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Abstract: The use of fabric-reinforced cementitious mortar (FRCM) or steel-reinforced grout (SRG) is
now recognized to be effective in enhancing the axial capacity of masonry columns when confinement
is achieved. Numerous experimental tests demonstrated the symbiotic role of the fabric and the
inorganic matrix. An open issue is still related to the numerical simulation. In fact, if the compressive
behavior by the numerical simulation of the unreinforced and reinforced masonry columns confined
by a FRCM/SRG jacket may follow different approaches. The inorganic matrix transfers the stresses
from the substrate to the fabric differently, depending on the presence or absence of cracks. The fabric
consists of an open grid whose yard could be differently stressed after the matrix damage because
of the occurrence of a possible slippage at the fabric–matrix interface. Definitely, these aspects are
difficult to numerically predict. The paper herein is devoted to the assessment of different numerical
approaches for the FRCM/SRG confinement of masonry columns by considering data from the
literature and varying the parameters related to the matrix, the fabric, and the masonry itself. The
goal is to best fit the experimental outcomes (from different available sources) with different strategies
based on a finite element (FE) modeling. The results show good matching between the experimental
and theoretical curves for the different FRCM/SRG systems. The results evidenced that the accuracy
of the experimental versus the numerical curves match is met for the different FRCM/SRG systems.

Keywords: FRCM systems; SRG systems; masonry columns; numerical modeling

1. Introduction

An important part of existing structures is mainly made out of masonry. Indeed,
most historical buildings consist of monumental masonry structures (churches, temples,
towers, etc.), as well as most ordinary buildings. There are substantial differences that
exist between monumental and ordinary buildings in terms of geometry and structural
details. Various strategies for the prediction and the assessment of the structural behavior
of masonry buildings by a numerical model have been developed in recent decades. Nu-
merical models have been favorably developed and preferred over analytical approaches,
given the complex mechanical response of masonry and the irregular geometries of historic
masonry buildings. The numerical strategies are subdivided into four classes: block-based
models (BBM), continuum models (CM), macro-element models (MM), and geometry-
based models (GBM). The strategy of BBM models is based on masonry heterogeneity by
the assembly of the blocks with mortar joints. Through this strategy, the real texture of
the masonry structure can be described, while the individual mechanical properties can
be evaluated through experimental tests on small-scale samples. In addition, by means
of models, it is possible to simultaneously describe both the out-of-plane and in-plane
behavior of masonry walls [1,2]. Interaction is the fundamental part of the BBM strategy; it
depends on the type of interaction. In the technical literature, there are five categories: (i) in-
terface element-based approaches [1–4], (ii) contact-based approaches [5,6], (iii) textured
continuum-based approaches [7–9], (iv) block-based limit analysis approaches [10–13], and
(v) extended finite element (XFEM) approaches [14,15]. The drawbacks of this strategy are
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the massive computational burden of solving the numerical model, and the time dedicated
to modeling the block and assembling it [16–18]. The strategy of the continuum model
(CM) is based on the use of a deformable continuous body. In particular, the mesh does not
always have to respect the real texture but can be much bigger. Through this characteristic,
the computational burden is less than that of BBM models. However, the assumption
of an appropriate constitutive law that is due to the properties of the masonry itself can
be calibrated through two strategies: direct approach and homogenization procedures
and multiscale approaches. The strategies calibrate the constitutive laws directly on the
results of experimental tests. There are two types of direct approaches in the literature.
With the introduction of FE and the use of the complementary energy theorem, it was
possible to obtain a solution via of minimization of a quadratic function with equality and
inequality constraints [19]. Other continuum-directed approaches base their nonlinear
constitutive laws on theories of fracture or damage mechanics and/or plasticity. The use
of these models has been shown to be favorable for assessing the structural performance
of historic monumental masonry buildings, particularly because of the limited computa-
tional demands of these models and their ease in representing complex geometries [20–22],
churches and temples [23–25], palaces [26–28], and bridges [29,30]. The second strategy
introduces a homogenization strategy that connects the structural scale model to a scale
model of the material and its heterogeneities. Homogenization procedures are generally
based on accurate modeling strategies of an RVE (representative volume element). In
particular, the RVE must statically represent the heterogeneity of the masonry under study.
Three models based on this strategy can be identified in turn in the technical literature: (i) a
priori homogenization approaches, (ii) step-by-step multiscale approaches, and (iii) adap-
tive multiscale approaches. The first model uses the RVE technique to initially define
the homogenized material properties and then use them in the structural-scale model,
while using homogenized properties [31–35]. In the second model, the structural response
is evaluated for each point in the structural model of a boundary value problem on the
RVE [36–39]. Finally, in the adaptive multiscale approaches one uses, through adaptability,
the material-scale model in the structural-scale one [40–42]. The MM strategy generalizes
the structure with panel-scale behavior—in other words, as a macro-element [43]. The two
main elements are pier (vertical elements) and spandrel, which are horizontal portions
of the structure between two openings aligned along the height. The global behavior of
the structure under seismic action depends on the panel response and, consequently, on
the load redistribution given by the diaphragms [44]. In fact, the MM strategy does not
predict out-of-plane ruptures and would lead to an overestimation of the capacity of the
structure [2]. Moreover, in severely irregular structures, subdivision appears complicated
and, in some cases, impossible. The advantages are easy discretization of the model and
definition of mechanical properties. This strategy is employed through two approaches:
equivalent beam and spring based. The first approach is based on modeling the masonry
structure by schematization in equivalent frame models. A first model, called the POR
(pushover response) method, is based on the simplified elasto-plastic relationships to
describe the beam nonlinearity connected by rigid links [45–47]. Recently, an advanced
equivalent beam-based macro-element was developed in [48] for the nonlinear static and
dynamic simulation of masonry structures. The beam mechanical description conceived
axial, bending, and shear deformation within the Timoshenko beam theory. The second
approach is based on nonlinear springs within an equivalent frame to simulate the in-plane
nonlinear behavior of masonry walls [49]. In [50], the authors developed a spring-based
approach where piers and spandrels are conceived as equivalent arrangements of nonlinear
springs, while in [51], each masonry facade was conceived as an integral unit, instead of
one of piers and spandrels. As a result, masonry behavior is described by two vertical
springs and one horizontal spring for the shear behavior of the wall. Finally, the last
strategy (GBM) conceives the structure as a rigid body, the only input being the geometry
of the structure and the loading conditions. Through this approach, it is possible to analyze
structural equilibrium or evaluation of a possible collapse through static or film theorems,
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both based on limit analysis. There are several approaches based on the static theorem in
the technical literature. For example, thrust-network analysis (TNA), reported in [52,53],
is based on the duality between geometry and in-plane forces in networks, and plausible
funicular solutions under gravitational loading within a defined envelope are studied.
A further approach to thrust networks was proposed in [54], where the equilibrium of
masonry vaults was analyzed using polyhedral stress functions, while the discrete singular
stress network is calculated based on Airy’s stress formulation [55]. Solutions based on
kinematic approaches are based on discretization into rigid blocks according to the collapse
mechanisms observed in earthquake-affected structures. Various strategies have been
proposed, including [56] a discontinuous upper boundary analysis tool with sequential
linear programming and mesh fitting to investigate the actual collapse mechanisms of
double-curved masonry structures and a recently developed tool based on genetic algo-
rithms for upper boundary analysis of masonry vaults [57]. Application of the modeling
approaches described above normally each extend to an experimental case. Often in a
strengthening or rehabilitation action for masonry buildings, it is necessary to improve the
capacity in plane (under compression load). Next-generation systems used for reinforcing
masonry structures are composed of an inorganic matrix combined with an ultra-strong
fiber fabric. In this so-composed system, the fibers have the task to bear the tensile load
while the matrix has the task of protecting and transferring the compression load between
the masonry substrate and the fiber. The types of inorganic matrices could be cement-based
or lime-based. In the technical literature, there are many acronyms attributable to the
new generation of reinforced systems based on the type of fiber used in the reinforcement
system: basalt B-FRCM [58–62], poliparafenilenbenzobisoxazole [63,64] PBO-FRCM, glass
G-FRCM [61,65,66], steel SRG [59,60,62,66–68], and carbon C-FRCM [69–73]. It was also
observed that, depending on the reinforcement system adopted or better depending on
the fiber used, different modes of failure were observed. The most recurrent ones are the
opening of the reinforcement jacket near the overlap zone or the rupture of the fabric,
always in the overlap zone. The purpose of this paper is to show several different types of
modeling on unreinforced masonry (URM) under compressive loads while providing a
general and different approach of modeling reinforced masonry with the FRCM or SRG
system that combines versality and moderate computational cost.

