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Abstract: Considering the geometric nonlinearity and geometric imperfection of stiffened cylinders,
the generalized similitude conditions and scaling laws for axial compression post-buckling are
established by applying the similitude transformation to the total energy of the structure. The
post-buckling similarity of stiffened cylinders is numerically analyzed, and scale laws, through
innovative application of the stiffness formulas and deformation scale factor. Based on three type
geometrical imperfections, the effects of radius to effective thickness ratios, stiffened cross-sections,
boundary conditions and imperfection coefficients are investigated by post-buckling partial similarity
simulation of stiffened cylinders under axial compression. The results show that the partial similarity
can be well realized by changing other parameters or selecting a model with a similar Poisson’s ratio
for the prototypical material on the premise of invariant stiffness scale factors. Partial similarity
simulation of axial compression post-buckling of stiffened cylinders is not affected by radius to
effective thickness ratios (23.76–268.95), classical simply supported and fixed support boundary
conditions, rectangular or T-type stiffened cross-sections and three type of geometric imperfections.

Keywords: scaling law; post-buckling; stiffened cylinder; geometric nonlinear; energy method

1. Introduction

The structural behavior of stiffened cylinders subjected to axial compression is charac-
terized by buckling failure. The typical structure used by practical application in engineer-
ing such as gasholders is presented in Figure 1 [1]. Due to the limitations of experimental
conditions and funds, it is impossible to conduct a large number of prototypical experi-
ments on large and medium stiffened shells. Usually, the buckling bearing capacity of the
prototype is predicted by extrapolating and empirically estimating the experimental results
from scale models. Therefore, it is necessary to investigate the design method and buckling
laws of scale models of stiffened shells in model tests to gain a reasonable understanding
of both the buckling properties and the design of the prototype.

Many achievements have been obtained based on analytical approaches to similitude
and scaling laws for buckling of plates and shells. The dimensional analysis technique was
first applied to design scale models and it is a general method for structural similitude.
Ezra [2] researched the buckling properties of scale models of a shell subjected to impact
loads. Morgen [3] studied linear buckling of the orthogonal isotropic cylindrical shell with
a combination of internal and non-axisymmetric loads. These studies showed that the
dimensional analysis method can effectively establish important scale parameters and can
also be used to develop other similitude-scaling relationships, especially in the case of many
variables. Models of the spherical–ring–cone composite shell were designed by Huang [4],
based on the similar invariant existence theorem, dimensional analysis theorem, and similar
uniqueness theorem, and buckling experiments were performed on scale models using the
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dimensionless geometric parameters. The theoretical buckling load is 14.2% smaller than
the test result, and the reason for the discrepancy was given by the author.
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A direct method was studied by using the similarity invariance of the solution of shell
governing equations. Rezaeepazhand and Simitses [5–8] researched partial scale models
for linear buckling of laminated plates and cylinders under combined loads. The results
showed that partial similarity could be achieved by changing the number of layers, the
sequence of layers and the geometric dimensions of the laminated plates and cylinders
based on structural similarity, a partial similarity model with an isotropic material that can
predict the buckling load by selecting the radius scaling factor Rm as the design variable.
The buckling properties of the prototype can be predicted by the results of partial similarity
models with certain types of fiber composite materials.

The similarity transformation analysis method was explored on the governing dif-
ferential equations of the structural system. Rezaeepazhand and Simitses [9,10] studied
the buckling scale laws for orthogonal laminated plates with uniaxial compression and
shear loads, and the effects of the number of layers, material properties, and geometric
dimensions were investigated. The results showed that partial similarity models with
changes of layer number, material properties, and geometric size can predict the proto-
typical buckling properties. The partial similarity model with isotropic materials can also
predict the buckling load of the prototype via selection of Rm as the design variable. Frostig
and Simitses [11] investigated similarity simulation of the linear buckling and strength of
sandwich plates with a geometric imperfection. The results showed that the linear buckling
similarity simulation could be well realized. However, the error between the strength
responses of the partial similarity models with geometric imperfections and the results of
the prototype was approximately 50%. Partial scaling similarities for linear buckling of
laminated plates and cylinders subjected to single axial compression or combined loads
were studied by Ungbhakorn and Singhatanadgid [12–15]. The results showed that partial
similarity models with different layering order, layer number, material properties, and the
same arbitrary boundary conditions as the prototype can be used to predict the buckling
properties of the prototype based on the scaling laws. Rezaeepazhand and Wisnom [16]
reported that the prototypical buckling properties of delaminated orthogonal beam-plates
can be well predicted by distorted scale models with a different depth, size, and number
of delamination. Shokrieh and Askari [17] proposed a continuous similarity method to
study linear buckling simulation of laminate plates with impact damage based on the same
material and lamination sequence between the model and prototype.

A laboratory-scale composite cylinder test article with imperfections designed accord-
ing to nondimensionalized anisotropic cylinder buckling equations was investigated by
simulation and testing [18,19]. The two pre-test simulations showed excellent agreement
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with the results of the test at NASA Langley Research Center. However, with both mea-
sured and loading imperfections considered, the post-test simulations substantially did
not affect the buckling load. The research indicates that directly measured imperfections
can play a key role in the development of less conservative knockdown factors for future
composite launch vehicle structures.

Using the nondimensional buckling governing equations, an analytical scaling method-
ology for sandwich composite cylinders under axial compression was presented by Balbin
and Bisagni [20]. The methodology was used to develop scale models for reproducing a
similar buckling response to the prototype. The results showed that both the prototype and
scale models buckled similarly, when the nondimensional stiffness was matched between
the different scaled models. The limitations of the methodology were discussed, and the
reason is a result of neglecting the transverse shear and the flexural anisotropy compliance.

The challenge is to develop representative buckling-critical scale test samples. The
design methodology for full-scale composite cylinder test-articles was validated by full-
scale testing [21]. The test-article designs were generated and then down-selected by using
simple closed-form failure calculations and the nondimensional significant design-space
parameters. A large pool of possible subscale test-article designs was evaluated to predict
the global buckling failure mode using higher-fidelity finite element analysis. It was
discovered that the predicted closed-form buckling loads matched well the finite element
results, but that the predicted strains at buckling differed significantly. This difference
leads to slight redesigns of partial test articles. The selected designs are given by buckling-
response predictions from the closed-form analyses and geometrically nonlinear finite
element analyses with geometric imperfections. The proposed iterative design process is
used to develop buckling-critical specimens in the design space of interest.

The energy method of applying the similitude transformation to the total energy of
the structure system was performed. This method has been applied to study linear elastic
beams, static deformation for scale models of plates [22], natural vibration scale models of
plates and laminated hyperbolic shallow shells [22,23], static deformation for scale models
of a linear elastic two-dimensional frame with changing material and cross-section [24],
a static deformation for scale models of material nonlinear elastic beam with the same
material as the prototype [24], prestressed vibration and buckling of densely stiffened
circular cylindrical panels [1], axial compression post-buckling similitude model of densely
stiffened cylinders with dimple imperfections [25], and structural similitude for nonlinear
buckling of discrete orthogonally stiffened cylinders subjected to axial compression or
external pressure [26,27]. Based on the strain energy release rate approach and the principle
of conservation of energy in the linear elastic fracture mechanics framework, the structural
similarity for the static deflection and slope problem of a rectangular cross-section cracked
beam with elastic support was investigated [28]. The energy similitude correction method
was proposed to solve free vibration high-precision similitude of aluminum alloy cylin-
ders [29], laminated composite cylinders [30], FG porous plates [31], functionally graded
material cylinders [32].

Based on the geometric imperfection function of welded stiffened cylinders, post-
buckling analysis of the structure was performed by Hilburger [33–35] using the fine finite
element model (FEM) and verification by scale model tests and prototype tests. The new
reduction factor for the buckling load can be determined by this method without a large
number of tests on large diameter stiffened cylinders. Local buckling of the skin can be
prevented by reducing the spacing of longitudinal and ring stiffeners in the modified
design of the model. Additionally, the constant cross-sectional area of the structure was
maintained by adjusting the thickness of the longitudinal and ring reinforcement. However,
a detailed design basis and the buckling scale laws of scale models were not given.

