.718
GDP 0.733 (0.005) 0.733 (0.003) 0.712

ANTT 0.736 (0.009) 0.736 (0.002) 0.718
Aggressive zones 0.735 (0.005) 0.732 (0.002) 0.713

5.2.3. Proof of Concept

A good-quality control plan specifies the extent and the interval of inspections and the
data necessary to estimate performance indicators and forecast future development [4]. In
this context, planning is essential to establish a schedule, scope, and optimal times between
inspections. As discussed in Section 2, visual inspection assessment practice differs from
standard to standard [12–14] when defining the frequency of inspections (periodicity).

The uniform interval approach has resulted in a very costly and inefficient process [37].
Provisions for adjusting the frequency of routine inspection for certain types or groups of
bridges to better conform with their inspection needs have been defined by [38], taking
into account the actual condition index, length, load redundancy, susceptibility to damage,
structure type, maintenance history, structure age, ADT, and ADTT. Ref. [1] developed a
framework for risk-based bridge inspection that identifies bridges for which inspection
intervals shorter or longer than the one defined by the standards are more appropriate.

According to [4], the frequency of bridge inspections should depend on bridge condi-
tion and bridge importance to the network. Therefore, bridges with poor condition and
the most critical bridges should be inspected more frequently than most bridges in the
network. On the other hand, new(er) bridges with little or no damage could be inspected
less frequently. Additionally, bridges with different material characteristics and locations
may require different attention. In order to answer this, bridges with different material
characteristics and locations are studied, and their performance is compared.

Six representative groups were selected to represent the case studies, with one bridge
representing each corresponding group. Three corrosivity zones (Figure 16) and the two
main materials (Figure 5) were selected, as shown in Table 7.

The predicted performance and service life of bridges for each representative group
(Table 7) are presented in Figure 18. As it can be seen, the bridges have a significant
distinction in performance. RC bridges located in a very high corrosive zone have an
elevated deterioration process. By adopting condition 2 (poor condition in Table 1) as the
minimum acceptable condition, the predicted average service life for bridges located in the
very high corrosive zone is around 20 years, whereas it is 40 years for a very low corrosive
zone. The significant variation of the bridge service life illustrates the considerable impact
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of the corrosive zone on the performance of the bridge, making it almost mandatory to
consider the aggressiveness of the region where the bridge is located when defining the
periodicity of inspections.

Table 7. Selected representative bridge groups.

Name Aggressive Zone Material

Bridge-1 Very low RC
Bridge-2 Very low PC
Bridge-3 Moderate RC
Bridge-4 Moderate PC
Bridge-5 Very high RC
Bridge-6 Very high PC
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Figure 18. Expected condition over time by representative bridge groups.

6. Conclusions

The primary contribution of this study to BMS is the application of stochastic models
to probabilistically forecast bridge deterioration and the execution of a systematic method
to show new features importance in the degradation process, resulting in exciting insights
into the definition of inspection periodicity.

The Brazilian standards have different values related to the interval between inspec-
tions, but they all consider the periodicity constant, not giving consideration to the bridges’
singularities. As discussed throughout this article, bridges in a network are likely to share
similar environmental conditions but, depending on their age, location, structural typology,
and other aspects, they may be exposed to different structural deterioration process over
time. Hence, forecasting simulations were carried out to identify the bridge behavior for
different scenarios.

Two predictive models (Markov and ANN) were created to predict future bridge condi-
tions based on historical data. The most representative up-to-date database of the construc-
tion site was served as input for the models, containing information about 10,331 bridges
in Brazil from 2008 to 2021.

Considering the deterioration curve obtained for the whole dataset in Figures 11b and 13c,
the bridges will have, at the end of their 30 years, a condition rating of around 2, if only
routine maintenance is performed. Additionally, the forecasting results of two predictive
models (Markov and ANN) indicate that the ANN model can predict future conditions
more accurately than the Markov one.

In this work, some clusters were identified to improve existing BMS, especially at-
mospheric corrosivity, which has a significant influence on the deterioration process. The
results obtained indicate the proposition of a variation in the periodicity of inspections as a
function of the bridges’ degradation curves. While this investigation addressed limited
features, other continuous and categorical variables can be added to the methodology (such
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as the wearing surface and skew angle), which could improve the prediction accuracy of
the methodology.

It is essential to emphasize that, regardless of the outstanding potential of Markov and
ANN models, the bridge engineer’s opinion must not be ignored. On the contrary, when
an expert validates the obtained results, they gain plausibility and can be used confidently.

There is a need to expand and strengthen the works’ inventory to calibrate the results
obtained. To achieve this goal, it is necessary to implement joint efforts from all managers,
industry professionals, and researchers linked to bridge engineering to promote sharing
information, enabling this work to be expanded nationally and internationally.

One limitation of the work is that the results obtained to improve the frequency of
inspections are limited to internal factors (deterioration) and do not consider extreme
events, such as floods, earthquakes, or any vandalism act.
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