2. Numerical Model
2.1. Modeling of Unreinforced Masonry (URM)

The performance of the numerical model depends on the experimental description
of the heterogenous behavior of the masonry structure through the adequate constitutive
laws. The type of experimental method used for evaluating the material properties and
the boundary conditions are of critical importance for the numerical model and results.
However, particular attention should also be given to the geometrical aspects of the masonry
structure: unit dimensions, type and quality of mortar joint, and unit surface conditions.
The variety of clay brick units and mortar types and typology methods of construction do
not allow development of unified constitutive laws. In fact, several codes and standards
prioritize experimental characterizations of material properties for design and numerical
simulations [74,75]. The set of mechanical properties used for the masonry numerical
model depends both on the accurate description (elastic and inelastic) of material and on
the adopted modeling approach. Generally, the elastic range can be defined through the
modulus of elasticity and the compressive strength. When a description of cracking is
necessary, the nonlinearity effects are necessary through additional mechanical properties
such as shear strength, tensile strength, and fracture energies. The extent of knowledge
required on material properties depends on the modeling strategy, where in technical
literature [76] there are three different approaches aimed at the modeling of a masonry
column: (i) macro-modeling, (ii) micro-modeling, and (iii) simplified micro-modeling. In
Figure 1, the schematic models used for a small-scale column are reported.
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Figure 1. Numerical approaches: (a) macro; (b) simplified micro; (c) micro.