The imperfection sensitivity of a 4.5 m diameter isogrid stiffened cylinder under axial
compression was investigated numerically and experimentally [36]. The NASA SP-8007
measured imperfection, and several types of assumed imperfections, such as eigenmode-
shape imperfection and dimple-shape imperfections, were implemented in finite element



Buildings 2022, 12, 2163 4 of 30

models for predicting the knockdown factors (KDFs), respectively. Then, the buckling test
of this full-scale stiffened shell subjected to axial compression was conducted to validate
the above numerical approaches. It can be shown that the KDF predicted by the worst
multiple perturbation load approach (WMPLA) agreed well with the test results, while
the ones predicted by NASA SP-8007 and eigenmode-shape imperfection are extremely
conservative. In addition, the measured and other assumed imperfections are risky, because
these methods over-estimate the actual load-bearing capacity. Finally, it can be found that
the WMPLA is an efficient and potential approach to predicting the improved KDFs in the
design stages of future launch vehicles.

The development of new analysis-based shell KDFs for modern integrally stiffened
metallic cylinders has been presented [37]. These new KDFs were investigated according
to experimentally validated high-fidelity finite element analyses including the effects of
geometric and loading imperfections, stiffener longitudinal welds, pattern orthotropy,
and combined mechanical and internal pressure loads. Then, these developed factors
can be tailored to improve as the design matures during the design cycle. The derivation
of the new analysis-based KDFs was introduced herein from which a hierarchy of KDFs
had been developed for different levels of design fidelity. Selected KDFs of orthogrid-
stiffened cylinders under uniform axial compression and combined internal pressure and
axial compression were investigated in a simulated design cycle to explain the use of
the new factors. In addition, using a high-fidelity finite element model, the resulting
cylinder design was analyzed to verify these predicted buckling loads and new analysis-
based KDFs. The results have shown that the new KDFs can be used to generate robust
preliminary designs considering relevant characteristic imperfections and design features.
In a mathematically consistent manner, these KDFs can be improved according to the
design cycle and corresponding mature design tools.

Stiffened shells are viewed as orthogonal anisotropic shells based on the smeared
stiffener theory. The characteristics of the four main methods for studying shell buckling
scale models are as follows. The dimensional analysis method is more suitable for the case
of fewer structural design parameters, and this method is more complicated when the struc-
tural design parameters are more numerous. The similitude method applied to the solution
of the governing equations must first assume the displacement function, and closed-form
or approximate solutions must be obtained before applying the similitude transformation.
If the structure is more complicated or the displacement function is difficult to express, this
method is restricted and complicated for selection of scale laws, and the advantage of the
similitude method is underused. The considered similarity conditions are far fewer than
the design variables in the similitude method applied to the differential equations, which
makes it convenient for partial similitude simulation. However, the governing differential
equations of stiffened shells can be obtained via the energy function of the structure, and
thus, this method does not appear to be sufficiently direct and convenient. Compared with
the previous three methods, the energy method applying the similitude transformation to
the total energy is a relatively new approach that offers the advantages of direct and simple
analysis, and the similitude conditions are not affected by boundary conditions.

To meet the need for scale model tests of large stiffened cylinders, the post-buckling
scaling laws of the cylinders under axial compression are improved and developed ac-
cording to the structural and mechanical properties. Considering the stiffness parameter
formulas and deformation scaling factor, the generalized similarity conditions and scaling
laws for post-buckling of stiffened cylinders under axial compression are established by
the energy method based on the Donnell nonlinear geometric equation with initial geo-
metric imperfections. First, the reliability and correctness of the finite element analysis
is verified by the literature on post-buckling of stiffened cylinders. Then, post-buckling
partial similarities under axial compression are investigated for stiffened cylinders with
different geometric imperfections, radius to effective thickness ratios, boundary conditions,
and stiffened cross-sections.
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2. Generalized Similitude Conditions and Scaling Laws for Post-Buckling of Stiffened
Cylinders under Axial Compression

The relationship between the total energy of two similar structures of the stiffened
cylindrical shell model and the prototype can be expressed as shown [23]:

Πp(Xpi) = ψ (Ci)Πm(Xmi) (1)

where Π is the total energy of the system; Xpi and Xmi (i = 1, 2, . . . , n) are geometric and
physical parameters of the prototype and model, respectively; and ψ(Ci) (i = 1, 2, . . . , n) are
the transfer functions of two similar structural parameters.

The energy functional of stiffened cylinders can be expressed as follows:

Π = U + UL (2)

where U, and UL are, respectively, the strain energy and the work produced by external forces.
Based on the smeared stiffener theory, the expressions for force and moment of stiff-

ened cylinders are written as shown [38]:

Nx = A11εx + A12εy + B11χx
Ny = A12εx + A22εy + B22χy
Nxy = A66γxy
Mx = B11εx + D11χx + D12χy
My = B22εy + D12χx + D22χy
Mxy = D66χxy

(3)

where the expressions of stiffness parameters Aij, Bij, and Dij are given as follows:

A11 = B + Es As
ds

, A12 = µB, A22 = B + Er Ar
dr

, A66 = 1−µ
2 B,

B11 = es
Es As

ds
, B22 = er

Er Ar
dr

,

D11 = D + Es Is
ds

, D12 = µD, D22 = D + Er Ir
dr

, D66 = D(1− µ) + 1
2

(
Gs Js
ds

+ Gr Jr
dr

)
.

(4)

where

B =
Et

1− µ2 , D =
Et3

12(1− µ2)
, Js =

1
3
(bfst3

fs + hwst3
ws), Jr =

1
3
(bfrt3

fr + hwrt3
wr). (5)

where B and D are the extensional rigidity and the bending rigidity, respectively, and t is
the thickness of the skin. Subscripts s and r denote the stringers and rings, respectively, and
subscripts f and w denote the flange and web of the stiffeners, respectively. Es and Er are the
elastic modulus of the stringers and rings, respectively, As and Ar denote the cross-sectional
areas of the stringer and ring, respectively, Is and Ir denote the moments of inertia for
cross-sections of the stringer and ring relative to the shell middle surface, respectively,
and Js and Jr denote the torsional constants of the stringer and ring, respectively. The
length and thickness of the stringer flange and web are, respectively, denoted by bfs, tfs,
hws, and tws and for the rings flange and web they are bfr, tfr, hwr, and twr. ds and dr
denote the distances between two stringers and rings, respectively, and the eccentricities es
and er denote the distance from the middle surface of shell to the centroid of the stiffener
cross-section (Figure 2).
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Based on Donnell’s assumptions, the nonlinear geometric equations of stiffened cylin-
ders with initial geometric imperfection are given as follows [39].

lεx = u,x +
1
2 (w,x)

2 + w,xw,x, εy = v,y +
w
R + 1

2
(
w,y
)2

+ w,yw,y,
γxy = u,y + v,x + w,xw,y + w,xw,y + w,xw,y,

χx = −w,xx, χy = −w,yy, χxy = −w,xy.
(6)

The strain energy of stiffened cylinders can be defined as shown [40]:

U =
1
2

∫ 2πR

0

∫ L

0
(Nxεx + Nxyγxy + Nyεy + Mxχx + 2Mxyχxy + Myχy)dxdy (7)

where L and R denote the cylindrical shell lengths in the axial and radial directions,
respectively.

The work produced by axial forces of the structure can be expressed as shown [41]:

UL = −
∫ 2πR

0

∫ L

0
Pxu,xdxdy (8)

Substituting Equations (7) and (8) into Equation (2) yields the following:

Π = 1
2
∫ 2πR

0

∫ L
0 {A11[u,x +

1
2 (w,x)

2 + w,xw,x]
2
+ A22[v,y +

w
R + 1

2 (w,y)
2 + w,yw,y]

2

+2A12[u,x +
1
2 (w,x)

2 + w,xw,x][v,y +
w
R + 1

2 (w,y)
2 + w,yw,y]

+A66(u,y + v,x + w,xw,y + w,xw,y + w,xw,y)
2 − 2B11w,xx[u,x +

1
2 (w,x)

2 + w,xw,x]

−2B22w,yy[v,y +
w
R + 1

2 (w,y)
2 + w,yw,y] + D11w,xxw,xx + 2D12w,xxw,yy

+D22w,yyw,yy + 2D66w,xyw,xy − 2Pxu,x}dxdy

(9)

Prototype structural parameters can be expressed by the model structural parameters
and scaling factors.

xp = Cxxm, yp = Cyym, up = Cuum, vp = Cvvm, wp = Cwwm,
wp = Cwwm, (Aij)p = CAij(Aij)m, (Bij)p = CBij(Bij)m,

(Dij)p = CDij(Dij)m, Rp = CRRm, (Px)p = CPx (Px)m.
(10)

Assuming that the skins of two similitude structures conform to complete geometric
similarity, i.e., Cx = Cy = CR = Cu = Cv = Cw = Cw, the necessary conditions for the models
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to predict accurately the prototype are obtained by applying the similitude transformation
to Equation (9) as follows.

CA11 = CA12 = CA22 = CA66 =
CB11

CR
=

CB22

CR
=

CD11

C2
R

=
CD12

C2
R

=
CD22

C2
R

=
CD66

C2
R

= CPx (11)

From Equation (11), the necessary similitude conditions between the model and its
prototype can be obtained:

CA11 = CA12 = CA22 = CA66 (12)

CB11 = CB22 (13)

CD11 = CD12 = CD22 = CD66 (14)

CAij C
2
R = CBij CR = CDij (15)

The similitude condition of the buckling mode shapes of the two systems can be
defined as shown:

Cm = Cn = 1 (16)

where m and n are the numbers of the half-waves of cylindrical shells in the longitudinal
and circumferential directions, respectively.

Consider the stiffened cylinders subjected to in-panel, uniaxial compression load Px
(positive in compression). Assuming non-dimensional axial compression load
KPx = PxR2/(π2D11), therefore, CPx = CKPx

CD11 /C2
R, the similitude invariant of post-

buckling can be written as:
CPx C2

R/Cstiff = 1 (17)

where Cstiff is CAij C
2
R or CBij CR or CDij .

The scaling law for post-buckling of stiffened cylinders under axial compression can
be derived:

(Px)p = (Px)m
Cstiff

C2
R

= (Px)mCstiff(
Rm

Rp
)

2
(18)

where Px is the axial compression load in the x-direction.

3. Method for Post-Buckling Analysis of Stiffened Cylinders under Axial Compression

Thin-walled stiffened cylinders usually undergo buckling when the stress of the
structure is notably low and does not reach the yield strength. Therefore, the influence
of material nonlinearity cannot be considered in the post-buckling analysis of stiffened
cylinders subjected to axial compression. The stiffened cylinder constructed of skin and ribs
always incurs certain geometric imperfections in the process of manufacture and use. The
post-buckling bearing capacity of the reinforced cylinder with geometrical imperfections
is lower than that of the perfect structure. For accurate prediction of the post-buckling
behavior of stiffened cylinders with geometric imperfections, the load-displacement curves
must be tracked throughout the entire process.

The basic concept of the arc length (AR) method uses vector mechanics to describe
the equilibrium paths of the structure. The development trend of the nonlinear process
is controlled through an introduced constraint condition based on the original structural
balancing equations. Currently, the AR method improved by Crisfield [42] is generally used
in post-buckling analysis. The AR method can be applied to perform unstable and stable
buckling analysis. The post-buckling stage of stiffened cylinders under axial compression is
generally unstable buckling, and thus, the AR method is used to track the load-displacement
path of structural buckling.
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4. Verification of Post-Buckling of Cylinders under Axial Compression

The reliability and accuracy of the finite element analysis in this paper is verified by
comparing the results from the finite element analysis with those from the literature.

Figure 3 shows the results obtained from post-buckling analysis for eigenvalue modal
imperfection (EMI) of three different amplitudes (imperfection factor ξ = 0.1, 0.5, and 1.0
for eigenmode m = 1, n = 10). The relative errors of the buckling limit loads for the three
imperfection amplitudes are presented in Table 1.
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Table 1. Comparison of the buckling limit loads of the cylinder with different imperfection factors.

ξ = 0.1 ξ = 0.5 ξ = 1.0

Pcl Present (N) 1051.5 823.4 604.1
Pcl [43] (N) 1045 784 557
error (%) 0.62% 5.02% 8.46%

The material and geometric parameters of the longitudinal stiffened cylinders XS-1
and AS-2 [44,45] are shown in Table 2. The boundary conditions at both ends of the
structure are classical simply supported (SS3) or fixed support (C3), and the expressions of
the boundary conditions are given by Equations (19) and (20), respectively. In the finite
element analysis, axial constraints are added at two symmetrical node positions along the
1
2 height of the stiffened cylinder to prevent rigid body displacement of the structure. The
skin is only restricted at the end of the stiffened cylinder, and the axial compression load is
applied to the end faces of the shell and the reinforced section (i.e., the most unfavorable
constraints and loads are used).

Table 2. Geometric and material properties of stringer-stiffened cylinders.

E (Gpa) µ R (mm) L (mm) t (mm) hs (mm) ts (mm) Ns

XS-1 68.95 0.3 101.6 101.6 0.196596 0.475488 1.67894 80
AS-2 68.95 0.3 101.6 139.7 0.196596 0.475488 1.67894 80

The SS3 boundary conditions are given as follows:

w = Mx = v = Nx (19)
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The C3 boundary conditions are given as follows:

w = w,x = v = Nx (20)

Based on the finite element model of longitudinal stiffened cylinders, post-buckling
analysis under axial compression is performed by introducing an ideal disturbance dis-
placement imperfection (IDDI). The expression of two-modal idealized imperfection can be
as follows [44,45]:

w
t
= −0.01 cos(

2πx
L

) + 0.50 sin(
πx
L
) cos(

ny
R
) (21)

Comparisons of the results for axial compression buckling of the stringer-stiffened
cylinder XS-1 are presented in Table 3. If the boundary conditions of XS-1 are SS3 and
C3, the error between the buckling limit load of the finite element and the result of the
literature [44] is −4.45% and −17.48%, respectively, and the buckling mode shape is (1, 11).
The reasons for the discrepancy in the buckling ultimate load are listed as follows: 1© the
smeared stiffener theory is adopted in the literature, 2© the effects of load eccentricity
are not considered in the literature, and 3© rotation constraints and in-plane boundaries
have a great influence on the external longitudinal stiffened cylinders. If the boundary
condition of XS-1 is SS3, the post-buckling limit load of axial compression compared with
the linear buckling load of the perfect structure is reduced by 40.6%, and the discrepancy is
−4.19% compared with the result of the literature [44]. If the boundary condition is C3, the
post-buckling limit load of axial compression is reduced by 40.7%, and the error is −5.87%
compared with the result of the literature [44]. The results for axial compression buckling
of the stringer-stiffened cylinder AS-2 are presented in Table 4.

Table 3. Comparisons of buckling results (N/m) for the stringer-stiffened cylinder XS-1 under
axial load.

SS3 C3

[44] Present Error (%) [44] Present Error (%)

Pcr 24,780 (1,11) 24,694 (1,11) −0.35 28,280 (1,12) 24,964.7 (1,11) −11.72
Plim 15,347.5 (1,11) 14,665.3(1,11) −4.45 17,937.5 (1,11) 14,802.3 (1,11) −17.48
ρs 0.62 0.594 −4.19 0.63 0.593 −5.87

Note: Pcr—linear buckling load of perfect structure, Plim—axial post-buckling ultimate load of structures with
initial geometric imperfection; (m, n)—m axial half-wavenumber, n–circumferential wavenumber; ρs = Plim/Pcr.

Table 4. Comparison of the axial buckling results (N/m) for the stringer-stiffened cylindrical
shell AS-2.

SS3 C3

[45] Present Error (%) [45] Present Error (%)

Pcr
22,980
(1,10)

22,824
(1,10) −0.68 25,687

(1,10)
22,988.5

(1,10) −10.5

Plim
13,858
(1,10)

15,054
(1,10) 8.63 15,700

(1,10)
15,146.4

(1,10) −3.53

ρs 0.60 0.660 10.0 0.61 0.659 8.03
Note: Pcr—linear buckling load of perfect structure, Plim—axial post-buckling ultimate load of structures with
initial geometric imperfection; (m, n)—m axial half-wavenumber, n—circumferential wavenumber; ρs = Plim/Pcr.

Post-buckling of the cylinder with dimple imperfections (DI) under axial compression
in the literature [46] is taken as the example for verification. The geometric and material
parameters of the cylinder with DI are L = 0.51 m, R = 0.25 m, t = 0.0005 m, E = 72 GPa, and
µ = 0.31 [46]. The axial displacement constraint for the upper boundary of the structure
only is released, while the lower boundary of the structure is a fixed support.
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The applied dimple imperfection function can be expressed as [46]:

δa(s) = δ0e−πs/λ cos
πs
λ

(22)

s =
√
(Rθ − Rθ0)

2 + (z− z0)
2 (23)

where δ0 is the imperfection amplitude, λ is the imperfection diameter, θ0 and z0 denote
the circumferential and longitudinal coordinate values of the imperfection center, and s
denotes the distance from the imperfection center to the finite element grid node within the
imperfection range. The dimple imperfection is applied to the perfect cylinder model by
using static analysis and updating the node coordinates.