2.1.1. Macro-Modeling (MA-Approach)

This is the simplest of the three approaches, where the single brick and the mortar
joint merge into a unique element. This approach does not take into account the interaction
between the two constituents of the column. In the literature, there exists two different
strategies where the internal structure of masonry cannot be described explicitly and
the damage within the masonry is evaluated through a continuous medium. The first
strategy most widely used is considered as a homogenous and anisotropic material using
plasticity or another macro-scale constitutive relationship. The main advantage consists
of the reduced computational burden (time-consuming). Moreover, this method is the
most used by researchers; in fact, in the literature there are different studies that take into
account different strategies based on this technique. In [49,77–81], the research developed a
shear wall or masonry column such as a continuous element where the mortar unit of clay
brick was described through an average function of the mechanical properties of the single
parts. The second strategy is based on the reduction in the elasticity modulus by increasing
the load in the model, which represents the propagation of cracks in the elements. This
strategy is generally used in reinforced concrete.

2.1.2. Micro-Modeling (MI-Approach)

This approach is more realistic, and it takes into account the behavior of the single
constituents of the column such as continuous and discontinuous elements. In fact, it
is also known as the heterogeneous approach, while in terms of time it is uneconomic
and inefficient because of the many parameters and various interactions between the
individual parts. It introduces two important steps to create a numerical model, which
are the local and global steps of the unreinforced masonry. The local view refers to the
single details in terms of geometrical and mechanical characteristics, respectively, while
the global view refers to the definition of contact surface (plane) and interaction (Mohr–
Coulomb [82,83] law) among all the parts. Therefore, this approach is not applicable
if applied on a realistic scale of masonry structures. Moreover, to avoid this drawback,
in the literature there are two strategies. Both strategies focus their attention on how to
represent and how to model the mortar joint. The first strategy considers the masonry made
only of bricks while modeling the vertical and horizontal mortar joints as an interaction
surface [84,85] with a zero thickness. The merging of the clay brick and the mortar joint
(as interaction surface) is called the unit to represent the continuum elements. Important
research conducted in [84] followed this approach, where the mortar joints (vertical and
horizontal) are modeled through the elastic–plastic behavior of the interface. The obtained
numerical curves fit the experimental results satisfactorily. The second approach consists
of representing the mortar joint with its real geometric thickness [85], thus modeling the
entire masonry 3D structure, including both the brick and the mortar joints. In particular,
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the modeling of mortar joints requires particular attention, such as isolating a part of the
structure for particular boundary conditions [85] or inhibiting any interaction with the
external reinforcement [33]. Furthermore, in terms of mortar strength, there is a reduction
and the introduction of penalties at the interaction surface in terms of tangential behavior.
In addition, this approach with respect to the first one allows the occurrence of cracks in
the mortar joints and in the brick unit.

2.1.3. Simplified Micro-Modeling (SIMI-Approach)

This approach is an intermediate one with respect to macro- and micro-modeling,
which is generally used in real-scale structures. In the literature, there are two strategies
for using this modeling. The first strategy consists of those mortar joints that are clamped
into the unit/mortar interface as a discontinuous element. Expanded units, up to half of
the mortar thickness in vertical and horizontal directions, were simulated by continuum
elements as reported in [13,86–88]. In this approach, the mortar joints are considered as
the weakest elements and modeled by an elastic–plastic interface behavior. The obtained
results showed that the strategy was able to reproduce the experimental response and
evaluate the cracks inside the expand unit. The second strategy, called the homogenization
approach in the literature, is reported in [56,89]. It is made up of periodic units. Through
the periodic units, it is possible to model heterogeneous masonry structures, reducing
the number of material parameters and by avoiding independent modeling of all mortar
joints. The use of these strategies permits the modeling of masonry structures, reducing
the computational burden and, at the same time, the material parameters in input. The
obtained results showed that the strategy was able to reproduce the experimental response
and evaluate the cracks.

2.2. Constitutive Laws of: Unreinforced Masonry (URM), Clay Brick and Mortar Joints

A largely adopted constitutive law is based on Feenstra [90]. It considers a three-branch
behavior in compression. For it, the macro and simplified micro approaches were used.
The geometrical and the mechanical parameters that govern the model are compressive
strength (fcm), elastic modulus (Ecm), fracture energy (Gcm), and mesh size (h).

fc =
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where, particularly, the first branch is assumed linear, while the other two, after the elastic
range and the peak stress, are nonlinear. The behavior is defined through three characteristic
strain values. The first strain εc/3 where the linear branch ending is expressed:
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while the relative strain at the peak stress is expressed as:
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and the ultimate strain where the URM has terminated the softening compression is
expressed as:

εcu = εc −
3
2

Gcm

h fcm
(4)
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The ultimate strain depends on two parameters; fracture energy (Gcm) and the charac-
teristic element length (h). Fracture energy (Gcm) was computed as being equal to the area
under the softening third branch (Equation (1)), while the h is evaluated as the cubic root of
the masonry column volume.