The AR method with force loading is used for validation. Table 5 shows the errors
between the results obtained by the AR method and the literature results when δ0 = 0.5 t
and λ equals 0.05 m, 0.06 m and 0.07 m, respectively [25]. It can be found from Table 5 that
the AR method APDL program for post-buckling of cylinders under axial compression is
reliable and accurate.

Table 5. Comparison of post-buckling ultimate loads of cylinders with DI under axial compression.

δ0/m λ/m Literature [46]/kN AR Method/kN Error/%

0.5 t
0.05 42.18 43.90 4.08%
0.06 42.29 44.04 4.14%
0.07 42.38 43.96 3.73%

5. Post-Buckling Similarity Simulation of Axial Compression Based on Three
Different Geometrical Imperfections

Finite element models were established in ANSYS, and the SHELL181 element was
used to divide the stiffened cylinders. According to the suggestion of Meyer–Piening [47],
the size of the shell element should be no greater than 0.5

√
Rt. For the stiffened cylinders,

the skins between two adjacent stiffeners should be divided into at least 8 equal portions,
and the webs of the stiffeners are divided into 3 to 5 equal portions along the height
direction. The flanges of stiffeners should be divided into 4 equal portions. Post-buckling
analysis of stiffened cylinders subjected to axial compression is solved by the AR method.

The effective shell wall thicknesses of the densely stiffened orthotropic cylinders teff is
defined as [37]:

teff =
4

√
144D11D22

A11 A22
(24)

The effects of the radius to effective thickness ratios, boundary conditions, and stiff-
ened cross-sections for similitude simulation are investigated. The material parameters of
scale models are the data of Table 6 [27].

Table 6. Material parameters of scaled models.

Material E/GPa µ

Aluminum 68.75 0.30
Brass 106 0.34

Copper 124 0.33
PVC 3.79 0.40

The scaling law of axial compression post-buckling load in Equation (18) can be
simplified as follows:

CPx = kk1 (25)
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5.1. Post-Buckling Similarity Simulation of Axial Compression Based on First-Order EMI

The geometric and material parameters of the longitudinal ring rectangular stiffened
cylinder (LRRSC) and the longitudinal ring T-type stiffened cylinder (LRTSC) are listed in
Table 7. The ends of the skin of the stiffened cylinders are constrained, and the geometric
scale factors are equal to 10.

Table 7. Geometric and material properties of longitudinal ring stiffened cylinders.

LRRSC
E (GPa) µ R L t hr hs tr ts dr ds R/teff
72.3975 0.3 2425.7 — 12.7 76.708 76.708 24.384 24.384 254 254 23.7618

LRTSC
E (GPa) µ R L t bfr, bfs

hwr,
hws

tfr, tfs twr, tws Nr Ns R/teff

206 0.3 3230 12,600 18 175 75 18 15 24 72 40.004

Note: The unit of length is millimeter—based on different aspect ratios (L/R = 1.26, 2.51, and 3.77).

In the finite element analysis, based on the first-order eigenvalue buckling mode and
introduction of the imperfection factor ξ, imperfect structure models were obtained by intro-
ducing imperfections into the perfect structural models and updating the node coordinates.

For stiffened cylinders with different aspect ratios (L/R = 1.26, 2.51, and 3.77), bound-
ary conditions (SS3 and C3) and stiffened cross-sections (rectangular and T-type), similitude
simulations for axial compression post-buckling with four imperfection factors (0.05, 0.1,
0.3, and 0.5) were performed based on the first-order EMI.

The partial similarities for axial compression post-buckling of LRRSC with the C3
boundary condition are similar to those of structures with the SS3 boundary condition.
Only partial similarities are given for axial compression post-buckling of structures with
L/R = 2.51 and the SS3 boundary condition.

If the material of the model is AL, Figure 4 shows the results of partial similarity and
the equilibrium paths of the models for axial compression post-buckling of rectangular
stiffened cylinders with L/R = 2.51, the SS3 boundary condition and four different geometric
imperfections (ξ = 0.05, 0.1, 0.3, and 0.5). As shown in Figure 4a–d, the equilibrium paths of
the models can primarily predict the results of its prototype using the scaling law Equation
(25) and the deformation scaling factor. As observed from Figure 4e, the slope of the linear
phase curve gradually decreases as the imperfection factor increases in the initial stage
of loading. When ξ = 0.05 and 0.1, the type of structural buckling belongs to limit-point
instability. When the imperfect factor is small, the limit point of the equilibrium path
extends far to a tip, and the buckling limit load gradually decreases as the imperfection
factor increases. When ξ > 0.1, the axial compression buckling bearing capacity of structures
shows the characteristic of monotonously stable increase. For ξ = 0.5, the deviation between
the predicted displacement and the finite element result is large at the end of the post-
buckling equilibrium path, because large deformation is produced by a slight change of
the load at the end of the equilibrium path. The buckling mode shape (3,5) of the model
with ξ = 0.05 at the limit point of the equilibrium path is shown in Figure 5 and is the
same as the shape at the corresponding point of the prototypical equilibrium path. When
ξ = 0.05 and 0.1, the discrepancies between the predicted axial compression limit loads
Pxlim_p_pre and the axial compression limit loads of the prototype Pxlim_p are −0.92% and
−0.83%, respectively.



Buildings 2022, 12, 2163 12 of 30

Buildings 2022, 12, x FOR PEER REVIEW 12 of 30 
 

5 and is the same as the shape at the corresponding point of the prototypical equilibrium 
path. When ξ = 0.05 and 0.1, the discrepancies between the predicted axial compression 
limit loads Pxlim_p_pre and the axial compression limit loads of the prototype Pxlim_p are 
−0.92% and −0.83%, respectively. 

0 20 40 60 80 100 120
0

2,000

4,000

6,000

8,000

10,000

P x
 (k
N
/m
)

δx (mm)

 FEM (m)
 FEM (p)
 Pre (p)

0 20 40 60 80 100 120
0

2,000

4,000

6,000

8,000

P x
 (k
N
/m
)

δx (mm)

 FEM (m)
 FEM (p)
 Pre (p)

(a) ξ = 0.05 (b) ξ = 0.1 

0 30 60 90 120 150
0

2,000

4,000

6,000

8,000

P x
 (k
N
/m
)

δx (mm)

 FEM (m)
 FEM (p)
 Pre (p)

0 30 60 90 120
0

2,000

4,000

6,000

8,000

P x
 (k
N
/m
)

δx (mm)

 FEM (m)
 FEM (p)
 Pre (p)

 
(c) ξ = 0.3 (d) ξ = 0.5 

0 3 6 9 12
0

200

400

600

800

1,000

 ξ =0.05
 ξ =0.1
 ξ =0.3
 ξ =0.5

P x
 (k
N
/m
)

δx (mm)  
(e) model 

Figure 4. Comparison of the predicted and original load vs. end-shortening curves of the stiffened 
cylindrical shells with L/R = 2.51 and the SS3 boundary condition when the material of the model is AL. 
Figure 4. Comparison of the predicted and original load vs. end-shortening curves of the stiffened
cylindrical shells with L/R = 2.51 and the SS3 boundary condition when the material of the model
is AL.
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Figure 5. Radial displacement contour map at the critical point of the post-buckling path for the
model of the stiffened cylinders with L/R = 2.51 and the SS3 boundary condition when the material
is AL and ξ= 0.05.

When the material of the model is brass, Figure 6 demonstrates the results of partial
similarity and the equilibrium paths of the models for axial compression post-buckling
of rectangular stiffened cylinders with L/R = 2.51, the SS3 boundary condition, and four
different geometric imperfections. As demonstrated by Figure 6a–d, the equilibrium paths
of the models can satisfactorily predict the results of its prototype using the scaling law
Equation (18) and the deformation scaling factor. It can be noted from Figure 6e that the
change rule for the equilibrium paths of the model is similar to that in Figure 4e. The
buckling mode shape (3,5) of the model with ξ = 0.05 at the limit point of the equilibrium
path is given in Figure 7, which is the same as the shape at the corresponding point of the
prototypical equilibrium path. When ξ = 0.05 and 0.1, the discrepancies between Pxlim_p_pre
and Pxlim_p are −4.44% and −3.71%, respectively.
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model of the stiffened cylinders with L/R = 2.51 and the SS3 boundary condition when the material
is brass and ξ = 0.05.

When the material of the model is PVC, Figure 8 shows the results of partial similarity
and the equilibrium paths of the models for axial compression post-buckling of rectan-
gular stiffened cylinders with L/R = 2.51, the SS3 boundary condition, and four different
geometric imperfections. As shown in Figure 8a–d, the equilibrium paths of the models
can reasonably predict the results of its prototype using the scaling law Equation (18) and
the deformation scaling factor. It can be observed from Figure 8e that the change rule of
the model equilibrium paths is similar to those of Figures 4e and 6e. The buckling mode
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shape (3,5) of the model with ξ = 0.05 at the limit point of the equilibrium path is shown
in Figure 9, which is the same as the shape at the corresponding point of the prototypical
equilibrium path. When ξ = 0.05 and 0.1, the discrepancies between Pxlim_p_pre and Pxlim_p
are −8.65% and −6.76%, respectively.
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cylinders with L/R = 2.51 and the SS3 boundary condition when the model material is PVC.

When the material of the model is AL, Figure 10 shows the results of partial similarity
and the equilibrium paths of the models for axial compression post-buckling of T-type stiff-
ened cylinders with the SS3 boundary condition and four different geometric imperfections
(ξ = 0.05, 0.1, 0.3, and 0.5). As shown in Figure 10a–d, the equilibrium paths of the models
can predict the results of its prototype using the scaling law Equation (25) and the deforma-
tion scaling factor. At the limit points of the equilibrium paths, the buckling mode shapes
of the models are both (1,3), and only the case of ξ = 0.05 is given, as shown in Figure 11.
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Figure 10e depicts the equilibrium paths of the models. At the initial stage of loading, the
slope of the linear phase curve gradually decreases as the imperfect factor increases. When
ξ = 0.05 and 0.1, the type of structural buckling is snap-through buckling. A longer post-
buckling path of partial models cannot be given because the capability for post-buckling
analysis in ANSYS finite element software is not strong. When the imperfection factor is
small, the limit loads of the structures under axial compression gradually decrease with the
increasing imperfection factor. When ξ > 0.1, no extreme point appears in the equilibrium
paths, and the load-carrying capacity of the structures under axial compression gradually
decreases as the imperfection factor increases in the post-buckling stage. When ξ = 0.05,
the discrepancy between Pxlim_p_pre and Pxlim_p is −8.21%. When ξ = 0.1, the discrepancy
between Pxlim_p_pre and Pxlim_p is −13.03%, and the discrepancy is −5.93% for the lower
critical load.
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Figure 9. Radial displacement contour map at the critical point of the post-buckling path for the
model of the stiffened cylinders with L/R = 2.51 and the SS3 boundary condition when the material
is PVC and ξ = 0.05.
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Figure 11. Radial displacement contour map at the upper critical point of the post-buckling path for
the model of the T-type stiffened cylinders with the SS3 boundary condition when the material is AL
and ξ = 0.05.

When the material of the model is brass, Figure 12 presents the results of partial
similarity and the equilibrium paths of the models for axial compression post-buckling of
T-type stiffened cylinders with the SS3 boundary condition and four different geometric
imperfections. As shown in Figure 12a–d, the equilibrium paths of the models can predict
the results of its prototype using the scaling law Equation (18) and the deformation scaling
factor. It can be noted from Figure 12e that the change rule of the equilibrium paths of the
models is similar to that of Figure 10e. The buckling mode shapes of the models are (1,3)
at the limit point of the equilibrium path, and only the case of ξ = 0.05 is given, as shown
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in Figure 13. When ξ = 0.05 and 0.1, the discrepancies between Pxlim_p_pre and Pxlim_p are
−11.54% and −16.1%, respectively.
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Figure 12. Comparison of the predicted and original load vs. end-shortening curves of the T-type
stiffened cylinders with the SS3 boundary condition when the model material is brass.

When the material of the model is PVC, Figure 14 shows the results of partial sim-
ilarity and the equilibrium paths of the models for axial compression post-buckling of
T-type stiffened cylinders with the SS3 boundary condition and four different geometric
imperfections. As shown in Figure 14a–d, the equilibrium paths of the models can predict
the results of its prototype using the scaling law Equation (18) and the deformation scaling
factor. As observed from Figure 14e, the change rule of equilibrium paths of the models is
similar to those of Figures 10e and 12e. The buckling mode shapes of the models are (1,3)
at the limit point of the equilibrium path, and only the case of ξ = 0.05 is given, as shown
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in Figure 15. When ξ = 0.05 and 0.1, the discrepancies between Pxlim_p_pre and Pxlim_p are
−14.77% and −19.36%, respectively.
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Figure 13. Radial displacement contour map at the upper critical point of the post-buckling path for
the model of the T-type stiffened cylinders with the SS3 boundary when the material is brass and
ξ = 0.05.
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Figure 15. Radial displacement contour map at the upper critical point of the post-buckling path for
the model of the T-type stiffened cylinder with the SS3 boundary condition when the material is PVC
and ξ = 0.05.

The cases of post-buckling of longitudinal ring T-type stiffened cylinders with the C3
boundary condition are similar to those of the SS3 boundary condition, and the correspond-
ing results are not given.

5.2. Post-Buckling Similarity Simulation of Axial Compression Based on IDDI

The parameters of the longitudinal rectangular stiffened cylinder (LRSC) are listed
as follows: R = 1.016 m, L = 1.397 m, t = 1.96596 × 10−3 m, hs = 4.75488 × 10−3 m,
ts = 16.7894 × 10−3 m, Ns = 80, E = 68.95 GPa, µ = 0.3, L/R = 1.375, and R/teff = 268.9545.
The boundary condition is SS3, and geometric scale factors are 10. For the geometric
imperfection of a given function form, the node coordinates of the finite element model
are updated based on static analysis, and the imperfections are introduced into the perfect
finite element model. The similarity simulation for post-buckling of LRSC under axial
compression was analyzed by ANSYS and MATLAB software based on the IDDI.

Using the ideal disturbance symmetric displacement imperfection given by Simit-
ses [48], post-buckling similarity simulation of imperfect structures with different im-
perfection amplitudes under axial compression was performed, and the correctness and
universality of the scaling laws for the axial compression post-buckling proposed in this
paper are further verified.
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The functional expression of ideal perturbation symmetric displacement imperfection
is written as shown [48]:

w
t
= ξ sin(

πx
L
) cos(

ny
R
) (26)

where ξ = wmax/t is the imperfection amplitude factor. The four cases of imperfection are
ξ = 0.1, 0.3, 0.5, and 1, respectively.

When the material of the model is brass, Figure 16 shows the results of the partial
similarity for axial compression post-buckling of LRSC with the SS3 boundary condi-
tion and four different geometric imperfections. As shown in Figure 16a–d, the equilib-
rium paths of the models can well predict the results of its prototype using the scaling
law Equation (18) and the deformation scaling factor. For the stiffness scaling factor
Cstiff = (CD11 + CD12 + CD22 + CD66)/4 in Equation (18), its specific value is 626.473.
Figure 17 shows the buckling mode shapes at the upper and lower critical points of the
equilibrium path of the model when ξ = 0.1. When ξ = 0.1, 0.3, 0.5, and 1, the discrepancies
between the predicted upper and lower critical loads and the corresponding results of the
prototypes are −3.09% and −2.43%, −2.90% and −2.45%, −2.80% and −2.46%, −2.70%
and −2.50%, respectively. The first upper critical loads are considered as Pxlim.
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Figure 16. Comparison of the predicted and original load vs. end-shortening curves of the stringer-
stiffened cylinders with the SS3 boundary condition when the model material is brass. 
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stiffened cylinders with the SS3 boundary condition when the model material is brass.

When the material of the model is PVC, Figure 18 presents the results of partial
similarity for axial compression post-buckling of LRSC with the SS3 boundary condi-
tion and four different geometric imperfections. As shown by Figure 18a–d, the equi-
librium paths of the models can well predict the results of its prototype using the scal-
ing law Equation (18) and the deformation scaling factor. The stiffness scaling factor
Cstiff = (CD11 + CD12 + CD22 + CD66)/4 in Equation (18) has a specific value of 16,693.207.
Figure 19 demonstrates the buckling mode shapes at the upper and lower critical points of
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the equilibrium path of the model when ξ = 0.1. When ξ = 0.1, 0.3, 0.5, and 1, the discrepan-
cies between the predicted upper and lower critical loads and the corresponding results of
the prototypes are −6.37% and −4.61%, −5.92% and −4.63%, −5.74% and −4.66%, −5.42%
and −4.74%, respectively.
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Figure 17. Radial displacement contour map at the critical points of the post-buckling path for the
model with the SS3 boundary condition when the material of the model is brass and ξ = 0.1.