Gcm = h
∫ εcu

εc
σ(εc)dεc (5)

h = 3
√

Volume o f the masonty column (6)

Other researchers used a modified constitutive law based on that of reinforced con-
crete [91], described by nonlinear equations. The simplicity of this last approach is due
to the parameters involved, i.e., the stress (fcm) and the relative strain (εc) at peak. The
constitutive tensile law was modeled according to the following branches. The first branch
is linear elastic until the peak tensile stress (fct), while the second branch is expressed by:

ft = fct e−
εt

εtu (7)

where εt is the crack strain and εtu is the ultimate crack strain. The softening branch also
depends on the fracture energy (Gfm) and the characteristic element length. The Gfm is
evaluated according to:

G f m = h
∫ εtu=∞

εt=0
σ(εt)dεt (8)

while h is evaluated according to Equation (6). Therefore, the ultimate crack strain is:

εtu =
G f m

fct h
(9)

However, the post-peak branch is exponential and, to avoid snap-back phenomena,
the parameter h is evaluated according to the expression:

h ≤
G f m Etm

f 2
ct

(10)

where Etm is the initial tangent Young’s modulus. The constitutive law in tension and in
compression were reported in Figure 2, which is possible to use by the internal functions of
the commercial software adopted [92], called Elastic (E) and Concrete Damage Plasticity
(CDP).

Figure 2. Material constitutive law: of masonry in (a) compression and (b) tension.

The elastic branch of the constitutive law (compression and tension) was modeled in
E by parameters such as density (ρ), both elastic modulus in compression and in tension
(Ecm and Ect), the Poisson ratio (ν), and the maximum stress (f ), which were kept constant
during the analysis. The nonlinear branches, in terms of two main failure mechanisms,
which are compressive crushing and tensile cracking, were modeled through the CDP. The
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evolution of the yield surface is controlled by two hardening variables called equivalent
plastic strains in compression and in tension. Consequently, in the CDP model, one must
necessarily describe the behavior in uniaxial terms outside the elastic branch. Moreover,
the CDP entails the nonlinear branch through the following parameters, namely, the yield
stress damage parameter and the relative strain inelastic and cracking for the masonry
compression and tension damage, respectively. The CDP function, as understood by its
name, is a concrete material function, but by means of the following parameters it was
possible to adopt this function for the masonry column as reported in [77,93–96] and for
other quasi-brittle materials:

• Dilation angle (DA): 30◦ angle measured in the meridional plane between the failure
surface and the hydrostatic axis;

• Plastic potential eccentricity (PPE): 0.1 due to a non-associated potential plastic flow
and it is a length’s segment between the vertex of the hyperbola and the asymptotes
with respect to the center of the hyperbola;

• Ratio between the initial biaxial and yield compressive stress: 1.16;
• Viscosity parameter (VP): 0.0 visco-plastic regularization.

In the SIMI approach, the periodic unit was modeled in compression using
Equations (1)–(6). Through the micro approach, it was possible to independently describe
both the single clay brick and the mortar joints. In particular, the clay brick was modeled
by linear elasticity until failure by function E through the mechanical parameters (fbrick
and Ebrick), generally evaluated by [95,96], while the mortar joints were modeled in both
compressive and tensile behavior, through function CDP. The compressive constitutive law
was modeled with a nonlinear model suggested in [77,92,93,97–99], while the equations
are reported by the following:

fc = fcmat

[
2
(

ε j

εcmat

)
−
(

ε j

εcmat

)2
]

(11)

where fcmat is the peak compression stress and the relative strain. The strain is evaluated by
Equation (12) and the Young’s modulus (Ecmat):

εcmat = 2
0.85 fcmat

Ecmat
(12)

In addition, the tensile constitutive law was modeled with a bilinear model [77,92,93,97–99]
with a µ factor equal to 25.

ft =

{
Etmat εtmat ε j ≤ εtmat

ftmat − ftmat
µ εtmat

(
ε j − εtmat

)
εtmat(1 − µ) ≥ ε j ≥ εtmat

(13)

In both micro- and simplified micro-modeling strategies, an important step is the
definition of contact surfaces and the type of interaction. The contact surfaces between
expansion cells by a standard contact including surface-to-surface and self-contact was
used to avoid penetration among them. The surfaces were assumed to be zero thickness;
therefore, hard contact for normal behavior of contact was assigned. Hard contact refers
to an interaction without any softening to avoid no penetration of the surfaces, which can
occur in the model. Another mechanical characteristic was assigned in terms of tangential
behavior, called the friction coefficient. Generally, the most common friction coefficient of
concrete/masonry, which is set equal to 0.67, is reported in [100]. Meanwhile, in the micro-
modeling, all nodes are degree-of-freedom and the bond slip is not considered between
brick and mortar. In other words, the perfect bond between the vertical and horizontal
mortar joints and between single clay bricks and the mortar joints were considered. This
strategy, because of the not easy estimation of bond parameters and the related slip law
between the single clay brick and the mortar joints [83], is hard to apply. In all of the three
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approaches, it is possible to introduce the cracking phenomenon to simulate the experi-
mental behavior of the masonry or concrete structures being tested. This phenomenon is
introduced through the nonlinear behavior of the material in compression and in tension,
as reported in these studies [77,78,80,94]. The results furnished are in good agreement in
the comparison between the numerical model and the experimental one. Moreover, the
authors emphasize that the efficiency is related to the accurate definition of the equations
that describe the behavior of the unreinforced column and the nonlinear solution strategy.