Buildings 2022, 12, x FOR PEER REVIEW 22 of 30 
 

  
(a) Oblique view of upper critical point (magnified 30 times) (b) Front view of upper critical point (magnified 30 times) 

  
(c) Oblique view of lower critical point (magnified 10 times) (d) Front view of lower critical point (magnified 10 times) 

Figure 17. Radial displacement contour map at the critical points of the post-buckling path for the 
model with the SS3 boundary condition when the material of the model is brass and ξ = 0.1. 

When the material of the model is PVC, Figure 18 presents the results of partial similarity 
for axial compression post-buckling of LRSC with the SS3 boundary condition and four dif-
ferent geometric imperfections. As shown by Figure 18a–d, the equilibrium paths of the mod-
els can well predict the results of its prototype using the scaling law Equation (18) and the 
deformation scaling factor. The stiffness scaling factor ( )11 12 22 66stiff / 4D D D DC C C C C= + + +  in 

Equation (18) has a specific value of 16,693.207. Figure 19 demonstrates the buckling mode 
shapes at the upper and lower critical points of the equilibrium path of the model when ξ 
= 0.1. When ξ = 0.1, 0.3, 0.5, and 1, the discrepancies between the predicted upper and 
lower critical loads and the corresponding results of the prototypes are −6.37% and 
−4.61%, −5.92% and −4.63%, −5.74% and −4.66%, −5.42% and −4.74%, respectively. 

0.0 0.2 0.4 0.6 0.8
0

50

100

150

200

P x
 (k
N
/m
)

δx (mm)

 FEM (m)
 FEM (p)
 Pre (p)

 

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

P x
 (k
N
/m
)

δx (mm)

 FEM (m)
 FEM (p)
 Pre (p)

 
(a) ξ = 0.1 (b) ξ = 0.3 

Figure 18. Cont.



Buildings 2022, 12, 2163 23 of 30Buildings 2022, 12, x FOR PEER REVIEW 23 of 30 
 

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

P x
 (k
N
/m
)

δx (mm)

 FEM (m)
 FEM (p)
 Pre (p)

 

0.0 0.2 0.4 0.6 0.8 1.0
0

30

60

90

120

150

P x
 (k
N
/m
)

δx (mm)

 FEM (m)
 FEM (p)
 Pre (p)

 
(c) ξ = 0.5 (d) ξ = 1 

Figure 18. Comparison of the predicted and original load vs. end-shortening curves of the stringer-
stiffened cylinders with the SS3 boundary condition when the model material is PVC. 

  
(a) Oblique view of upper critical point (magnified 30 times) (b) Front view of upper critical point (magnified 30 times) 

  
(c) Oblique view of lower critical point (magnified 10 times) (d) Front view of lower critical point (magnified 10 times) 

Figure 19. Radial displacement contour map at the critical points of the post-buckling path for the 
model with the SS3 boundary condition when the material of the model is PVC and ξ = 0.1. 

5.3. Post-Buckling Similarity Simulation of Axial Compression Based on the DI 
Parameters for the prototype of the LRRSC is shown in Table 8 [25]. Geometric scal-

ing factors equal 10. The axial displacement constraint only is released at the upper bound-
ary of the structure, and the fixed support is adopted at the lower boundary. The DI ex-
pressed by Equation (22,23) was introduced into the stiffened cylinders, and the center 
the DI is located at half the height of the structure. 

  

Figure 18. Comparison of the predicted and original load vs. end-shortening curves of the stringer-
stiffened cylinders with the SS3 boundary condition when the model material is PVC.

Buildings 2022, 12, x FOR PEER REVIEW 23 of 30 
 

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

P x
 (k
N
/m
)

δx (mm)

 FEM (m)
 FEM (p)
 Pre (p)

 

0.0 0.2 0.4 0.6 0.8 1.0
0

30

60

90

120

150

P x
 (k
N
/m
)

δx (mm)

 FEM (m)
 FEM (p)
 Pre (p)

 
(c) ξ = 0.5 (d) ξ = 1 

Figure 18. Comparison of the predicted and original load vs. end-shortening curves of the stringer-
stiffened cylinders with the SS3 boundary condition when the model material is PVC. 

  
(a) Oblique view of upper critical point (magnified 30 times) (b) Front view of upper critical point (magnified 30 times) 

  
(c) Oblique view of lower critical point (magnified 10 times) (d) Front view of lower critical point (magnified 10 times) 

Figure 19. Radial displacement contour map at the critical points of the post-buckling path for the 
model with the SS3 boundary condition when the material of the model is PVC and ξ = 0.1. 

5.3. Post-Buckling Similarity Simulation of Axial Compression Based on the DI 
Parameters for the prototype of the LRRSC is shown in Table 8 [25]. Geometric scal-

ing factors equal 10. The axial displacement constraint only is released at the upper bound-
ary of the structure, and the fixed support is adopted at the lower boundary. The DI ex-
pressed by Equation (22,23) was introduced into the stiffened cylinders, and the center 
the DI is located at half the height of the structure. 

  

Figure 19. Radial displacement contour map at the critical points of the post-buckling path for the
model with the SS3 boundary condition when the material of the model is PVC and ξ = 0.1.

5.3. Post-Buckling Similarity Simulation of Axial Compression Based on the DI

Parameters for the prototype of the LRRSC is shown in Table 8 [25]. Geometric scaling
factors equal 10. The axial displacement constraint only is released at the upper boundary
of the structure, and the fixed support is adopted at the lower boundary. The DI expressed
by Equation (22,23) was introduced into the stiffened cylinders, and the center the DI is
located at half the height of the structure.
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Table 8. Geometric and material parameters of the LRRSC.

Material Parameters Geometric Parameters of Skin Stiffeners Parameters

E (GPa) µ L/m R/m t/m L/R hs,hr/mm ts,tr/mm Ns Nr R/teff
72.40 0.3 6.0885 2.4257 0.0127 2.51 38.354 24.384 60 24 53.3421

Taking the diameter of the DI equals to 0.060 m, with two imperfection amplitudes
equal to 0.1 t and 0.3 t, respectively; the AR method was used to investigate the partial
similitude of axial compression post-buckling of longitudinal-ring stiffened cylinders for
the distorted scale models made of four materials.

It can be shown from Table 9 that, for the scaled models made of AL with two different
imperfection amplitudes, the absolute relative error between the predicted prototypical
buckling load by scaled models based on scaling law Equation (18) and the result of the
prototype is within 2.00%. With the increase for deviation of Poisson’s ratio between scaled
models and the prototype, the relative error for buckling loads between the predicted
prototype and the prototype is increased. When the scaled model material is PVC, the
relative error between Pxlim_p_pre and Pxlim_p achieves −8.83%. The corresponding results
can also be seen in the literature [25].

Table 9. Partial similitude simulation for post-buckling of LRRSC under axial compression.

δ0/m Material
Critical Buckling Load/kN·m−1

Error/%
Model Prototype Predicted

Prototype

0.1 t
Al

595.318 6224.06 6269.24 0.73
0.3 t 500.759 5273.95 5273.45 −0.01

0.1 t Copper 1055.31 6224.06 6033.68 −3.06
0.3 t 898.381 5273.95 5136.44 −2.60

0.1 t
Brass

900.281 6224.06 5976.10 −3.98
0.3 t 767.129 5273.95 5092.24 −3.45

0.1 t
PVC

32.182 6224.06 5674.80 −8.83
0.3 t 27.270 5273.95 4808.64 −8.82

Figure 20 presents the load-displacement curves of four partial similitude scale models,
the prototype and the corresponding prediction prototypes when the DI diameter is 0.060 m
and the imperfection amplitude equals 0.3 t. Figure 21 shows the diagram of displacement
vector at the points corresponding to the critical buckling loads of the prototype and four
scale models made with distortion materials when the amplitude of imperfection equals
0.3 t. It can be found that, when the material of the scaled model is Al, the load-displacement
curve of the predicted prototype can well agree with the result of the prototype; the error
between Pxlim_p_pre and Pxlim_p is −0.01%; the buckling modes of scaled models and
the prototype at the buckling points are identical. With the increase for deviation of
Poisson’s ratio between the distorted scale model and the prototype, the deviation of
load-displacement curves between the predicted prototype and the prototype is gradually
increased. When the material of scale models is copper, brass and PVC, the errors between
Pxlim_p_pre and Pxlim_p are −2.60%, −3.45%, and −8.82%, respectively. The buckling mode
shapes for scale models made of three different materials are consistent with the result of
the prototype.
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Figure 20. Comparison of partial similitude load-displacement curves for post-buckling of stiffened 
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Figure 20. Comparison of partial similitude load-displacement curves for post-buckling of stiffened
cylinders under axial compression when δ0 = 0.3 t.
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5.4. Summary