2.3. FRCM–SRG (Macro and Micro-Approach) and Interface Modeling

The numerical simulation of the FRCM or SRG system for the confinement of masonry
columns is poorly investigated in the literature. All the available studies [58–73,77] carried
out by the authors are devoted, as their main goal, to the investigation of the structural or
the debonding problem and to model the strengthened systems on the basis of the experi-
mental results that refer to the specific type of FRCM or SRG systems. A clear distinction
within the FRCM systems is crucial for proper selection of the numerical strategies. The
acronym FRCM includes all of the several types of fibers, namely metallic and nonmetallic
ones, their different behavior should be underlined. All nonmetallic reinforcements are
characterized by a negligible stiffness, except under tensile stresses in the fiber’s direc-
tion; contrarily, the metallic reinforcement, known also as SRG when combined with the
mortar matrix, presents a significant stiffness under a different stress state. In the case
of confinement, this specific feature often involves a failure by the opening of the jacket
after the matrix damage, instead of fibers breaking [68,77]. For the above reason, the two
kinds of composites (metallic and nonmetallic) are herein modeled with different strategies.
The presence of the metallic reinforcements provides evidence of only one failure type
that was possible to observe in the confinement action, independent of the matrix (cement
or lime-based) used [67,68]. Consequently, the matrix was not physically modeled, but
the low influences were considered in the mechanical values of system characterization
by tensile tests on SRG specimens made up of fiber and matrix [68]. The above-stated
and the effect of the matrix in the FRCM system, based on the experimental observation,
has a crucial role for the initial tensile stiffness of the composite, while the fabric mainly
affects the strength and the post-cracking stiffness. In the relatively few works present in
the technical literature [77,93,101,102] the matrix was excluded from the numerical model.
The performance and effects of the matrix were considered in this model by assessing the
mortar cracking. Generally, the ductility is related to the damage evolution depending on
both the matrix and the fabric and on their interactions. In fact, the nonlinear models for
the matrix and the fabric and matrix modeled separately were introduced. The behavior of
external reinforcement was described by two approaches: macro approach (MA) and micro
approach (MI). The first approach (MA) was used for the SRG system, where the strength-
ened system is modeled without distinguishing the matrix (lime- or cement-based) and
the fabric by an element shell. This approach is made possible by similar values between
the mechanical value of the dry fibers such as steel fibers (with different steel density)
and the mechanical values obtained by tensile tests on the SRG specimen (steel fibers and
matrix), while the second approach (MI) was used for the FRCM system, where the external
reinforced (matrix) was modeled with real thickness (tfm) and the fabric was modeled with
the equivalent thickness (tf) for both reinforcement systems. The compressive constitutive
law of the matrix was modeled with a nonlinear model (see Figure 3), while the tensile
constitutive law was modeled with a bilinear model. The equations used are (11)–(13).
The behavior in compression and in tensile was described by the CDP function. A similar
modeling technique was used in [75–91], where the external FRCM reinforcement was used
to strengthen the unreinforced masonry columns. In both approaches for the two external
reinforcement systems, the fabric was linear-elastic-until-failure modeled (see Figure 3) and
was described by the internal function E.
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Figure 3. Stress–strain relationship: (a) compression, (b) tension for the mortar, and (c) linear elastic
for fabric.

Moreover, even if the adhesion of the composite with the masonry substrate is gen-
erally not relevant in the case of confinement, as demonstrated for the case of FRP [103],
a perfect bond was considered in the proposed numerical simulations to make the com-
putation easier and more robust. The same assumption was also imposed for the bond
between the matrix and the fabric interaction for the FRCM system. On the basis of the
failure mode [58–73], in particular in the overlap zone, the presence of a greater quantity of
fibers was considered through the equivalent thickness parameter (tf and tmat), modifying
it appropriately.

The interaction between the steel fabric and the overlap layer was used as an interface
cohesive surface and a different interaction between the masonry substrate and the external
reinforcement was considered (see Figure 4). The bond slip law adopted is reported in [104];
in particular, it is a bilinear model. The bond slip law was evaluated by statistical studies
and a meso-scale finite element model on a large database on the single-lap direct shear
test. The latter one was used to evaluate the initial stiffness of the bond slip curve. This
bilinear model is illustrated in Figure 5.

Figure 4. Scheme of interaction.

Figure 5. Interface modeling.
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To evaluate parameter k0, many experimental results are needed. This is due to the
limited available test results relative to the considered confining systems. Consequently,
the value of k0,SRG was assumed unchanging with respect to that reported in [104]. The
parameter Gf,SRG was calculated as:

G f ,SRG =
∫ s f ,SRG

0
τf ds (14)

Finally, the parameters s0,SRG and sf, SRG are evaluated by the following equations:

s0,SRG = 0.0195 βw ftmat (15)

s f ,SRG =
2 G f ,SRG

τf ,SRG
(16)

τf ,SRG = 1.5 βw ftmat (17)

G f ,SRG = 0.308 βw
2
√

ftmat (18)

and they depend on the geometric parameter βw, the fractures energy (Gf,SRG), and tensile
strength of the mortar (ftmat). The bond slip law adopted depends on the three failure
modes that are due to the opening and sliding associated with the normal and shear
stress, respectively. The initialization and evaluation of the damage were evaluated by the
quadratic function reported in a previous numerical work on the columns strengthened
with an SRG system [77,92].

2.4. Geometry, Boundary Conditions, and Solution Technique

The all-masonry columns were modeled in three dimensions (3D) through the three
types of modeling strategies described in Section 2. The element used to model the masonry
column, single clay brick, mortar joints, and external matrix of FRCM system is the linear
tetrahedral four node C3D4 element with constant stress. The FE element used in the MA
for the SRG system and fibers of the FRCM system is a two-dimensional shell element called
S4R. This element is used to model mono-dimensional structures with small thickness. The
equivalent thickness of the fibers (tf) adopted for the S4R element is equal to the values of
the fabric mesh considered, while the matrix thickness (tmat) is equal to the matrix layer
adopted in the tests. Moreover, the masonry column equipped with externally reinforced
corners was rounded to avoid stress concentration. All numerical tests in displacement
control were conducted through the enforcement of a displacement -λu along the y-axis.
The displacement on the entire surface at the top column was applied, while all nodes on
the surface of the column bottom (translations and rotations) were blocked. To solve the
nonlinear equations associated to the numerical problem focused on in this work, a dynamic
approach was used. Generally, this approach is not used to solve a quasi-static problem
because of the parameters involved. The first users of this technique were Chen et al. [105];
they suggested paying particular attention to two parameters, providing their values to
obtain only the static solution. The first parameter is the variable mass scaling and the
value used is equal to 0.00005. The role of this parameter is to scale the mass of all (or
single macro-element) the elements at the beginning of a step and periodically during the
displacement phase. The second parameter is the ratio between the kinetic and total energy
of the model. The value of this ratio is less than 5% during the entire analysis, except at the
first displacement increment.

3. Inventory of Experimental Data and Results
3.1. Unreinforced Masonry (URM)

The unreinforced masonry considered in this numerical work was reported in [65,68];
in particular, both experimental campaigns reported that all masonry columns had a square-
type cross-section of 250 × 250 mm with a horizontal and vertical thickness of mortar joints
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of 10 mm. The current columns have different heights equal to 500 and 720 mm, respectively.
Finally, two and three unreinforced columns in [65,68] were used as reference columns,
respectively.

Table 1 and Figure 6 show all mechanical and geometrical parameters regarding the
unreinforced masonry columns investigated in [65,68].

Table 1. Statistical values of the masonry’s constituents.

ID Brick Mortar

Compressive Flexural Elastic Flexural Compressive
Strength Strength Modulus Strength Strength

fbrick (MPa) - (MPa) Ebrick (MPa) ftmat (MPa) fcmat (MPa)

[65] Average
(CoV %)

12.43 1.91 1625 0.83 1.89
(8%) (17%) (3%) (1%) (12%)

[68]
20.8 - - 0.55 4.3

(18.4%) (13.4%) (7.6%)

Figure 6. Geometrical details of stress–strain relationship: (a) Cascardi et al. [65] and Sneed at al. [68].

The columns were tested under axial compression, and the typical failure observed
was masonry crashing (brittle failure) through a vertical crack in the mortar joints that was
then propagated at the single clay brick units. In Table 2, a compressive strength fcm (peak
stress) and the elastic modulus in compression Ecm were reported. The value of Ect (elastic
modulus in tension) was set equal to compression.

Table 2. Test result of unreinforced masonry.

ID Fcm (MPa) Ecm (MPa)

[65]
U1 8.08

7.61 - 250.33U2 7.15

[68]
UC-1 8.7

7.36 - 2953.21UC-2 6.6
UC-3 6.8

To perform the analyses of the available case studies, it was necessary to assume
values for the missing parameters. The available literature overviewed in the present work
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along with the guidelines [106] offers an adequate amount of information upon which to
base these assumptions. The average values of Poisson’s ratio υ was equal to 0.15, 0.20,
and 0.3 for the masonry, mortar joint, and clay brick, respectively; similar values were
adopted in [78,81,85,94,107–109]. The values used for the density ρ was suggested by the
standard [106] and it was equal to 18 (kN/m3). The elastic modulus for mortar joints was
calculated according to Eurocode 2 [110]. Finally, parameter fct was set equal to 1/3 fcm.

The parameter is that the softening branches of the constitutive laws of materials
depend on fracture energies (Gcm and Gfm) and these were calculated by the equations
reported in [100]. The values adopted are 0.784 and 0.25, respectively, for the experimental
campaign reported in [65]. While for the [68], they were equal to 0.760 and 0.025, respec-
tively. Finally, for both [65,68], the parameter h was set equal to 10, while in Figure 7 the
finite-element resolution is shown.

Figure 7. Geometrical modeling and finite-element resolution for URM: (a) Cascardi et al. [65] and
(b) Sneed et al. [68].