When the material of scale models is distorted, normalized buckling load data
Pxlim_p_pre/Pxlim_p versus R/teff for stiffened cylinders with three different classes of initial
geometrical imperfections and different imperfection factors are plotted in Figure 22. The
analysis results indicated that the predicted axial compression buckling critical loads of
stiffened cylinders with EMI, IDDI, or DI can agree well with the corresponding proto-
typical results based on the derived scaling law. As the deviation of Poisson’s ratio of
the scale models and prototype materials increases, the prediction accuracy between the
buckling critical loads of prediction stiffened cylinders prototype and the results of the
corresponding prototype under axial compression become more sensitive to the Poisson’s
ratio. The derived general similitude conditions and the scaling laws are suitable for partial
simulation of axial compression post-buckling of stiffened cylinders with different radius
to effective thickness ratios.
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6. Conclusions

This study investigated the applicability of small-scale distorted models in analyzing
the post-buckling behavior of large longitudinal ring stiffened cylinders. Based on the
Donnel nonlinear geometry equations with initial geometrical imperfections and the total
energy of the structural system, the generalized similarity conditions and scaling laws were
established for the axial compression post-buckling of the stiffened cylinders. Considering
the EMI, IDDI, and DI, the partial similarities for axial compression post-buckling of the
stiffened cylinders were investigated. The following conclusions were obtained:

(1) Partial similarity simulation results show that based on first-order EMI, the equi-
librium paths of the scale models of longitudinal ring rectangular and T-type stiffened
cylinders with SS3 or C3 boundary conditions under axial compression can well predict
the results of the prototypes if the Poisson’s ratio between the scale models and the cor-
responding prototype is equal. Based on the derived scaling law, the predicted axial
compression post-buckling critical loads of stiffened cylinders can agree well with the
prototypical results.

(2) Considering IDDI and DI, the equilibrium paths of the scale models of stiffened
cylinders under axial compression can accurately predict the curves of the corresponding
prototype if the Poisson’s ratio between scale models and the prototype is equal. When the
material of the models is brass or PVC, the equilibrium paths of scale models can predict the
curves of the prototype, but the discrepancy between the predicted prototypical equilibrium
paths and the results of the prototype under axial compression increases gradually with
increasing deviation of the Poisson ratio between scale models and prototypical material.

(3) Parameter analysis shows that the proposed general similitude conditions and the
scaling laws are suitable for similarity simulation of axial compression post-buckling of
stiffened cylinders with radius to effective thickness ratios ranging from 23.76 to 268.95,
rectangular or T-type stiffened cross-sections, EMI, IDDI, and DI, three type geometrical
imperfections, and SS3 and C3, two type boundary conditions.

(4) The established general similarity conditions and the scaling laws were validated
similarity numerically for axial compression post-buckling of longitudinal ring densely
stiffened cylinders with geometric nonlinearity and initial geometric imperfections. These
similarity relations for post buckling of stiffened cylinders can offer a valuable reference for
scale model testing and buckling safety assessment of similar full-scale stiffened cylinders
in practical engineering. Buckling scale distorted models of multi-stage stiffened cylinders
will be studied in future.

Author Contributions: Conceptualization, W.Y. and W.Z.; methodology, W.Y.; software, S.D.; val-
idation, S.D. and W.Y.; formal analysis, W.Y.; investigation, W.Y.; resources, W.Y. and W.Z.; data
curation, S.D.; writing—original draft preparation, S.D.; writing—review and editing, W.Y. and C.Z.;
visualization, S.D.; supervision, W.Y.; project administration, W.Y. and W.Z.; funding acquisition, W.Y.
All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (51868013),
Science and Technology Project of Guangxi (Guike AD19245127), Natural Science Foundation
of Guangxi Province (2018GXNSFBA138056), Major science and technology projects of Guangxi
(GuiKe AA18118008) and the Doctoral Research Initiation Fund of Guilin University of Technology
(GUTQDJJ2017034). The authors are grateful for these financial supports.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.



Buildings 2022, 12, 2163 29 of 30

References
1. Yu, W.; Li, Z. Structural similitude for prestressed vibration and buckling of eccentrically stiffened circular cylindrical panels and

shells by energy approach. Int. J. Struct. Stab. Dyn. 2016, 16, 1550074. [CrossRef]
2. Ezra, A.A. Similitude Requirements for Scale Model Determination of Shell Buckling under Impulsive Pressure; Technical Report

19630000981; NTRS-NASA: Washington, DC, USA, 1962.
3. Morgan, G.W. Scaling techniques for orthotropic cylindrical aerospace structures. In Proceedings of the AIAA 5th Annual

Structures and Materials Conference, Palm Spring, CA, USA, 1–3 April 1964; pp. 333–343.
4. Ni, H. Strength and Stability Analyses for Sphere-Toroid-Cone Rotational Shells. Ph.D. Thesis, China Ship Development & Design

Center, Wuhan, China, 2012.
5. Simitses, G.J.; Rezaeepazhand, J. Structural similitude and scaling laws for buckling of cross-ply laminated plates. J. Thermoplast.

Compos. Mater. 1995, 8, 240–251. [CrossRef]
6. Rezaeepazhand, J.; Simitses, G.J.; Starnes, J.H., Jr. Scale models for laminated cylindrical shells subjected to axial compression.

Compos. Struct. 1996, 34, 371–379. [CrossRef]
7. Simitses, G.J.; Rezaeepazhand, J.; Sierakowski, R.L. Scaled models for laminated cylindrical shells subjected to external pressure.

Mech. Compos. Mater. Struct. 1997, 4, 267–280. [CrossRef]
8. Simitses, G.J. Structural similitude for flat laminated surfaces. Compos. Struct. 2001, 51, 191–194. [CrossRef]
9. Simitses, G.J.; Rezaeepazhand, J. Structural similitude for laminated structures. Compos. Eng. 1993, 3, 751–765. [CrossRef]
10. Rezaeepazhand, J.; Simitses, G.J.; Starnes, J.H., Jr. Design of scaled down models for predicting shell vibration response. J. Sound

Vib. 1996, 195, 301–311. [CrossRef]
11. Frostig, Y.; Simitses, G.J. Similitude of sandwich panels with a ‘soft’ core in buckling. Compos. Part B 2004, 35, 599–608. [CrossRef]
12. Ungbhakorn, V.; Singhatanadgid, P. Scaling law and physical similitude for buckling and vibration of antisymmetric angle-ply

laminated cylindrical shells. Int. J. Struct. Stab. Dyn. 2003, 3, 567–583. [CrossRef]
13. Ungbhakorn, V.; Singhatanadgid, P. Similitude and physical modeling for buckling and vibration of symmetric cross-ply

laminated circular cylindrical shells. J. Compos. Mater. 2003, 37, 1697–1712. [CrossRef]
14. Ungbhakorn, V.; Singhatanadgid, P. Similitude invariants and scaling laws for buckling experiments on anti-symmetrically

laminated plates subjected to biaxial loading. Compos. Struct. 2003, 59, 455–465. [CrossRef]
15. Singhatanadgid, P.; Ungbhakorn, V. Scaling laws for buckling of polar orthotropic annular plates subjected to loading. Thin-Walled

Struct. 2005, 43, 1115–1129. [CrossRef]
16. Rezaeepazhand, J.; Wisnom, M.R. Scaled models for predicting buckling of delaminated orthotropic beam-plates. Compos. Struct.

2009, 90, 87–91. [CrossRef]
17. Shokrieh, M.M.; Askari, A. Similitude study of impacted composite laminates under buckling loading. J. Eng. Mech. 2013, 139,

1334–1340. [CrossRef]
18. Rudd, M.T.; Schultz, M.R.; Waters, W.A.; Gardner, N.W.; Bisagni, C. Buckling testing of a subscale composite cylinder. In

Proceedings of the AIAA Scitech 2021 Forum, Virtual/online event, 11–15 & 19–21 January 2021; pp. 1–12. [CrossRef]
19. Eberlein, D.J. Composite Cylindrical Shell Buckling Simulation & Experimental Correlation. Master’s Thesis, Delft University of

Technology, Delft, The Netherlands, 2019.
20. Balbin, I.U.; Bisagni, C.; Schultz, M.R.; Hilburger, M.W. Scaling methodology applied to buckling of sandwich composite

cylindrical shells. AIAA J. 2020, 58, 3680–3689. [CrossRef]
21. Przekop, A.; Schultz, M.R.; Hilburger, M.W. Design of buckling-critical large-scale sandwich composite cylinder test articles. In

Proceedings of the AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, USA,
8–12 January 2018; pp. 1–23.