3.2. FRCM and SRG System

In [65], nine columns were divided into three groups (three columns for each group);
they were reinforced with the G-FRCM system using glass fiber combined with a different
strengthening mortar. As described in the section, the FRCM external reinforcement was
modeled through the MI approach. The matrix was modeled in 3D with its real thickness,
while the fiber was modeled in 2D through its equivalent thickness. Specifically, the mortars
presented a difference in terms of compression strength (fcmat), and in Table 3 the flexural,
compressive strength and the elastic modulus are reported (Emat). The thickness (tmat)
adopted per all types of mortar is equal to 5 mm, while the density (ρ) and Poisson’s ratio
υ were assumed to be 20 (kN/m3) and 0.15, respectively. In Figure 8, the finite-element
resolution for external reinforcement is shown.
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Table 3. Statistical values of the mortar and the results of reinforced columns reported in [65].

Mortar Reinforced Columns

Flexural Compressive Elastic Peak Axial
Strength Strength Modulus Strength Average

ftmat (MPa) fcmat (MPa) Emat (MPa) fcmax (MPa) fcmax (MPa)

M4 0.83 4.15 16,898 *
7.54
8.28 8.06
8.34

M7 1.46 7.26 19,984 *
10.31
8.34 10.01
11.37

M23 4.61 22.93 28,219 *
15.65
12.21 14.20
14.73

* Note: evaluated according to [110].

Figure 8. Finite-element resolution for (a) FRCM and (a) SRG.

All columns were reinforced with a single layer of continuous reinforcement over
the entire height of the column, while the length of the overlap was equal to the width of
the column. The mechanical properties of glass fibers in terms of tensile strength (ffu) and
elastic modulus (Ef) were equal to 742.40 (CoV 9%) and 37,120 (11%) MPa, respectively.
Meanwhile, the equivalent thickness (tf) was equal to 0.046 mm. In addition, round corners
equal to 30 mm were in the four column corners to avoid stress concentration.

The typical failure observed was the brittle failure type, while a knife effect was
observed for the reinforced ones, i.e., opening of a large vertical crack in the corner zone
(overlap zone). In [68], the masonry columns were reinforced by an SRG system; in
particular, three groups of four reinforced columns were considered. The reinforced system
consisted of two types of inorganic matrices (hydraulic lime mortar and cementitious
mortar matrix) with compressive strengths and different steel density.

The first approach used with the SRG system is MA without distinguishing the mortar
and the steel fabric, and it was modeled in 2D. The equivalent thickness value used depends
on the steel fibers’ density (Table 4) and the constitutive law was linear elastic until failure.
The mechanical parameters adopted in terms of tensile strength (fSRG), ultimate strain
(εSRG), and cracked modulus (ESRG) were suggested by the manufacturer [111], and they
were obtained by tensile tests on the SRG specimen. In addition, the density used is equal
to 7.8 g/cm3. The mechanical parameters of the bilinear model are summarized in Table 5.
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Table 4. Statistical values of the external reinforcement and its constituents for columns reported in [68].

Group Steel
Fabric Mortar SRG Specimen

Round
Corner

Steel
Density

Equivalent
Thickness

Flexural
Strength

Compressive
Strength

Tensile
Strength

Elastic
Modulus

Ultimate
Strain

Cracked
Modulus

r (mm) p (g/m2) tf (mm) ftmat (MPa) fcmat (MPa) fSRG (MPa) Emat (MPa) εSRG (-) ESRG (GPa)

1 0 670 0.084 1.5 13.0 3060 23801 0.010 156.0
2 0 670 0.084 4.4 47.1 2900 35021 0.018 160.0
3 9.5 1200 0.169 4.4 47.1 3060 35021 0.021 170.0

Table 5. Lu’s parameter values.

Interface Modeling

Group 1/3 Group 2

k0,SRG [N/mm2] 76.92 76.92
τf,SRG [N/mm2] 1.66 4.88
Gf,SRG [N/mm] 0.21 0.37

The typical failure observed, independent of the types of steel density and inorganic
matrix used, was located at the overlap zone with the opening of the reinforcement jacket.
It should be noted that by increasing the steel density it was possible to observe a decrease
in terms of peak axial strength. Table 6 shows the peak axial strength values for each type
of column analyzed in [68].

Table 6. Results of reinforced columns reported in [68].

Group Reinforced Columns

Peak Axial Strength
fcmax (MPa)

Average
fcmax (MPa)

1

10.3

9.3
9.5
9.1
8.5

2

9.1

9.3
10.1
9.4
8.7

3

10.7

10.5
11.1
10.1
10.1

3.3. Experimental versus Numerical Results
3.3.1. Unreinforced Columns

Figure 9 shows the comparison between the stress–axial-strain curves obtained from
experimental tests and the numerical results obtained by the MA for the experimental
campaign reported in [65,68]. The numerical branch before the peak stress is in good
agreement with the experimental curves, while the softening branch presents higher scatter.
In terms of peak axial stress, the numerical curves present an error between 2 and 3%.
Furthermore, in terms of peak axial stress, the error of the curves shown in Figure 9 was
evaluated by means of Equation (19) and summarized in Table 7.

∆err[%] =
fcm (Num) − fcm (Exp)

fcm (Exp)
100 (19)
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Figure 9. Comparison results for unreinforced column between the numerical and experimental
curves reported in (a) Cascardi et al. [65] and (b) Sneed et al. [68].

Table 7. Results of comparison.

Cascardi et al. [65] Sneed et al. [68]

∆err[%] 2.1 2.8

The numerical model curve is affected by the type of approach used; in particular, the
experimental curves have a more rapid descending post-peak branch until final collapse.

Figure 10 shows the comparisons between the experimental curve reported in [65]
and the curves obtained from the numerical models by using the MI and SIMI approaches.
In terms of peak stress, lower values are reached compared with the experimental and
with higher values of axial deformation in correspondence to the peak stress. However,
in the first branch, the numerical curve differs from the experimental one and exhibits
nonlinear behavior before reaching the peak stress. In addition, it is possible to observe
drops near the peak stress because of the type of interaction adopted. The differences in
drops are more pronounced in the SI approach. Finally, for the assumptions present in the
interaction between bricks and mortar joints and between the mortar joints themselves,
the compressive and tensile strength of the vertical mortar joints was reduced by 50% as
suggested in [81] to not harden the numerical model and cause failure in the vertical mortar
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joints. The softening branch is in good accordance until the reduction of 20% in the peak
stress. In terms of peak axial stress, the numerical curves present an error of less than 1%
for both the approaches.

Figure 10. Comparison results for unreinforced column between the numerical and experimental
curve reported in Cascardi et al. [65]: (a) SIIMI and (b) MI approach.

3.3.2. Wrapped Columns

The external reinforcement called FRCM, which the columns reported in [65], were
reinforced and modeled in 3D. In particular, the glass fibers were described by a 2D
model, while the matrix was by a 3D model. In Figure 11, the comparison between the
experimental curves and the numerical curves is shown. It should be noted that the strategy
adopted to emphasize the matrix effect of the numerical curve is in good agreement with
the experimental ones. In addition, the numerical curves showed good accordance in terms
of both peak axial stress and branches until the peak axial stress. The post-peak branch was
reduced because of the models used to describe the behavior of the external reinforcement,
particularly for the excessive distortion of the FE elements used.



Buildings 2022, 12, 2187 17 of 23

Figure 11. Comparison results for reinforced column between the numerical and average experimen-
tal curve reported in Cascardi et al. [65]: (a) FRCM_M4, (b) FRCM_M7, and (c) FRCM_M23.

In Table 8, the error evaluated by Equation (19) is summarized. In Figure 11, the
crack pattern at failure is also reported and is compared to that observed experimentally.
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The modeling strategy adopted is in good accordance with the experimental in terms of
the crack pattern. The error evaluated through Equation (19) is between 1 and 4%. The
approach used has a drawback that is due to the excess computational burden. In addition,
the matrix effect may be observed, especially for the matrix named FRCM_M23. The
columns reinforced with the SRG system [68] were modeled in 2D using the MA approach
without distinguishing the matrix and steel fiber. Figure 12 shows the comparison between
the experimental curves and that obtained from the numerical model varying the type of
matrix and density of steel fibers.

Table 8. Results of comparison.

∆err[%]

FRCM M4 [65] 1.1
FRCM M7 [65] 3.6

FRCM M23 [65] 2.0
Group 1 [68] 5.7
Group 5 [68] 7.1
Group 8 [68] 7.4

Figure 12. Cont.
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Figure 12. Comparison results for reinforced column between the numerical and experimental curve
reported in Sneed et al. [68]: (a) Group 1, (b) Group 5, and (c) Group 8.

The error is between 5 and 8%. The values are slightly higher than those obtained
with the approach used for the FRCM system. This approach has the advantage of a lower
computational burden and, consequently, may be used for structures of greater geometric
dimensions. The crack pattern at failure is also reported in Figure 12. It is possible to note
the detachment along the overlap zone along the entire height of the column. While the
one observed experimentally is sometimes localized and does not develop along the entire
height, this type has also been noted in [77,92]. Localized detachment is caused by the
arrangement of the steel sheet during the casting phase of the steel fibers. The steel fiber
sheet is commercialized in 30 cm wide rolls; therefore, multiple sheets of 30 cm wide steel
fiber are placed side by side to cover the full height of the column and the several steel
cords are joined together by the matrix alone. In Table 8, the errors are summarized.

4. Conclusions

The numerical procedure found, which was based on the finite element, was devel-
oped in this paper. Parameters of the numerical model were calibrated on the available
experimental results present in the literature. The effectiveness of the model was evaluated
by a comparison of test results conducted on clay brick masonry columns confined with
FRCM (glass-FRCM) and SRG (with different types of matrix and steel density) systems.
Based on the obtained results, the following conclusions can be drawn:

• The different numerical strategies adopted furnish accurate outcomes in terms of axial
strength for unconfined masonry columns;

• The proposed strategy adopted to describe the external reinforcement FRCM/SRG by
the MA and MI approaches in terms of axial stress and crack pattern are similar;

• For glass-FRCM- and SRG-confined columns, numerical predictions in terms of axial
stress–axial strain curves are in good agreement with experimental results in the
ascending branches of the curves, while they are inaccurate for describing the post-
peak;

• The approach used for the FRCM system resulted in errors of less than 4%, but with a
considerable increase in computational burden;

• The approach used for the SRG system could possibly obtain an error of between 5
and 8%.

Further experimental analysis is needed to confirm the results obtained in the investi-
gation described and discussed in the paper.
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