22. Kasivitamnuay, J.; Singhatanadgid, P. Application of an energy theorem to derive a scaling law for structural behaviors. Thammasat
Int. J. Sc.Tech 2005, 10, 33–40.

23. Ungbhakorn, V.; Singhatanadgid, P. A Scaling law for vibration response of laminated doubly curved shallow shells by energy
approach. Mech. Adv. Mater. Struct. 2009, 16, 333–344. [CrossRef]

24. Kasivitamnuay, J.; Singhatanadgid, P. Scaling laws for displacement of elastic beam by energy method. Int. J. Mech. Sci. 2017,
128–129, 361–367. [CrossRef]

25. Jiawei, D.; Xinkui, X.; Wei, Y.; Zhu, W. Study on the axial compression postbuckling similitude model of the stiffened cylindrical
shell with dimple imperfections. Adv. Civ. Eng. 2021, 2021, 6637891.

26. Zhengliang, L.; Jingchao, W.; Wei, Y.; Wanxu, Z. Study on post-buckling scale model of stringer stiffened-cylindrical shells under
axial compression based on discrete stiffened method. J. Hunan Univ. Nat. Sci. 2022, 49, 123–132.

27. Zhengliang, L.; Jingchao, W.; Wei, Y. Structural similitude for nonlinear buckling of discrete orthogonally stiffened cylindrical
shells subjected to external pressure by energy approach. Int. J. Struct. Stab. Dyn. 2022, 22, 2240021.

28. Kasivitamnuay, J.; Singhatanadgid, P. Scaling laws for static displacement of linearly elastic cracked beam by energy method.
Theor. Appl. Fract. Mech. 2018, 98, 157–166. [CrossRef]

29. Lilin, Z. Energy similitude correction method for free vibration of cylinders. Int. J. Struct. Stab. Dyn. 2021, 21, 2150023.
30. Lilin, Z. A new structural similitude method for laminated composite cylinders. Thin-Walled Struct. 2021, 164, 107920.
31. Lilin, Z. A novel similitude method for predicting natural frequency of FG porous plates under thermal environment. Mech. Adv.

Mater. Struct. 2021, 1–17. [CrossRef]

http://doi.org/10.1142/S0219455415500741
http://doi.org/10.1177/089270579500800301
http://doi.org/10.1016/0263-8223(95)00154-9
http://doi.org/10.1080/10759419708945884
http://doi.org/10.1016/S0263-8223(00)00144-6
http://doi.org/10.1016/0961-9526(93)90094-Z
http://doi.org/10.1006/jsvi.1996.0423
http://doi.org/10.1016/j.compositesb.2003.11.003
http://doi.org/10.1142/S0219455403001051
http://doi.org/10.1177/002199803035191
http://doi.org/10.1016/S0263-8223(02)00289-1
http://doi.org/10.1016/j.tws.2004.11.004
http://doi.org/10.1016/j.compstruct.2009.02.005
http://doi.org/10.1061/(ASCE)EM.1943-7889.0000560
http://doi.org/10.2514/6.2021-0205
http://doi.org/10.2514/1.J058999
http://doi.org/10.1080/15376490902970430
http://doi.org/10.1016/j.ijmecsci.2017.05.001
http://doi.org/10.1016/j.tafmec.2018.10.002
http://doi.org/10.1080/15376494.2021.1985197


Buildings 2022, 12, 2163 30 of 30

32. Lilin, Z. Similitude analysis of free vibration of functionally graded material cylinders under thermal environment. Mech. Syst.
Signal Process. 2022, 170, 108821.

33. Thornburgh, R.P.; Hilburger, M.W. Design of Orthogrid Cylinder Test Articles for the Shell Buckling Knockdown Factor Assessment;
Technical Report NASA/TM-2010-216866; NASA: Washington, DC, USA, 2010.

34. Hilburger, M.W.; Haynie, W.T.; Lovejoy, A.E.; Roberts, M.G.; Norris, J.P.; Waters, W.A.; Herring, H.M. Subscale and full-scale
testing of buckling-critical launch vehicle shell structures. In Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, Honolulu, HI, USA, 23–26 April 2012; pp. 1–33.

35. Hilburger, M.W.; Lovejoy, A.E.; Thornburgh, R.P.; Rankin, C. Design and analysis of subscale and full-scale buckling-critical
cylinders for launch vehicle technology development. In Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, Honolulu, HI, USA, 23–26 April 2012; pp. 1–48.

36. Wang, B.; Du, K.; Hao, P.; Zhou, C.; Tian, K.; Xu, S.; Ma, Y.; Zhang, X. Numerically and experimentally predicted knockdown
factors for stiffened shells under axial compression. Thin-Walled Struct. 2016, 109, 13–24. [CrossRef]

37. Hilburger, M.W. On the development of shell buckling knockdown factors for stiffened metallic launch vehicle cylinders. In
Proceedings of the AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, USA,
8–12 January 2018; pp. 1–17.

38. Brush, D.O.; Almroth, B.O. Buckling of Bars, Plates, and Shells; McGraw-Hill: New York, NY, USA, 1975; pp. 177–178.
39. Amabili, M. Nonlinear Vibrations and Stability of Shells and Plates; Cambridge University Press: New York, NY, USA, 2008; pp. 29–32.
40. Ventsel, E.; Krauthammer, T. Thin Plates and Shells: Theory, Analysis, and Applications; Marcel Dekker: New York, NY, USA, 2001;

p. 548.
41. Lianyuan, W. Theory of Plate and Shell Stability; Huazhong University of Science and Technology Press: Wuhan, China, 1996; p. 236.
42. Crisfield, M.A. A fast incremental iterative solution procedure that handles “snap-through”. Comput. Struct. 1981, 13, 55–62.

[CrossRef]
43. Narayana, Y.V.; Gunda, J.B.; Reddy, P.R.; Markandeya, R. Nonlinear buckling and post-buckling analysis of imperfect cylindrical

shells subjected to axial compressive load. J. Struct. Eng. 2015, 42, 78–85.
44. Arbocz, J.; Sechler, E.E. On the buckling of stiffened imperfect cylindrical shells. AIAA J. 1976, 14, 1611–1617. [CrossRef]
45. Arbocz, J. Post-buckling behavior of structures numerical techniques for more complicated structures. In Buckling and Post-

buckling; The series Lecture Notes in Physics; Araki, H., Ehlers, J., Hepp, K., Kippenhahn, R., Weidebnüller, H.A., Wess, J.,
Zittartz, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 288, pp. 83–142.

46. Bo, W.; Peng, H.; Gang, L.; Yaochu, F.; Xiaojun, W.; Xi, Z. Determination of realistic worst imperfection for cylindrical shells using
surrogate model. Struct. Multidiscip. Optim. 2013, 45, 777–794.

47. Meyer-Piening, H.R.; Farshad, M.; Geier, B.; Zimmermann, R. Buckling loads of CFRP composite cylinders under combined axial
and torsion loading-experiment and computations. Compos. Struct. 2001, 53, 427–435. [CrossRef]

48. Simitses, G.J. Buckling and post buckling of imperfect cylindrical shells: A review. Appl. Mech. Rev. 1986, 39, 1517–1524.
[CrossRef]

http://doi.org/10.1016/j.tws.2016.09.008
http://doi.org/10.1016/0045-7949(81)90108-5
http://doi.org/10.2514/3.7258
http://doi.org/10.1016/S0263-8223(01)00053-8
http://doi.org/10.1115/1.3149506

	Introduction 
	Generalized Similitude Conditions and Scaling Laws for Post-Buckling of Stiffened Cylinders under Axial Compression 
	Method for Post-Buckling Analysis of Stiffened Cylinders under Axial Compression 
	Verification of Post-Buckling of Cylinders under Axial Compression 
	Post-Buckling Similarity Simulation of Axial Compression Based on Three Different Geometrical Imperfections 
	Post-Buckling Similarity Simulation of Axial Compression Based on First-Order EMI 
	Post-Buckling Similarity Simulation of Axial Compression Based on IDDI 
	Post-Buckling Similarity Simulation of Axial Compression Based on the DI 
	Summary 

	Conclusions 
	References

